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Abstract
Two-dimensional transfer functions are an effective and well-accepted tool in volume classification. The design of
them mostly depends on the user’s experience and thus remains a challenge. Therefore, we present an approach
in this paper to automate the transfer function design basedon 2D density plots. By exploiting their smoothness,
we adopted the Morse theory to automatically decompose the feature space into a set of valley cells. We design
a simplification process based on cell separability to eliminate cells which are mainly caused by noise in the
original volume data. Boundary persistence is first introduced to measure the separability between adjacent cells
and to suitably merge them. Afterward, a reasonable classification result is achieved where each cell represents
a potential feature in the volume data. This classification procedure is automatic and facilitates an arbitrary
number and shape of features in the feature space. The opacity of each feature is determined by its persistence
and size. To further incorporate the user’s prior knowledge, a hierarchical feature representation is created by
successive merging of the cells. With this representation,the user is allowed to merge or split features of interest
and set opacity and color freely. Experiments on various volumetric data sets demonstrate the effectiveness and
usefulness of our approach in transfer function generation.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Direct volume rendering is a powerful and flexible visual-
ization technique for exploring scalar volume data. By us-
ing appropriate transfer functions an amount of important
structures of the data can be revealed. The use of multi-
dimensional transfer functions has already attracted much
attention due to their unique capability to identify various
structures within a volume. In particular, certain 2D trans-
fer functions based on scalar values and gradient magnitudes
are very effective in extracting multiple materials and their
boundaries [Lev88]. The 2D transfer functions can be spec-
ified through an iterative process in which the user has to
place widgets on the potential regions within a feature space
and then manipulate them according to the rendering results.
Without having adequate prior data knowledge this is a time-
consuming process. Moreover, the commonly used widgets
(e.g., rectangle, triangle, ellipse) are regular, while features

located in the multi-dimensional feature space have complex
shapes. Thus, extensive interaction is required to properly
identify these features.

In order to ease the interaction, many proposed algorithms
decompose the feature spaces into several meaningful clus-
ters [MWCE09,RBS05,ŠVG06,TM04,WCZ∗11] and allow
the user to explore these clusters. Although the classification
results produced by these algorithms seem to be reasonable,
most of them require some input from the user, e.g., to spec-
ify the number of clusters. This poses a difficulty on interac-
tive volume classification, especially when the user is not fa-
miliar with the data. Furthermore, several of these methods
are based on traditional discrete histograms, which ignore
the spatial relationship of neighboring data. For most of the
data sets, they may contain spurious peaks and valleys which
will reduce the performance of clustering algorithms. More
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Figure 1: Clustering the density plot on the value (x-axis) and value gradient magnitude (y-axis) feature space to visualize the
Feet data set. By decomposing the density plots (top one in (b)), the automatically generated transfer function (middleone in
(b)) is obtained. The corresponding rendering result (a) reveals the relationship between the skin and the bones. Afterrecoloring
the bone and lowering the opacity of soft tissue, the ankle and toe bones are clearly shown in (c). The bar charts in (b) represent
the opacities of the corresponding features.

importantly, they may lead to some feature being glossed
over or completely missed [BW08].

In this paper, we propose an approach to automate the
generation of 2D transfer functions with neither assumption
on the number nor the shape of the clusters in the feature
space. Rather than brushing the 2D histogram, our approach
is based on the analysis of the density plots, which can draw
the viewer to preattentively identify clusters while avoiding
uncertain ones [FKLT10]. In general, a density function of
the density plots can be constructed by kernel density esti-
mation [MWCE09] or continuous scatterplots [BW08]. The
former estimates distribution comes from the statistical un-
certainty of the samples themselves, the latter considers in-
terpolation between data voxels and conservation of physical
variables. We refer to [MWCE09] and [BW08] for detailed
description of these methods. Following the principle that
features tend to form peaks of the density function [Par96],
we use the theory of Morse complex [Sma61] to decompose
the feature space into severalvalley cellsseparated by valley
lines. These cells form the initial clustering where each one
contains a local maximum.

Due to the noise in the original data, the initial cluster-
ing contains a large number of small valley cells. Noise
artifacts disturb the quality of the visualization. Therefore,
inspired by the persistence-based topological simplifica-
tion [EHZ03], we merge adjacent valley cells according to
their separability. We define boundary persistence of two ad-
jacent cells, which measures the degree of separability. A
threshold, according to some heuristics [GNP∗06], is deter-
mined by analyzing the persistence histogram. All bound-
aries whose persistences are smaller than the threshold are

then successively eliminated and the corresponding cells are
merged together to suppress the noise. The final configura-
tion of cells represents a potential feature of the data.

This automatic classification and transfer function design
scheme can help the user to get a fast grasp on the spatial
relationship between features. However, further exploration
such as refining the clustering, adjusting opacities and col-
ors are usually necessary to produce a satisfactory rendering
result. There are many reasons for these user interactions,
one being that human beings are often not able to identify
more than five targets [Hea96]. In the case that there are
many statistically significant features in volume data, show-
ing them all in one rendering is neither simple nor appro-
priate. Another reason is that the user may have some prior
knowledge about the features of interest and some prefer-
ence about how they should be presented. Thus, we further
design a persistence-based hierarchical representation of the
semantical features by successive simplification of the auto-
matic classification. Based on this feature hierarchy, the user
is allowed to merge or split features and set opacities and
colors for them. In summary, the main contributions include:

• a new topology-based non-parametric clustering algo-
rithm that structures the 2D density plots into several
meaningful volumetric features,

• a topological simplification of valley cells based on the
proposed boundary persistence to remove noisy cells,

• and a new transfer function design scheme that allows the
user to effectively explore the volume data.

We present an approach to automate the transfer function
design. Here, automating means that the initial transfer func-
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tion is automatically generated and the feature hierarchy is
automatically adjusted within the user interaction. Fig.1
shows an example of our classification results on the CT Feet
data set by clustering the density plot of the value and value
gradient magnitude. The rest of the paper is organized as fol-
lows. We provide the related work in Section2. The valley
cell decomposition and automatic transfer function design
are described in Section3 and Section4. Finally, the imple-
mentation and experiment results are presented in Section5
and the conclusions are drawn in Section6.

2. Related Work

Previous work related to our work is divided into three
different categories: multi-dimensional transfer function,
topology-based transfer function, and Morse-Smale (MS)
complex.

Multi-dimensional Transfer Function. Since 1D transfer
functions cannot identify different materials with similar
intensities, the 2D transfer functions based on scalar val-
ues and gradient magnitudes are proposed [Lev88]. They
are very effective in extracting multiple materials and their
boundaries. Inspired by this work, several effective met-
rics are incorporated into the feature space, such as curva-
ture [KWTM03], feature size [CM08], and ambient occlu-
sion [CM09]. With the feature space constructed by these
metrics, the structures of interest in a volumetric data setcan
be characterized. However, adding dimensions to the feature
space further complicates the problem of the transfer func-
tion design.

To reduce the number of degrees of freedom in transfer
function design, several semi-automatic methods are pro-
posed which provide the user with some suggestive trans-
fer functions. By using machine learning algorithms to ana-
lyze these feature spaces, such as the ISODATA [TM04],
hierarchal clustering [ŠVG06], kernel density estimation
[MWCE09], and Gaussian mixture model [WCZ∗11], the
suggestive transfer functions can be automatically obtained.
Unfortunately, most of these algorithms require the user
to specify several parameters before the clustering. This
poses a great workload to the user. Following [MWCE09],
our clustering method also works on the continuous feature
space but it does not require the number of the histogram
bins. Although the hierarchal clustering algorithm [ŠVG06]
does not require the number of clusters, its classification re-
sults are sensitive to the initial clustering result while our
density function-based clustering resolves this issue.

Topology-based Transfer Function.Because topology is
convenient to characterize global structures of the data set,
it has been introduced into the transfer function specifica-
tion. Based on the analysis of 3D field topology, Fujishiro
et al. [FAT99] proposed an automating transfer function de-
sign scheme. Takahashi et al. [TTFN05] used the topologi-
cal attributes derived from the contour tree to define transfer

functions. In order to distinguish distinct features that share
the same scalar value, Weber et al. [WDC∗07] indexed var-
ious subregions of a volume by using contour tree and ap-
plied separate transfer functions for each subregion. Zhouet
al. [ZT09] further extended this work by introducing con-
tour tree-controlled residue flow model and color harmonic
to automatically generate an appropriate transfer function for
each subregion. Unlike these works, our work focuses on the
automating of the 2D transfer function design based on the
analysis of the topological structures of 2D density plots.

Morse-Smale Complex.The MS complex provides an ab-
stract representation of the gradient flow behavior of a scalar
field [Sma61]. However, it was originally developed for
smoothing functions. By extending its construction to piece-
wise linear 2-manifolds, Edelsbrunner et al. [EHZ03] used
it to perform a controlled simplification of the height field.
Bremer et al. [BHEP04] improved this algorithm and de-
scribed a multiresolution representation to approximate the
simplified results. Through repeated application of atomic
cancellation operations, Gyulassy et al. [GNP∗06] used dis-
crete MS complex to simplify volumetric data. To accurately
extract salient edges on the surface, Weinkauf et al. [WG09]
introduced a new concept of separatrix persistence, which
treats ridge lines and valley lines independently. By mea-
suring the significance of the boundary between two adja-
cent cells, our proposed boundary persistence can be used to
maximize the separability of the extracted structures.

3. Topology-based Non-Parametric Clustering

Our topology-based clustering method decomposes the fea-
ture space into several clusters. Compared to previous meth-
ods [MWCE09, WCZ∗11], our method does not make any
assumption on the number or shape of the clusters. In or-
der to perform peak-valley analysis, we apply the theory
of Morse complex [Sma61]. For a smooth function, non-
intersecting ridge lines and valley lines exit between saddles
and extreme where each saddle is connected with two max-
ima via ridge lines and two minima via valley lines. The val-
ley (ridge) lines together with their ending points decompose
the domain into non-overlapping valley (ridge) cells where
each one contains an isolated maximum (minimum).

Our decomposition algorithm is inspired by the Morse
complex construction scheme in [EHZ03]. As in [EHZ03],
we tessellate the feature space into a 2D triangular mesh,
which enforces a piecewise linear approximation of the den-
sity function. This discrete representation enables a critical
point identification and ridge line and valley line tracing.
However, it also introduces degeneracy, for example, multi-
fold saddles and intersecting valley or ridge lines. Special
treatments such as path duplication and extension are pro-
posed in [EHZ03] to deal with the degeneracy and construct
the Morse complex. The main difference between our algo-
rithm and [EHZ03] is that our goal is to extract valley cells
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Figure 2: The pipeline of our clustering algorithm illustrated with the 2D density plot of the Feet data set (value on the x-axis
and value gradient magnitude on the y-axis). First, the critical points are identified where maxima are colored in red, saddles
in green, and minima in blue in (a), and the valley lines are extracted shown in yellow. Due to the low resolution (256×256)
of the density plot the obtained valley lines are not smooth.Then, the density plot is decomposed into several valley cells (b),
where each cell has a maximum, and the bar chart of sorted boundary persistence (d) is provided. By analyzing the bar chart,
the valley cells are simplified with a threshold and most of the small valley cells are merged in the results (c).

and not the MS complex. No saddle-maximum relation has
to be determined in the line tracing stage, and we simpli-
fied the special treatments needed to deal with the degen-
erated cases. The boundary persistence introduced in Sec-
tion 3.2 can be considered as an analogue of the saddle-
maximum pair persistence in [EHZ03] and is calculated
later in the decomposition stage using an effective region
growing technique [HP74]. Finally, we remove insignificant
cells introduced by the noise with a modified persistence-
based topological simplification process. Afterwards, each
cluster formed by merging valley cells represents a potential
feature in the volume data, as shown in Fig.1. Fig. 2 illus-
trates the pipeline.

minimum maximum regular point

saddle 2-fold saddle

Figure 3: The classification of a vertex in blue is determined
by the relative value of the vertices in its star. The neighbor-
ing vertices are colored red if its value is larger and green if
its value is smaller.

3.1. Tracing Valley Lines

Following the definition in [EHZ03], the star of a vertexu
consists of all simplices (vertices, edges and triangles) that
shareu as a vertex, and thelower starconsists of the sim-
plices that haveu as the highest vertex. We define alower
wedgeas a contiguous section of the lower star. As shown
in Fig. 3, the lower wedge ofu contains a numberk+1 of
wedges. The vertexu is defined as aregular if k= 0, and as
ak-fold saddleif k ≥ 1.

After identifying the critical points, we tracek+1 paths of
steepest descending from everyk-fold saddle. Starting from
each saddle, each path follows a sequence of steepest descent
edges. When the function is smooth, each path will terminate
at a minimum (m1, m2, m in Fig. 4). For degenerated cases
caused by piecewise linear discretization, we terminate the
path when it hits: (a) another saddle (S5 in Fig. 4(a)) or (b) a
previously traced path at a regular point (J in Fig. 4(b)) .

In case of Fig.4(b), we consider vertex J as anartificial
saddle because it is the maximum vertex on the path separat-
ing regionsR2 andR3. Then, each boundary between adja-
cent cells has at least one saddle, which is a local maximum
of the density function on that boundary.

3.2. Valley Cell Construction

In order to construct the valley cells, we use the region grow-
ing method from [HP74]. Starting from each maximum, this
technique recursively grows the regions of neighboring tri-
angles and stops at the valley lines or the triangles whose
vertices are minima. During the growing procedure, we also
construct the correspondence between maxima and saddles.

Saddles Update:After the region growing, each saddle
has a connected maximum set. For correct merging of val-
ley cells later, we have to adjust the correspondence between
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Figure 4: Two degenerated cases when tracing valley lines:
(a) paths ending at a saddleS5; (b) paths ending at a junc-
tion J. To ensure that every boundary element is associated
with at least one saddle, the junctionJ is regarded as an
artificial saddle.

saddles and maxima. We calculate its persistence by taking
the smaller difference between the saddle and the maxima.
As shown in Fig.4, some saddles belong to more than one
cell in the degenerated cases. In Fig.4(a), saddleS5 belongs
to six cells. In Fig.4(b), the artificial saddleJ belongs to 4
cells. In other words, they have been associated to more than
two maxima. To resolve this issue, we introduce saddle du-
plication. If the maximum set of the saddleShask maxima,
we duplicatek−1 saddle as shown in Fig5. This is similar
to the unfolding of thek-fold saddle [EHZ03]. However, we
only duplicate the saddle without paths.

R1R1 R2R2

R3R3

S1

S2

S3

SS

Figure 5: Duplication of a saddle where several valley lines
meet. (Left) Three valley lines cross at the saddleS; (Right)
The original saddleS is replaced by three saddlesS1,S2, and
S3.

Boundary Persistence:Up to now, each saddle has a set
of two maxima and each boundary has at least one saddle.
To define the degree of separation of two adjacent cells, we
introduce the boundary persistence, which is defined as the
minimal persistence of its saddles. Although it is still defined
by the persistence of saddles, it determines the lifetime ofthe
boundary in the merging procedure.

3.3. Valley Cell Simplification

Due to the discretization of the density plots and the noise
in the original data, there are a large number of small val-

ley cells after the region growing procedure. Since the goal
of volume exploration is to reveal semantic features in vol-
ume data, we introduce a boundary persistence-based cell
simplification process to remove the noisy cells. Similar to
the saddle maximum pair persistence [EHZ03], the bound-
ary persistence measures the separability of the peaks on ad-
jacent cells. Therefore, we use it to determine the order of
cell merging because the cells caused by the noise usually
have a small persistence.

We successively eliminate the boundary associated with
the smallest persistence and merge the corresponding cells
together until a given persistence threshold is reached. Con-
sistency of the boundary persistence is maintained by up-
dating the cells after every merging. Fig.2(d) shows that a
high percentage of persistence takes place at a very small
value. Gyulassy et al. [GNP∗06] observed that 10% of the
maximal persistence is sufficient to detect and remove all in-
significant features in their case. For density plot, our expe-
rience indicates that 0.1%−1.5% is sufficient. As shown in
Fig. 2(c), most of cells are merged with the threshold 0.5%
of the maximal persistence. With this default threshold, our
algorithm automatically generates meaningful clusters. To
help the user to select a proper threshold, we additionally
provide a persistence bar chart to reveal the noise level of
the density function.

3.4. Comparison to Other Clustering Algorithms

In principle, our Morse complex-based clustering algorithm
is a new variant of watershed transformation [Beu94] but
in a hierarchical sense. For twice continuously differen-
tiable functions, its decomposition result is similar to the
watershed transformation. The major difference between
them is the hierarchy construction algorithms. To deter-
mine the separability of boundaries between clusters, hierar-
chical watershed segmentation [Beu94] requires first flood-
ing the cluster and then detecting whether overflows occur
and mean shift involves a computationally expensive pro-
cess [Sha03, ZZM10] to find saddles between clusters. In-
stead, such relation in our algorithm is intrinsically deter-
mined in the region growing procedure, which can be carried
out quickly using flood-fill. In addition, we are the first who
apply those techniques for the automatic design of transfer
functions.

Concerning this, Maciejewski et al. [MWCE09] clearly
show the need for an automatic transfer function design for
volume data. Their approach clusters the feature space based
on frequency binning of the 1D density histogram where re-
gions with similar frequencies are regarded as one cluster.In
more detail, their approach estimates a 1D histogramh( f )
from a densityf (x,y) given over a 2D feature space(x,y).
The size of the bins of the 1D histogram h are finally used
to cluster the feature space(x,y) and to build up the transfer
function. Unfortunately, only the value of the densityf (x,y)
in the feature space is considered but not the position(x,y),
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although the same value of the densityf (x,y) which appears
in different regions in the feature space(x,y) might belong
to different structures within the volume data. Thus, our ap-
proach also considers the position within the feature space
by directly considering topological information.

Fig. 6 illustrates the comparison of the clustering results
produced by these two algorithms on a 1D density function.
This density function consists of the two mixture Gaussian
functions. It can be seen that our method separates the den-
sity function into two parts, while the binning method groups
it into three bins where each bin has several same colored
disjoint segments after setting the bin number of the den-
sity histogram to 3. A visible peak in the feature space cor-
responds to an interesting feature, which has been demon-
strated in [KD98], while frequency binning lacks an intuitive
explanation.

0 0.5 1.51.0 2.0

0.5
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0 X
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0 0.5 1.51.0 2.0
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Figure 6: Comparison of the frequency binning-based clus-
tering method result and our method. (a) After specifying the
bin size of the density histogram to 3, the binning method
groups the density function into 9 segments; (b) our method
separates it into two clusters.

4. Transfer Function Design

With a certain persistence threshold, our clustering algo-
rithm decomposes the 2D density plot into several valley
cells. Each cell represents a potential structure within the
volume data. Similar to [MWCE09, WCZ∗11], we gener-
ate a transfer function by coloring these cells. By using a
qualitative color scheme [Bre04], different cells can be well
distinguished in the feature space. However, the user is often
not able to identify more than five targets [Hea96]. Although
we can automatically select the persistence threshold so that
there are always no more than five clusters left after the sim-
plification, we do not think this is appropriate because there
is no guarantee that the number of significant features in a
volume data is always below five. Instead, we set a safe per-
sistence, just enough to remove the noise and construct a
hierarchical tree to reveal the level of significance. From our
experience, the number of remaining clusters are usually less
than 10 using a threshold of 1% of the maximal persistence.
Based on this tree, we introduce a new opacity transfer func-
tion generation method to maximize the differences between
different features.

4.1. Hierarchy Construction

After the valley cell construction, each boundary between
two adjacent cells is associated with a boundary persistence
which determines the order of the cell merging operation.
The tree can be constructed by merging the initial valley
cells with a progressively increasing persistence threshold.
If the boundary between two adjunct cells is removed, we
build the parent and child relationships and update the maxi-
mum sets and boundary persistences of the other boundaries.
In this tree, the root corresponds to the cell with the largest
local maximum. Fig.7 shows the tree constructed for the
Feet data set.

(a) (b)

Figure 7: The tree construction for the density plot of the
Feet data set. (a)Three snapshots in the merging process.
(b)The constructed tree.

With this tree, the user can interactively merge and split
features. When the user selects one cell, the cells which can
be merged or split are highlighted. This makes the explo-
ration of the feature’s hierarchy convenient. By default, we
do not introduce new color in merging and splitting. After
merging two cells, the cell with the smaller maximum is col-
ored the same as the one with a larger maximum, while the
cell generated by splitting is colored by its original colorbe-
fore merging. Certainly, the user can also assign a new color.

4.2. Opacity Transfer Function Generation

Cell PersistenceWhen removing the boundary between two
adjacent cells, these cells as well as their corresponding fea-
tures are merged together. Thus, we define the persistence of
each cell as the smallest persistence of its boundaries, which
reflects the degree of separation of the corresponding fea-
tures.
Initial Opacity Range Usually, the feature with a small size
is occluded by other features. To help the user perceive all
features, the opacity range for each node in the tree is com-
puted by:

αi = αmin+
W

si · pci

g(di),

whereαmin is the minimum opacity specified by the user,
si is the feature size , andpci is the cell persistence of the
nodei. W is the normalization weight, which normalizes the
1/(si · pci ) into [0,1], andg(di) is a depth-based control func-
tion:

g(di) =
di −dmin

dmax−dmin
,
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(b)(a)

Figure 8: Exploring the CT Teeth data set using the density plot on the value (x-axis) and value gradient magnitude (y-
axis) feature space. (a) The result with the automatically generated transfer function; (b) By merging several small cells and
recoloring the left cells, the spatial relations among enamel, dentine and pulp are clearly shown.

Ours BTF [MWCE09]
Parameter plot density plot density plot

Feature specification peak binning
Number of features automatic specified
Merging of features persistence no guideline

Interactive refinement hierarchy arbitrary

Table 1: Properties of our method compared to
BTF [MWCE09]

wheredi is the depth of nodei in the merge tree anddmin and
dmax are the minimum and maximum depth. The opacity
bar charts in Fig.1(b) show the automatically generated
opacity for each feature where skin and air are set to very
low opacities. We do not expect that the initial opacities
always produce desired rendering results. Thus, we allow
the user to manually adjust the opacity value for each cell.

Gaussian Transfer Function With the automatically ob-
tained opacity ranges, we use the Gaussian transfer function
(GTF) which can facilitate high quality pre-integrated vol-
ume rendering [KPI∗03] to generate actual opacity values:

α(x) = αmaxe
−

1
2 (x−µ)TΣ−1(x−µ),

whereαmax is the determined opacity range andΣ−1 is den-
sity covariance in the corresponding valley cell. By default,
µ is the position of the maximum. We also provide the user
another option to setµ as the center of the cluster. To avoid
that the Gaussian function makes contribution to other fea-
tures, we compute a bounding box for its corresponding val-
ley cell. The opacity of the region outside the bounding box
is zero.

4.3. Comparison to the State of the Art

In this section, we qualitatively compare this method with
the approach in [MWCE09]. We refer to this approach as

BTF (binning-based transfer functions). Both methods are
based on density plots. However, there are four main dif-
ferences. First, the clustering principles are different,as dis-
cussed in Section3.4. Second, BTF requires the user to spec-
ify the number of histogram bins, while our method can au-
tomatically determine the number of features. Third, BTF
does not provide any guideline for parameter space simpli-
fication, our method uses cell persistence. Last, their initial
classification result can be arbitrarily merged and split, while
our hierarchy representation can help the user to effectively
explore features of interest. Table1 summarizes the compar-
ison between these two methods.

5. Experiment and Discussion

We have implemented and tested our approach on a PC with
an Intel Core 2 Duo E6320 1.8 GHZ CPU, 2.0 GB RAM, and
an NVIDIA Geforce GTX 260 video card (256 MB video
memory) using the Cg Language. For the density plots pro-
vided by CSPs, we use the code of [BW09]. By setting the
error threshold to 50 and the resolution to 2562, the den-
sity plots can be generated in less than 1 hour. After obtain-
ing the density plots, our clustering algorithm finishes the
volume classification in 10 seconds and results in an inter-
active volume exploration. Note that the rendering perfor-
mance gradually decreases with the number of valley cells,
because the GTF-based volume rendering is directly evalu-
ated on the GPU. In general, the number of valley cells is
less than 10, which results in a volume rendering frame rate
of approximately 25 fps.

5.1. Medical Data

Fig. 8 shows an example that classification of the value and
value gradient magnitude feature space in the Teeth data set.
By simplifying this density plot with persistence threshold
1.0% of the maximal persistence, our method automatically
clusters this density plot into twelve parts and obtains an ini-
tial classification result, as shown in Fig.8(a), where enamel
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(a) (c)

(b)

(d)

Figure 9: Exploring the CT facial deformity data set using the densityplot on the value and value gradient magnitude feature
space (top one in (b)). The automatically generated transfer function (middle one in (b)) and its corresponding rendering result
(a). After merging the peach, pale green and blue cells and recoloring and adjusting their opacities, a new transfer function
(bottom one in (b)) and its corresponding rendering result (c) is obtained, and the corresponding features of the four clusters
in the new transfer function are shown in (d). The bar charts in (b) represent the opacities of the corresponding features.

and pulp are revealed but not clearly due to some noise.
Through merging of some cells located at the region of low
densities and adjusting their colors and opacities, we obtain
a better result where the spatial relation among enamel, den-
tine and pulp are clearly revealed, as shown in Fig.8(c).

In the above example, each cell in the density plot cor-
responds to a meaningful feature. While our clustering al-
gorithm is based on topology-based peak analysis, it cannot
guarantee that the user is interested in all extracted features,
especially some features produced by noise. Thus, merg-
ing the uninteresting features not only facilitates the explo-
ration of feature space but also improves the classification
quality. Fig. 9 shows the effectiveness of our exploration
scheme in surgery repair on a CT facial deformity data set
(512×512×361). The data set was acquired from a facial
deformity patient where the regions located near the upper
jaw and the top of the skull are damaged. The damaged re-
gions must be identified before the surgical planning proce-
dure. We obtained the initial result (Fig.9(a)) after decom-
posing the density plot of value and value gradient magni-

tude feature space into 7 cells (the middle one in Fig.9(b)).
A lesion and a damaged region in cyan where some teeth are
absent are seen, but the relationship between these regionsto
the skull and the face is not clear. By examining each cell, we
found that the corresponding features of peach, pale green
and blue cells are skin and then merged them into one cell
(the bottom one in Fig.9(b)). After recoloring and adjust-
ing their opacities, a better result (Fig.9(c)) was achieved,
where the lesion in cyan and the damaged region with some
teeth absent are clearly illustrated. Fig.9(c) shows the cor-
responding feature of each cell. We can see that skin, bone
and lesion are clearly differentiated.

5.2. Simulation Data

To demonstrate the effectiveness of our approach on simu-
lation data sets, an experiment was conducted on the Super-
nova data set (432× 432× 432). In this data, scientists are
interested in the turbulent structures which are near the core
of the supernova but occluded by the outer layer. To reveal
these structures, we apply our automating transfer function
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Figure 10: Exploring the Turbulent dataset by decomposing the densityplot on the value and value gradient magnitude fea-
ture space. The result (left) with the automatically generated transfer function. After recoloring and adjusting opacities, the
relationship between inner and outer layer structures is clearly shown.

(a) (c)(b)

Figure 11: Exploring the Turbulent dataset by decomposing the densityplot (a) on the pressure (x axis) and vorticity (y axis)
feature space. (b) The result with the automatically generated transfer function; (c) By adjusting the opacities of theplum cell
and green cell and recoloring them, the kinking and tanglingvortex tubes become clearly visible with a large contrast.

generation method to decompose the density plot of scalar
value and value gradient magnitude feature space and obtain
five clusters, as shown in the left of Fig.10. From the initial
rendering result, we can see that the cell in sky blue cor-
responds to the inner turbulent structure. Unfortunately,the
opacities of other features are too small to reveal their struc-
tures. After examining each feature, we find two different
outer layers for two cores and another inner layer in the left
core. By recoloring and adjusting their opacities, the spatial
relationship between the inner turbulent structures and the
out layers is well illustrated.

For the extraction of features from some scientific data
sets, the domain scientist usually has specific knowledge
about the feature space construction. For example, the vor-
tices exist in regions with large vorticity and small pressure
in some turbulent data sets. To demonstrate the effectiveness
of our method in classification of knowledge-aware feature
space, we conducted an experiment on the Turbulent data
set produced by a 128-cubed simulation of a compressible
and turbulent slip surface. By decomposing the density plot
(Fig. 11(a)) with pressure on the x-axis and vorticity on the
y-axis, we obtained a classification result (Fig.11(b)), where
regions with large vorticities and small pressures are decom-
posed into two large cells. After recoloring and adjusting
their opacities, a desired rendering result (Fig.11(c)) is ob-
tained, which clearly reveals the kinking and tangling vortex
tubes.

6. Conclusion

This paper introduces a new transfer function design with a
unique capability to capture the data characteristics, while
still affording favorable user interactivity. This flexibility is
especially helpful for inexperienced users because it can au-
tomatically provide a suggestive volume classification by de-
composing density plots. By allowing the user to interac-
tively explore the pre-computed clusters in the feature space,
he/she gets an initial understanding of the underlying data
set. With a feature hierarchy, the uninterested features can
be merged or removed to improve the visualization quality.
This scheme has proven to be effective and efficient over
various types of volumetric data.

In the future, we would like to extend our approach to
decompose 3D volume by browsing the idea from the 3D
morse complex [EHNP03]. Likewise, analysis of the density
volume can well classify the time-varying data set.
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