
Man-made by Computer: On-the-Fly Fine Texture 3D Printing
Xin Yan

yanxin91@mail.sdu.edu.cn
Shandong University

Qingdao, Shandong, China

Lin Lu∗
llu@sdu.edu.cn

Shandong University
Qingdao, Shandong, China

Andrei Sharf
asharf@cs.bgu.ac.il

Ben-Gurion University
Beer-Sheva, Israel

Yu Xing
Shandong University

Qingdao, Shandong, China

Yulu Sun
Shandong University

Qingdao, Shandong, China

Figure 1: 3D printed squirrel textured by our G-code modifications with variations of cracks simulating random cracks in a
natural material.

ABSTRACT
Applying textures to 3D models are means for creating realistic
looking objects. This is especially important in the 3D manufac-
turing domain as manufactured models should ideally comprise
a natural and realistic appearance. Nevertheless, natural material
textures usually consist of dense patterns and fine details. Their
embedding onto 3D models is typically cumbersome, requiring
large processing time and resulting in large size meshes. This pa-
per presents a novel approach for direct embedding of fine scale
geometric textures onto 3D printed models by on-the-fly modifica-
tion of the 3D printer’s head. Our idea is to embed 3D textures by
revising the 3D printer’s G-code, i.e., incorporating texture details
through modification of the printer’s path. Direct manipulation of
the printer’s head movement allows for fine-scale texture mapping
and editing on-the-fly in the 3D printing process. Thus, our method
avoids the computationally expensive texture mapping, mesh pro-
cessing and manufacturing preprocessing. This allows embedding
detailed geometric textures of unlimited density which can model
manual manufacturing artifacts and natural material properties.
Results demonstrate that our direct G-code textured models are
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCF ’21, October 28–29, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9090-3/21/10. . . $15.00
https://doi.org/10.1145/3485114.3485119

printed robustly and efficiently in both space and time compared
to traditional methods.

CCS CONCEPTS
• Computing methodologies→ Shape modeling.

KEYWORDS
G-codes, geometric texture embedding, meshless

ACM Reference Format:
Xin Yan, Lin Lu, Andrei Sharf, Yu Xing, and Yulu Sun. 2021. Man-made by
Computer: On-the-Fly Fine Texture 3D Printing. In Symposium on Compu-
tational Fabrication (SCF ’21), October 28–29, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3485114.3485119

1 INTRODUCTION
3D printing techniques are rapidly expanding the possibilities of
how physical objects are fabricated, enabling fabrication of physi-
cal objects and structures not previously possible [Gürsoy 2018].
Research into the technology of FDM printing (e.g., header’s move-
ment speed, extrusion amount and height, etc.) has allowed to create
novel effects such as hair [Laput et al. 2015], micro-pillar struc-
tures [Ou et al. 2016] and fluffy textures [Takahashi and Miyashita
2017] without the need for any hardware innovations. The control
and accuracy provided by these technologies ease the transition
from digital to physical.

Despite these advantages, digital fabrication has yet addressed
the promotion of realism and natural artifacts in 3D printed objects.
Attention is mostly directed to how closely fabricated objects re-
semble their digital counterparts, rather than considering variations
and artifacts due to human craftsmanship, manual manufacturing

https://doi.org/10.1145/3485114.3485119
https://doi.org/10.1145/3485114.3485119

SCF ’21, October 28–29, 2021, Virtual Event, USA Yan, et al.

and material natural phenomena. As stated in [Gourdoukis 2015]:
"while digital fabrication tools offer the chance to reconnect with
materiality and craftsmanship they are taking away the properties
of unpredictability and uniqueness that are inherent in processes
that are harnessing materiality".

In this work, we present a 3D printing technique that can incorpo-
rate fine geometric textures onto printed models in a direct manner
through modifications of the printer’s head movement. This allows
embedding detailed geometric textures of unlimited density which
can model manual manufacturing artifacts and natural material
properties. Our technique avoids the need for computational ex-
pensive texture mapping and 3D fabrication preprocessing. Instead,
the 3D geometric texture is embedded onto the model on-the-fly,
through re-programming of the 3D printer’s G-code commands.

Textures have been extensively explored in computer graphics
as means of generating realistic-looking models [Zhou et al. 2006].
In our context, textures were showed successfully in capturing
complex natural phenomena [Bellini et al. 2016]. Texture synthe-
sis for curved surface from exemplar has drawn a lot of research
works [Wei et al. 2009]. Nevertheless, their application to 3D ob-
jects requires high-resolution meshes and large computation time.
Textures have also been used for 3D printing of meshes with dif-
ferent geometric effects [Chen et al. 2016; Dumas et al. 2015; Liu
et al. 2020; Yang et al. 2019; Zehnder et al. 2016]. In these works, 3D
geometric textures are first mapped onto the mesh surface which is
then sent for slicing and path planning (3D printing preprocessing).
Typically, this is a time-consuming step governed by the mesh size,
amount of fine detail and geometric complexity of the model.

Our method operates at G-code level and directly embeds geo-
metric textures on the object’s surface. The pipeline consists of a
G-code parser that computes and modifies contour layers that form
the surface. This consists of computing consistent local mappings
and vertex offsets between contours and texture. 3D printing is
realized through modification of the 3D printer head motion path
to account for the new contour offsets.

Our method allows direct control on the texturing process at
printer level. Specifically, the user can add variations to the model
by on-the-fly additional modification of the printer’s head motion
path (e.g., random, noise pattern, textures). Thus, we can simulate
man-made manufacturing artifacts. We also allow users to control
and locally modify 3D texture generation. By providing users with
such tools and interfaces we put the user in the manufacturing
loop allowing humans yet again to "reconnect with materiality and
craftsmanship". Our method makes the following contributions:

• A novel texture embedding approach by modification of the
extrusion path.

• It performs direct on-the-fly manipulation of texture geome-
tries at printer level allowing novel texture patterns that can
simulate handmade manufacturing artifacts.

• Texture is applied on G-code contours without requiring
additional mesh processing. It generalizes to any shape as it
is not sensitive to geometrical complexity.

• Since it does not operate on the mesh, it does not introduce
any storage footprint and is printer-friendly.

2 RELATEDWORK
Textures have been previously considered in the context of digital
fabrication as means of enriching 3D printed models with geometric
patterns and details. In the following, we review related works in
this area as well as the manipulations andmodification of 3D printer
motion.

Fabrication aware geometric texture synthesis. Texture synthesis
approaches have been adapted to 3D manufacturing by converting
image textures into printable 3D structures. In [Dumas et al. 2015]
2D image exemplars are converted into 3D patterns by considering
solid and empty pixels. They define a by-example texture synthesis
approach, connecting the solid parts into a structurally sound 3D
texture. Similarly, shapes consisting of structural patterns were op-
timized in [Martínez et al. 2015] to satisfy specific loading scenarios
while preserving similarity to an exemplar pattern.

Filigrees were synthesized in [Chen et al. 2016] to generate 3D
printable textures and delicate patterns. Similarly, spline curves
were used as decorative surface patterns in [Zehnder et al. 2016].
The method performs structural analysis and lets a curve network
deform and connect under user assistance, thus strengthening in
corresponding regions. [Suzuki et al. 2017] proposes a tool that
allows the user to interactively sketch and manipulate textures that
are automatically converted into 3D printable patterns onto arbi-
trary surfaces. InfoTexture [Zhang et al. 2017] has been introduced
as a computer-aided fabrication approach that combines 3D struc-
tures with the surface texture. The method decomposes a digital
model into basic texture pieces tiled onto a 2D plane and assembled
into 3D forms after fabrication. [Liu et al. 2020] models fabricable
Escher dual-shape tilings from user-defined shapes. Similar to us,
[Fu et al. 2018] decorates 3D models in a direct manner without the
need for a local/global parameterization. Using diffusion curves on
arbitrary meshes denoted Poisson Vector Graphics, their method
allows 3D decorations of detailed geometries while minimizing the
overall computational expenses.

OpenFab [Vidimče et al. 2013] is introduced for solving the
high resolution and large data in multi-material 3D printing. Their
pipeline also supports easily defining texture on the input model.
Due to the printer resolution and physical properties of the mate-
rial, fine details could not be preserved after fabrication. [Pintus
et al. 2010] proposed a geometry enhancement technique that sim-
ulates the printing process and edits the input mesh to improve the
readability of the printed object.

Outside the academic field, slicer software in the industry also
tries to facilitate texture in fabrication. Cura software [Cur 2020]
allows for adding white noise texture during the slicing procedure.
Velocity Painting [Wheadon 2021] allows users to add image texture
on a specified region.

In a different direction, 3D geometric texture manufacturing was
utilized to explore tactile surface properties, haptics, and perception.
HapticPrint was introduced in [Torres et al. 2015] to enable physical
haptic design in 3D printed objects. Their method allows for defin-
ing and editing exterior geometric textures and interior stiffness
constraints, yielding tactile (touch) and kinesthetic (pressure) char-
acteristics. [Dassen and Bruns Alonso 2017] uses material sketches
to design a set of haptic interaction prototypes to explore push
button and knob haptic sensations. [Yasu 2017] proposes a method

Man-made by Computer: On-the-Fly Fine Texture 3D Printing SCF ’21, October 28–29, 2021, Virtual Event, USA

for designing magnetic fields and tactile textures using digital plot-
ting. Specifically, they write magnetic patterns on magnetic rubber
sheets, which display unique haptic stimuli when rubbed. [Tymms
et al. 2018] explores perceptual surface roughness by building a
quantitative model that maps between texture geometry and tactile
roughness. [Ion et al. 2018] presents metamaterial textures inspired
by origami and surface wrinkling. It consists of 3D printed grid
cells that fold when compressed by an external force. The tactile
and appearance of texture are often linked. Changing the visual ap-
pearance would, in turn, affect the tactile feel. [Tymms et al. 2020]
proposes a neural network-based optimization method to control
the tactile property while maintaining its visual appearance.

These methods explore various geometric patterns and haptic
properties of 3D printed surfaces. Nevertheless, their 3D textures
are simple in terms of geometric detail and resolution. Our G-code
level direct 3D texture printing method allows applying complex
and dense geometric textures that directly represent materials prop-
erties and natural phenomena onto 3D printed models.

3D printer manipulation. Investigations into 3D printing param-
eters (e.g., header’s movement speed, extrusion amount, and extru-
sion height) have extended the capability of 3D printers, allowing
users to create novel 3D effects in addition to solid 3D objects
without the need for any hardware innovations.

Dual-color mixing was introduced in [Reiner et al. 2014] as a
dithering technique for generating continuous tones using two
heads FDM 3D printers. Authors modify the head movement to
introduce small geometric offsets between layers, producing inter-
leaved color patterns that convey an impression of smooth color
blending. [Song et al. 2019] makes colored FDM printing possible
by dividing layer further into a set of strata, each stratum has a
constant color. By locally changing the thickness of the stratum,
they could change the perceived color at the given location.

Inspired by the glue gun stringing behavior, a 3D hair printing
technique was introduced in [Laput et al. 2015]. The method allows
fabricating soft strands and fibers by manipulating the FDM printer
head extrusion amount, feed rate, and running distance. Similarly,
Cilllia was introduced in [Ou et al. 2016] for hair-like structures
fabrication in stereolithography (SLA) 3D printing. The method
generates printable layers represented by bitmap texture that con-
tain dense and complex hair structures. Similar to us, they map
hair arrays onto the object’s surface by directly modifying the 3D
printer’s slicing protocol. Nevertheless, their method focuses on
textures representing specific cone-like hair geometries, while our
method aims at general geometric textures that represent natural
material phenomena.

The control of extruded material in fused deposition modeling
(FDM) 3D printers was previously explored. In [Takahashi and
Miyashita 2016], authors increase and decrease the amount of mate-
rial extruded during printing, yielding aesthetic pattern sheets and
tactile objects. Similarly, the relation between the height position
of the extruder and the amount of extruded material is explored
in [Takahashi and Miyashita 2017] to enhance the capability of new
inherent expressions for FDM 3D printers. [Kuipers et al. 2018] in-
troduces a novel halftoning technique for fabricating 3D grayscale
objects using the FDM 3D printing method. Their method mod-
ulates the visible width of printed lines of two alternating colors

to produce continuous-tone gradients. Finally, 3D printed fabric is
introduced in [Takahashi and Kim 2019] for fabricating soft and
flexible textiles using an FDM 3D printer. Authors control the move-
ment of the printer header to alternately weave stringing fibers
across a row of pillars and generate a thin sheet of fabric.

Our method takes a step in this direction and allows embedding
geometric textures of high resolution and complexity directly onto
the surface through modulation of the printing toolpath.

3 OVERVIEW
Given a 3D shape, our aim is to embed a given 3D texture onto the
shape’s surface by directly modifying the printer’s head motion
path. We assume a G-code file corresponding to the original 3D
shape is given. Since we focus on extrusion-based printing tech-
niques, the input G-code file consists of a decomposition of the
3D shape into a set of contour layers which govern the printer’s
head movement. We utilize the G-code contours representation
and compute a mapping between the 3D texture and contours,
layer-by-layer, while accounting for global structural coherence.

In the first step (see Figure 2 mid-left), we compute a Quad tes-
sellation of the input surface. Quad tiles allow a simple mapping
between texture exemplars and the surface. In order to handle com-
plex topologies, we compute a Reeb graph on top of the contour
layers in slicing direction. Thus we account for topological com-
plexity and monitor topology singularities in the surface. We use
Reeb graph and contours to evenly distribute Quad vertices on the
surface and connect them in a topologically persistent manner. We
allow users to control Quad tessellation resolution and orientation.

In the next step, we compute for each contour, a mapping be-
tween contour vertices and corresponding texture exemplar (de-
fined by quad to texture mapping). This yields offsets of contour
vertices according to their mapping into the 3D texture (see Figure 2
mid-right). We then apply a path planning to fill the interior of each
contour and generate the new G-code commands with geometric
texture embedded.

4 G-CODE QUAD TESSELLATION
In this step, we utilize the G-code file and contour layers decom-
position to efficiently compute texture mapping information for
any 3D shape. Essentially, we compute a Quad tessellation of the
surface by processing contour layers extracted from the G-code file.
Quads are then used as texture proxies which are directly mapped
to texture tiles. We also compute a Reeb graph from the contour
layers to detect topological singularities. We then sample the con-
tours uniformly and connect sample points to form a valid Quad
tessellation of the surface.

Reeb graph. Reeb graphs are compact shape descriptors that
convey topological information related to level sets of a function on
a shape [Reeb 1946]. They were successfully applied for topology-
based shape decomposition, segmentation, and parameterization
[Patanè et al. 2004; Zhang et al. 2005] We follow this path and
compute a Reeb graph by considering the G-code slicing of the
shape into contours as a simple height function in z up-direction.

We first extract contours for each slice layer from the G-code
file. Then, we trace contours along the slicing direction and exam-
ine topological changes. Specifically, between two adjacent layers,

SCF ’21, October 28–29, 2021, Virtual Event, USA Yan, et al.

Figure 2: 3D texture printing pipeline. Given an input 3D shape (leftmost), we tessellate its surface into quads and map 3D
texture tiles onto quads (mid-left). We compute vertex offsets between contours and texture and modify the printer’s G-code
and head movement (mid-right), resulting in a 3D printable textured shape (rightmost).

(a) (b) (c) (d) (e)

Figure 3: Contour relationships between adjacent layers:
(left-to-right) maintain, split, merge, appear, disappear.

topological changes of contours include split, merge, appear or dis-
appear (see Figure 3). To determine contour relationships between
adjacent layers, we project the contour onto successor layers along
the slicing direction. If it intersects one or more contours in the
predecessor layer, then it follows cases a-c in Figure 3. If it has no
intersection in the predecessor layer, then it is a new contour, case d
in Figure 3. If it has no intersection with any contour in the succes-
sor layer, then it disappears, case e in Figure 3. We trace contours
and their cases (i.e., critical points) and build a corresponding Reeb
graph (see Figure 4).

Figure 4: Tracing G-code contours along slicing direction
(left), corresponding Reeb graph (middle) and Quad tessel-
lation (right).

Surface sampling. Given the slicing up direction, we choose the
bottom layer in the G-code as the base layer. Suppose the base
layer hasm independent contours, we evenly distribute k sample
points on allm contours, where k is a user-defined parameter. We
propagate the sampling points from the base layer, bottom to top,

considering spatial coherence. During propagation, we project each
sample point on a contour in layer i−1 to the closest point in layer i
(successor layer). This projection holds for any of the contour cases:
maintain, split, merge (Figure 3 a-c). In the case of a contour that
appears (Figure 3 d), we treat it similarly to a new base layer and
sample it evenly with the same sampling rate as the initial layer.

We follow two optimization steps during the point propaga-
tion between contours to ensure that the sampling points on the
successor contour are distributed as smoothly as possible. Our
optimization consists of two relaxation steps which we perform
iteratively. First is uniformity: sample points should have an even
distribution where the point with minimal projection distance is the
anchor point. Second is minimal distance: sample points move such
that the total distance between sample points and their projected
counterparts in the predecessor contour is minimal (see Figure 5).

Figure 5: Propagation optimization of points from contour
in layer i − 1 to contour in layer i. Initially points are pro-
jected to a closest position (left), then evenly distributed
from anchor point marked in yellow (middle), then moved
together to minimize the projection error (right).

Quad tiling. Our sampling scheme yields a Quad tiling of the
surface which is obtained by connecting neighboring sampling
points along the contour direction (denoted by u) and in slicing
(cross-layer) direction (denoted by v). Thus, a Quad is obtained by
connecting together adjacent sample points along a contour (u) as
well as points and their projected counterparts on adjacent layers
(v).

Since projecting points connect across layers, their Quads may
become distorted due to topological changes. Although we aim to

Man-made by Computer: On-the-Fly Fine Texture 3D Printing SCF ’21, October 28–29, 2021, Virtual Event, USA

Figure 6: Initial Quad tiling (left) and smoothed (right).

minimize projection error between adjacent layers, significant topo-
logical changes along the slicing direction may yield non-smooth
transitions (see Figure 6-left). Such distortions in the Quad tiling
introduce visible distortions in the texture mapping. Hence, we
apply a restricted Laplacian smoothing on the sample points and
then project the points back onto their contours (see Figure 6-right).

(a) (b) (c)

Figure 7: A coarse Quad tiling of a vase (a) is refined by
denser sampling (b) and deformed using a simple line curve
guide (c) (in dotted square).

User control. Our method allows some design freedom in the
texture mapping process. Specifically, the user may control the
texture scale by defining the sampling density via k yielding dif-
ferent Quad tiling resolutions (see Figure 7 (a-b)). Thus, as Quad
tiles are finer, texture details would be finer too (bounded by the
initial texture resolution). Additionally, the users may guide the
Quad tiling global orientation. This is achieved by drawing a cubic
Bézier curve line that replaces the original slicing direction v . This
affects the projection direction of points between adjacent layers
and, in turn, the Quad tile orientation and texture position on the
surface (Figure 7 (c)).

5 G-CODE TEXTURE MAPPING
Essentially, our Quad tessellation binds the surface with a coordi-
nate space along the contour direction u and the slicing direction
v . To map the texture to quads, a straightforward idea would be
to assign the given texture to each Quad. Nevertheless, this would

Figure 8: Direct texture mapping onto Quads yields artifacts
at boundaries (left). Using texture synthesis optimization
generates a smooth texture (right).

result in repetitive artifacts and boundary discontinuities (see Fig-
ure 8). To avoid boundary artifacts, we follow the texture synthesis
method in [Efros and Freeman 2001].

Since the surface is represented by a series of Quad tiles д, we
denote the ith Quad cell by дi , and compute the optimal texture ex-
emplar bi following the image quilting method suggested in [Efros
and Freeman 2001]. A texture binding is then obtained for each pair
of (дi ,bi).

Next, for a position (uд ,vд) on a contour (uk ,vk) and its corre-
sponding tile дi , its texture coordinates indicates a grayscale value
in the geometric texture exemplar bi . This grayscale value encodes
a displacement value along the normal direction n(uд ,vд) in the
contour layer (see Figure 2 (mid-right)). This allows offsetting the
contour points and thus embed the texture onto the surface. Note
that we super-sample each contour to match the texture resolution.
The sampling rate is also bounded by fabrication resolution.

Procedural textures.Besides exemplar texturemapping, our frame-
work also allows directly map procedural functions onto the G-code
contours. Given any procedural texture function f (u,v) we map
it onto Quads successively. Similarly, after super-sampling of each
contour, we locate its Quad cell and obtain its displacement value
from its texture mapping to procedural texture for each sample
on the contour. We then apply the displacement along the nor-
mal direction. Figure 11 demonstrates textures from Perlin noise
functions with different parameters.

G-code file generation. A G-code file consists of machine setting
commands and motion commands. The motion command moves
the extruder to target positions and extrudes the proper amounts
of materials to form the shape. In the final step of our pipeline, we
convert the modified outer contour layers representing the textured
surface back into G-code motion commands following a path plan.
The path planning process generates the infill patterns and support
structures based on the polygon contours and converts them to
a toolpath. The toolpath patterns include raster, zigzag, contour-
parallel, spiral, Fermat spiral, and other space-filling curves [Ding
et al. 2014; Zhao et al. 2016].

For FDM printing with thermoplastics, we perform a hybrid
fill: contour-parallel pattern to guarantee geometric accuracy of
outer boundaries and a zigzag pattern of the interior filling for

SCF ’21, October 28–29, 2021, Virtual Event, USA Yan, et al.

each contour. Next, we calculate the printer’s extrusion amount
for each line in the G-code commands. We output each path in
each layer in z increasing order. Our G-code format follows the Cu-
raEngine [Cur 2020] and is compatible with most mainstream FDM
3D printers. Our method could also be easily integrated into slicers
like Cura, which would make the geometric texture generation
more convenient. Ceramics are of excellent mechanical properties
and unique appearance. Due to the low-cost hardware, extrusion-
based clay printing received increasing attention from industry and
academia [Hergel et al. 2019]. For extrusion-based clay printing,
the input models are mostly self-supporting shells, which conform
to the pseudoplastic liquid characteristics. Thus, long as the dis-
placement magnitude is restricted in the self-supporting area, the
modulated single contour directly exported to G-code commands
is good enough for fabrication (see Figure 15).

6 RESULTS
Our G-code texturing works on extrusion-based 3D printers. In the
following, we generate fine geometric textures on various models,
evaluate our performance, and compare themwith existing standard
texture mapping and 3D manufacturing methods. Furthermore, we
validate our method by fabricating various models following our G-
code files and using plastic and clay printing materials. Our method
is implemented in C++ and run on an Intel CoreTM i7-6700K CPU
@4.0GHz and 16GB RAM.

11MB 190MB 476MB 1GB
Mesh Size

0

50

100

150

200

250

300

350

Pr
oc

es
si

ng
 T

im
e

(S
)

FlashPrint

Slic3r

Simplify3D
Ours

Cura

GrabCAD Print

Figure 9: Performance comparison (processing time vs.
mesh size) between 5 state-of-the-art 3D manufacturing
tools and ours. Since our method does not have mesh rep-
resentation during texture embedding, the mesh size here
is an approximation by using the texture synthesised in our
pipeline and perfrom texture baking inMaya® to get the cor-
responding mesh.

Performance. Our method embeds fine detail geometric textures
directly into the G-code that is then 3D printed. Thus, our method
does not add to mesh resolution and size while keeping low com-
putational costs of texture embedding and G-code updating. In
contrast, applying fine detail textures with traditional methods re-
quires a high computational cost of texture synthesis and mapping.
This is determined by the complexity of both input shape and tex-
ture. Additionally, the resulting textured mesh is very large due to

its fine-detailed geometry. In 3D manufacturing, large meshes are a
practical issue for data transmission and preprocessing. Specifically,
their slicing and path planning processes would require extensive
processing time and even may turn infeasible (due to memory or
CPU limitations).

In Figure 9 we show a comparison between our method and
commercial, state-of-the-art 3D printing tools that perform slicing
and path planning on given meshes in terms of processing time
and mesh size. The height of the tested model is 120mm. We set the
layer height as 0.15mm with an infill density of 10% for all models.
To examine the results considering possible detail decimation in
slicing, we use checkerboard texture as the exemplar. Generally, all
tools demonstrate a significant increase in processing times with the
increase in mesh size. More critically, all but one tool (FlashPrint)
could not handle meshes larger than 900MB. Here the mesh size
only counts vertices and facets without additional information like
normal or texture coordinates. Based on our experiments, the
features are well preserved after slicing when the model size is not
large, say less than 500MB.Most slicers do not workwhen themodel
size is large to 1GB, except for FlashPrint. However, FlashPrint
simplifies the model during slicing, as shown in Figure 10, where
we can see that geometric details are damaged after simplification.
In contrast, our method avoids reconstructing a large texture mesh,
and in fact, is insensitive to the textured shape complexity. Note
the red line is almost flat in Figure 9.

Figure 10: Cross-sections at the same height of a 1GBmodel
with the same scale geometric textures. Left: our result is
consistent with the original checkerboard texture; Right:
the contour sliced by FlashPrint is of detail decimation.

User study evaluation. We have evaluated our on-the-fly texture
embedding method against Maya® texturing tool. The purpose was
to compare our method’s direct texturing capabilities against an-
other state-of-the-art mesh texturing tool (focusing just on texture
mapping) in terms of processing time and data size.

We performed a short user study to measure processing times
where we asked 4 different users (2 experts and 2 novices) to use
both tools and apply 5 different textures on 4 different models. For
our method, we record the time consumption from input a G-code
model to output a G-code file with texture embedded. The process-
ing time of embedding geometric textures on a model using Maya®
includes importing the mesh, surface parameterization, texture dis-
placement mapping, textured mesh generation, and exporting. We

Man-made by Computer: On-the-Fly Fine Texture 3D Printing SCF ’21, October 28–29, 2021, Virtual Event, USA

provide a predefined Arnold® script that works in Maya® to fa-
cilitate the texture mapping and geometry baking operations. The
users only need to adjust some parameters and output the resulting
mesh.

The average processing time of all users is summarized in Table 1
(rows denote the 5 textures, columns denote the 4 different mod-
els). Our method has a clear advantage over using Maya®, which
requires tedious work. Similarly, we compared textured mesh sizes
when using Maya® texturing and our tool (Table 2). The G-code
file size is significantly smaller since we do not need to reconstruct
the fine-textured meshes.

Texturings. In this work, we have experimented with various
textures that provide fine detail and complex geometries. When
using procedural textures originating from functions and mathe-
matical models, parameters controlling the texture generations can
be changed to get very different results. Figure 1 shows variations
of a crack geometric texture applied on a squirrel mode. This is
achieved by directly editing the tiling orientation and resolution.
In Figure 11 we demonstrate applying Perlin noise onto 3D models
using the G-code contours. By changing the parameters in Per-
lin noise function, we obtain a family of textured shapes which
resemble man-made manufacturing artifacts.

Figure 11: By changing the parameters in Perlin functionwe
can get a family of textures.

To simulate material variations, we allow users to control the
resolution and orientation of Quad tiles which affect the scale and
shape of the final textured model. In Figure 12 top-row, we use
the same input texture exemplar on two different Quad tiling res-
olutions of a stump model, yielding different texture details. In
Figure 12 bottom-row, we change the Bézier curve guiding the
Quad tiling orientation, yielding a different visual effect of the same
base texture.

Figure 12: Given a texture exemplar, our system could gen-
erate different textures based on user guidance. Top-row
shows different Quad-tiling resolution, bottom-row shows
different v line affecting Quad-tiling orientation.

Texture Accumulation. A feature of our G-code direct texture
embedding is that it is accumulative. I.e., we can re-use the output
of our method as input to another texture embedding iteration.
Thus, we can accumulate different texture patterns together using
several iterations of our G-code texture embedding. This way, we
can aggregate different textures together and generate complex
texturing effects still on-the-fly in the 3D printing process. For
example, users can get series of results mimicking some phenomena
(see Figure 13).

Figure 13: Example of texture accumulation. An initial stone
texturing iteration (left) followed by adding a crack textur-
ing iteration (right).

Fabrication evaluation. We fabricate some models on Hori-E5
desktop FDM printer (see Figure 14). We use Cura 15.4 to slice the
digital model and get the G-code file. All models in our experiment
are 75mm in height, and the layer height is 0.15mm. In Figure 14,
left column is Marble-PLA and right column is Wood-PLA. These
materials share similar physical properties as PLA material but
contain marble and wood visual similarity. Each row consists of
a model with two different textures. First two rows are models
printed in "open surface mode" (printing the outer surface while
keeping the top surface open). The last two rows are models in
"normal mode" (printing with infill structures). Figure 17 shows the
results for randomly disturbing the G-code commands by 20% and
30% of the displacement magnitude.

SCF ’21, October 28–29, 2021, Virtual Event, USA Yan, et al.

Table 1: Running time comparisons between Maya® texturing and our method (slicing time not included).

Model Circle Vase Triangle Vase Squirrel Bunny

Maya Ours Time
Saving Maya Ours Time

Saving Maya Ours Time
Saving Maya Ours Time

Saving

Texture

360s 7.25s 97.9% 320s 6.12s 98.1% 400s 10.61s 97.3% 372s 8.3s 97.8%

370s 7.17s 98.1% 360s 6.17s 98.3% 398s 10.42s 97.4% 380s 8.06s 97.9%

485s 7.16s 98.5% 480s 6.15s 98.7% 520s 10.41s 98% 490s 7.98s 98.3%

620s 7.19s 98.8% 600s 6.27s 99% 640s 10.48s 98.4% 620s 8.22s 98.7%

380s 7.25s 98.1% 365s 6.21s 98.3% 390s 10.67s 97.3% 376s 8.23s 97.8%

Table 2: Data size comparisons between Maya® texturing and our method.

Model Circle vase Triangle vase Squirrel Bunny
Maya
(MB)

Ours
(MB)

Space
saving

Maya
(MB)

Ours
(MB)

Space
saving

Maya
(MB)

Ours
(MB)

Space
saving

Maya
(MB)

Ours
(MB)

Space
saving

Texture

611 8.30 98.6% 517 7.36 98.6% 995 8.65 99.1% 621 3.93 99.4%

605 8.23 98.6% 522 7.42 98.6% 979 8.49 99.1% 633 3.79 99.4%

604 8.19 98.6% 520 7.4 98.6% 982 8.75 99.1% 631 3.78 99.4%

617 8.25 98.6% 530 7.54 98.6% 985 8.23 99.2% 615 3.68 99.4%

612 8.31 98.6% 524 7.51 98.6% 962 7.92 99.2% 618 3.87 99.4%

We also verify our results on an extrusion-based ceramic printer,
CERAMBOT Plus. The models are 200mm in height, and the layer
thickness is 1mm. Because the layer thickness in ceramic printing is
relatively large, if the z value in one layer is constant, there would be
a seam where the z value changed. Changing the z value evenly in
each layer and form a spiral printing path could solve this problem.
Our method works well in this case. Figure 15 shows the spiral
printing path of the vase model with Perlin noise, tree bark, and
crack textures.

Except for extrusion-based printers, our method could be easily
adapted to other printers. In Figure 16 we apply Perlin noise on
a triply periodic minimal surface (TPMS) with intricate geometry.
We use an AccuFab-D1 DLP (digital light processing) 3D printer
for fabrication. The model is 80mm in height, and the printing
resolution is 0.075mm in the x-y direction and 0.050mm in the
z-direction.

DLP 3D printers use digital mask images to fabricate models
and, therefore, a different G-code. We convert the contour layers
into image masks using a scan line on the polygonal area filling
algorithm. Then we set exposition times per image such that the
whole model can be fabricated.

Limitation. Our method uses a direct geometric texture mapping
on shape contours. I.e., we compute contour offsets from a mapped
set of values. In cases where the shape has large concave regions
or sharp edges, the resulting textured shape will consist of self-
intersections when the texture encodes large offsets. These artifacts
are common when adding geometric textures to a model. A possible
solution is performing shape analysis to obtain an upper bound

distance of the texture offset. Additionally, our texture mapping
step (Quad tiling) does not handle shrinkage effects due to shape
contours scaling down (see Figure 18 left). The texture offsetting
operation only works in the x-y direction. As a result, in the top
region of the half-sphere model, the amplitude of geometric texture
gets smaller. Our method takes grayscale value to encode the offset
distance to express the geometric texture without considering any
perceptual aspects. Dealing with texture exemplar with dense fea-
ture like knitting (Figure 18 right), the resulted geometric texture
would be indistinct.

7 DISCUSSION AND FUTUREWORK
We presented a novel approach for directly embedding fine-scale
geometric textures onto 3D printed models by modifying the 3D
printer’s head. The manipulation of the printer’s head movement
allows fine-scale texture mapping and editing on-the-fly in the 3D
printing process. Themethod avoids computationally expensive tex-
ture mapping, mesh processing, and manufacturing preprocessing.
We show texturing of detailed geometries and modeling manual
manufacturing artifacts and natural material properties using our
method. Results demonstrate a large variety of robustly printed
modified G-codes of textured models.

In the future, we plan to investigate more G-code manipulations
for additional effects beyond the visual aesthetics of textures. For
example, we plan to investigate functionalities that could be em-
bedded onto different surfaces using G-code manipulation such
as anti-slipping, velcro, etc. Additionally, we plan to extend our
investigation of artifacts in manual manufacturing and establish a

Man-made by Computer: On-the-Fly Fine Texture 3D Printing SCF ’21, October 28–29, 2021, Virtual Event, USA

Figure 14: FDM 3D printed textured models.

study to obtain a systematic model of such artifacts and relate them
to the type of manual activity, material, tools, etc. This would help
in further promoting realism in 3D manufacturing and advancing
man-made by computer.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers for their valuable comments
and constructive suggestions. This work is supported by grants
from NSFC (61972232). Special thanks to Prof. Daniel Cohen-Or for
inspiring discussions on this project.

REFERENCES
2020. CuraEngine. https://github.com/Ultimaker/CuraEngine
Rachele Bellini, Yanir Kleiman, and Daniel Cohen-Or. 2016. Time-Varying Weathering

in Texture Space. ACM Trans. Graph. 35, 4, Article 141 (July 2016), 11 pages.
https://doi.org/10.1145/2897824.2925891

Weikai Chen, Xiaolong Zhang, Shiqing Xin, Yang Xia, Sylvain Lefebvre, and Wenping
Wang. 2016. Synthesis of Filigrees for Digital Fabrication. ACM Trans. Graph. 35, 4,
Article 98 (July 2016), 13 pages. https://doi.org/10.1145/2897824.2925911

Figure 15: Ceramic 3D printed textured vases.

Figure 16: A 3D printed complex TPMSmodel textured with
Perlin noise.

Wendy Dassen and Miguel Bruns Alonso. 2017. Aesthetics of Haptics: An Expe-
rience Approach to Haptic Interaction Design. In Proceedings of the 2017 ACM
Conference Companion Publication on Designing Interactive Systems (Edinburgh,
United Kingdom) (DIS ’17 Companion). ACM, New York, NY, USA, 254–259.
https://doi.org/10.1145/3064857.3079156

Donghong Ding, Zengxi Stephen Pan, Dominic Cuiuri, and Huijun Li. 2014. A tool-path
generation strategy for wire and arc additive manufacturing. The international
journal of advanced manufacturing technology 73, 1-4 (2014), 173–183.

Jérémie Dumas, An Lu, Sylvain Lefebvre, JunWu, and Christian Dick. 2015. By-example
Synthesis of Structurally Sound Patterns. ACM Trans. Graph. 34, 4, Article 137 (July
2015), 12 pages. https://doi.org/10.1145/2766984

Alexei A. Efros and William T. Freeman. 2001. Image quilting for texture synthesis
and transfer. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques - SIGGRAPH '01. ACM Press. https://doi.org/10.1145/383259.
383296

https://github.com/Ultimaker/CuraEngine
https://doi.org/10.1145/2897824.2925891
https://doi.org/10.1145/2897824.2925911
https://doi.org/10.1145/3064857.3079156
https://doi.org/10.1145/2766984
https://doi.org/10.1145/383259.383296
https://doi.org/10.1145/383259.383296

SCF ’21, October 28–29, 2021, Virtual Event, USA Yan, et al.

Figure 17: The G-code commands are randomly disturbed by
20% (left) and 30% (right) of the displacement magnitude.

Figure 18: Left: Shrinkage limitation of our texture as con-
tours get smaller towards the top of a half-sphere. Right:
The resulted texture is indistinct for the knitting examplar.

Qian Fu, Fei Hou, Qian Sun, Shi-Qing Xin, Yong-Jin Liu, Wencheng Wang, Hong Qin,
and Ying He. 2018. Decorating 3D models with Poisson vector graphics. Computer-
Aided Design 102 (sep 2018), 1–11. https://doi.org/10.1016/j.cad.2018.04.019

Dimitris Gourdoukis. 2015. Digital craftsmanship: from the arts and crafts to digital
fabrication. ArchiDOCT 2, 2 (2015), 43–57.

Benay Gürsoy. 2018. From Control to Uncertainty in 3D Printing with Clay. In Pro-
ceedings of the 36th eCAADe Conference, Vol. 2. Lodz, Poland, 21–30.

Jean Hergel, Kevin Hinz, Sylvain Lefebvre, and Bernhard Thomaszewski. 2019.
Extrusion-Based Ceramics Printing with Strictly-Continuous Deposition. ACM
Transactions on Graphics (Nov. 2019). https://doi.org/10.1145/3355089.3356509

Alexandra Ion, Robert Kovacs, Oliver S. Schneider, Pedro Lopes, and Patrick Baudisch.
2018. Metamaterial Textures. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York,
NY, USA, Article 336, 12 pages. https://doi.org/10.1145/3173574.3173910

Tim Kuipers, Willemijn Elkhuizen, Jouke Verlinden, and Eugeni Doubrovski. 2018.
Hatching for 3D prints: Line-based halftoning for dual extrusion fused deposition
modeling. Computers & Graphics 74 (aug 2018), 23–32. https://doi.org/10.1016/j.
cag.2018.04.006

Gierad Laput, Xiang ’Anthony’ Chen, and Chris Harrison. 2015. 3D Printed Hair: Fused
Deposition Modeling of Soft Strands, Fibers, and Bristles. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (Charlotte,
NC, USA) (UIST ’15). ACM, New York, NY, USA, 593–597. https://doi.org/10.1145/
2807442.2807484

Xiaokang Liu, Lin Lu, Andrei Sharf, Xin Yan, Dani Lischinski, and Changhe Tu. 2020.
Fabricable dihedral Escher tessellations. Computer-Aided Design 127 (2020), 102853.
https://doi.org/10.1016/j.cad.2020.102853

Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. 2015. Structure
and appearance optimization for controllable shape design. ACM Transactions on
Graphics 34, 6 (nov 2015), 1–11. https://doi.org/10.1145/2816795.2818101

Jifei Ou, Gershon Dublon, Chin-Yi Cheng, Felix Heibeck, Karl Willis, and Hiroshi Ishii.
2016. Cilllia: 3D Printed Micro-Pillar Structures for Surface Texture, Actuation and
Sensing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (San Jose, California, USA) (CHI ’16). ACM, New York, NY, USA, 5753–5764.
https://doi.org/10.1145/2858036.2858257

Giuseppe Patanè, Michela Spagnuolo, and Bianca Falcidieno. 2004. Para-Graph: Graph-
Based Parameterization of Triangle Meshes with Arbitrary Genus. Computer

Graphics Forum 23, 4 (2004), 783–797. https://doi.org/10.1111/j.1467-8659.2004.
00808.x

Ruggero Pintus, Enrico Gobbetti, Paolo Cignoni, and Roberto Scopigno. 2010. Shape
enhancement for rapid prototyping. The Visual Computer 26, 6 (2010), 831–840.

G. Reeb. 1946. Sur les points singuliers d’une forme de Pfaff complètement intégrable
ou d’une fonction numérique. C. R. Acad. Sci. Paris 222 (1946), 847–849.

Tim Reiner, Nathan Carr, Radomír Měch, Ondřej Št’ava, Carsten Dachsbacher, and
Gavin Miller. 2014. Dual-color Mixing for Fused Deposition Modeling Printers.
Comput. Graph. Forum 33, 2 (May 2014), 479–486. https://doi.org/10.1111/cgf.12319

Haichuan Song, Jonàs Martínez, Pierre Bedell, Noemie Vennin, and Sylvain Lefebvre.
2019. Colored fused filament fabrication. ACM Transactions on Graphics (TOG) 38,
5 (2019), 1–11.

Ryo Suzuki, Tom Yeh, Koji Yatani, and Mark D. Gross. 2017. Autocomplete Textures
for 3D Printing. (Mar 2017). arXiv:1703.05700v1 [cs.HC]

Haruki Takahashi and Jeeeun Kim. 2019. 3D Printed Fabric: Techniques for Design
and 3D Weaving Programmable Textiles. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 43–51.
https://doi.org/10.1145/3332165.3347896

Haruki Takahashi and Homei Miyashita. 2016. Thickness Control Technique for
Printing Tactile Sheets with Fused Deposition Modeling. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST
’16 Adjunct). ACM, New York, NY, USA, 51–53. https://doi.org/10.1145/2984751.
2985701

Haruki Takahashi and Homei Miyashita. 2017. Expressive Fused Deposition Modeling
by Controlling Extruder Height and Extrusion Amount. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). ACM, New York, NY, USA, 5065–5074. https://doi.org/10.1145/3025453.
3025933

Cesar Torres, Tim Campbell, Neil Kumar, and Eric Paulos. 2015. HapticPrint: Designing
Feel Aesthetics for Digital Fabrication. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST
’15). ACM, New York, NY, USA, 583–591. https://doi.org/10.1145/2807442.2807492

Chelsea Tymms, Esther P. Gardner, and Denis Zorin. 2018. A Quantitative Perceptual
Model for Tactile Roughness. ACM Transactions on Graphics 37, 5 (nov 2018), 1–14.
https://doi.org/10.1145/3186267

Chelsea Tymms, Siqi Wang, and Denis Zorin. 2020. Appearance-Preserving Tactile
Optimization. ACM Trans. Graph. 39, 6, Article 212 (Nov. 2020), 16 pages. https:
//doi.org/10.1145/3414685.3417857

Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013.
OpenFab: A Programmable Pipeline for Multi-Material Fabrication. ACM Trans.
Graph. 32, 4, Article 136 (July 2013), 12 pages. https://doi.org/10.1145/2461912.
2461993

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the art
in example-based texture synthesis. In Eurographics 2009, State of the Art Report,
EG-STAR. Eurographics Association, 93–117.

Mark Wheadon. 2021. Velocity-Painting 3D printing companion. https://www.
velocitypainting.xyz/gui/index.html

Jingru Yang, Sha He, and Lin Lu. 2019. Binary Image Carving for 3D Printing. Computer-
Aided Design 114 (2019), 191–201. https://doi.org/10.1016/j.cad.2019.05.028

Kentaro Yasu. 2017. Magnetic Plotter: A Macrotexture Design Method Using Magnetic
Rubber Sheets. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM, New York, NY, USA,
4983–4993. https://doi.org/10.1145/3025453.3025702

Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing
Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Article
99 (July 2016), 10 pages. https://doi.org/10.1145/2897824.2925888

Caowei Zhang, Guanyun Wang, Ye Tao, Xuan Li, Xin Liu, Chuqi Tang, Cheng Yao,
and Fangtian Ying. 2017. infoTexture: Incremental Interfaces on Mesh Prototyping.
In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI EA ’17). ACM, New York, NY,
USA, 2263–2268. https://doi.org/10.1145/3027063.3053124

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-Based Surface
Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1–27.
https://doi.org/10.1145/1037957.1037958

Haisen Zhao, Fanglin Gu, Qi-Xing Huang, Jorge Garcia, Yong Chen, Changhe Tu,
Bedrich Benes, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2016. Connected
fermat spirals for layered fabrication. ACM Transactions on Graphics (TOG) 35, 4
(2016), 1–10.

Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining Guo, and
Heung-Yeung Shum. 2006. Mesh Quilting for Geometric Texture Synthesis. ACM
Trans. Graph. 25, 3 (July 2006), 690–697. https://doi.org/10.1145/1141911.1141942

https://doi.org/10.1016/j.cad.2018.04.019
https://doi.org/10.1145/3355089.3356509
https://doi.org/10.1145/3173574.3173910
https://doi.org/10.1016/j.cag.2018.04.006
https://doi.org/10.1016/j.cag.2018.04.006
https://doi.org/10.1145/2807442.2807484
https://doi.org/10.1145/2807442.2807484
https://doi.org/10.1016/j.cad.2020.102853
https://doi.org/10.1145/2816795.2818101
https://doi.org/10.1145/2858036.2858257
https://doi.org/10.1111/j.1467-8659.2004.00808.x
https://doi.org/10.1111/j.1467-8659.2004.00808.x
https://doi.org/10.1111/cgf.12319
https://arxiv.org/abs/1703.05700v1
https://doi.org/10.1145/3332165.3347896
https://doi.org/10.1145/2984751.2985701
https://doi.org/10.1145/2984751.2985701
https://doi.org/10.1145/3025453.3025933
https://doi.org/10.1145/3025453.3025933
https://doi.org/10.1145/2807442.2807492
https://doi.org/10.1145/3186267
https://doi.org/10.1145/3414685.3417857
https://doi.org/10.1145/3414685.3417857
https://doi.org/10.1145/2461912.2461993
https://doi.org/10.1145/2461912.2461993
https://www.velocitypainting.xyz/gui/index.html
https://www.velocitypainting.xyz/gui/index.html
https://doi.org/10.1016/j.cad.2019.05.028
https://doi.org/10.1145/3025453.3025702
https://doi.org/10.1145/2897824.2925888
https://doi.org/10.1145/3027063.3053124
https://doi.org/10.1145/1037957.1037958
https://doi.org/10.1145/1141911.1141942

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 G-code Quad tessellation
	5 G-code Texture Mapping
	6 Results
	7 Discussion and Future Work
	Acknowledgments
	References

