科研动态

News

Towards Micro-video Understanding by Joint Sequential-Sparse Mod

Like the traditional long videos, micro-videos are the unity of textual, acoustic, and visual modalities. These modalities sequentially tell a real-life event from distinct angles. Yet, unlike the traditional long videos with rich content, micro-videos are very short, lasting for 6-15 seconds, and they hence usually convey one or a few high-level concepts. In the light of this, we have to characterize and jointly model the sparseness and multiple sequential structures for better micro-video understanding. To accomplish this, in this paper, we present an end-to-end deep learning model, which packs hree parallel LSTMs to capture the sequential structures and a convolutional neural network to learn the sparse conceptlevel representations of micro-videos. We applied our model to the application of micro-video categorization. Besides, we constructed a real-world dataset for sequence modeling and released it to facilitate other researchers. Experimental results demonstrate that our model yields better performance than several state-of-the-art baselines.



关闭