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Abstract

Online foreground extraction is very difficult due to the
complexity of real scenes. Almost all the previous meth-
ods assume that the background is stationary, which not
only incur unreliable result due to background activities
like dynamic shadow, moving background objects etc., but
also makes them hard to be extended to the case of non-
stationary background.

In this paper we assume that the background is continu-
ous instead of stationary, and present a transductive video
segmentation method that can handle dynamic scenes cap-
tured by a hand-held moving camera. The segmentation is
propagated based on local color models and temporal prior,
as well as a dynamic global color model (DGKDE) in the
case of occlusion. A novel local color modeling method,
FLKDE, is proposed to model both local color distribution
and temporal prior at each pixel. FLKDE can be learned
additively to reach real-time speed. Finally, a very fast
geodesic-based method is adopted to solve for the segmen-
tation. Experiments show that our method can generate
good quality segmentation for wide variety of scenes, and
can reach 15∼25 fps for 640×480 size of input image se-
quences.

1. Introduction
High-quality online video segmentation is a crucial step

for many vision-based systems, e.g. network meeting and

augmented reality systems, etc. In these systems the fore-

ground object must be extracted accurately at frame-rate to

enable real-time background replacement or special effect

synthesis.

In [9], V. Kolmogorov et al. proposed an effective binoc-

ular video segmentation method, which makes use of stereo

matching to improve segmentation accuracy. Almost all

succeeding works, however, deal with monocular video seg-

mentation [12, 5, 16, 17]. Background, appearance, motion
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as well as image contrast have been proposed as the cues.

Different cues are typically fused into an energy equation

that can be solved efficiently with max-flow/min-cut [4],

which can reach 10 ∼ 15fps for 320 × 240 size of input

images.

Almost all previous methods, either explicitly or implic-

itly, assume that the scene keeps certain ”stationary” proper-

ties. Typically, the background is assumed to be stationary;

the appearance and motion models are also considered to

be ”stationary” so that they can be pre-trained offline and

then be used without online updating. These stationarity
assumptions greatly simplify the problem and can bring us

with both accuracy and efficiency. However, in practice we

often find that real scenes are not stationary, dynamic shad-

ows, moving background objects as well as camera shaking

are common in real scenes. Even in some well-controlled

laboratorial environment, shadow of the moving foreground

object still makes trouble.

There have been some efforts to deal with dynamic back-

ground. A. Monnet [10] et al. proposed a background

modeling method that can handle background activities like

waving trees. J. Sun et al. [12] suggested some useful strate-

gies to handle sudden illumination change, camera shaking

etc. P. Yin et al. [16] proposed to use pre-trained motion

classifier to separate foreground object from moving back-

ground object. However, these methods are still based on

the stationarity assumptions, and thus are hard to be ex-

tended to deal with more general cases. In [8], Z. Dong et al.

proposed a method to segment video captured by a rotating

camera, but their method requests a pre-constructed back-

ground panoramic image for online registration and back-

ground subtraction, hence hard to be extended to the case of

moving camera as panorama construction and registration

are both very difficult in this case.

Therefore, stationarity is not a proper assumption of real

scenes, even if the camera is fixed. A better assumption

is to reckon the input video as temporal continuous, which

means that for any registered pair of pixels between two ad-

jacent frames, large displacement would not occur in both

image and color spaces. We call this assumption as con-
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tinuity assumption. Unlike the stationarity assumptions,

which are often violated in real scenes, continuity assump-

tion holds in most cases if only there is no fast camera

movement and sudden change of lighting condition.

Under the continuity assumption, adjacent frames must

be very similar, so a natural question is whether the segmen-

tation of previous frame can be propagated to the current

frame. Unfortunately, although the temporal continuity of

video has been noted for a long time, there is yet no effective

way to make use of this property in online video segmenta-

tion. Interactive video segmentation methods make use of

continuity by optimization over the 3D video cube [15], but

this is obvious infeasible for online segmentation. The tem-

poral prior proposed in [5] is the first attempt to make use

of the temporal continuity in online segmentation. How-

ever, its temporal prior is represented by only four statistical

transition probabilities (i.e. BB, BF, FB, FF) learned from

labeled video, which is very inaccurate in dynamic scenes.

In this paper we propose a transductive online video seg-

mentation method based only on the continuity assump-

tion. Our contribution includes: 1) a real-time algorithm

to propagate segmentation by combining local color distri-

bution and temporal prior, which is insensitive to contin-

uous changes in both foreground and background, hence

sufficient accuracy when dealing with dynamic scenes; 2)

a dynamic global appearance model which allows fast on-

line updating and dynamic adjustment of weights of frames,

and can be used to handle occlusion; 3) a geodesic-based

method to solve for the final segmentation by incorporating

smooth prior and image contrasts, which is much faster than

min-cut, hence capable of dealing with larger size of input

image sequences in real-time.

2. Overview

2.1. Background

A popular way of image and video segmentation is to

formulate the problem as the following energy minimiza-

tion problem:

E(α) =
∑

i

E1(αi) + λ
∑

(i,j)∈E
E2(αi, αj) (1)

where α = (α1, · · · , αi, · · · , αN ) is the segmentation we

want to get, and αi is the state of the i-th pixel. E denotes

the set of all neighboring pixels. λ is a free parameter. E1

is the data term, which measures the cost under the assump-

tion that the state of the i-th pixel is αi. E2 is the smooth

term, which encodes our prior knowledge about the seg-

mentation, e.g. smooth and contrast-sensitive [3].

Each data term relates to only one pixel, and can be com-

puted as the negative log of the probability of a pixel be-

longing to foreground and background, so data terms are

uniquely determined by the probability map. The probabil-

ity map encodes our knowledge about different layers, e.g.

color distribution, motion model, etc. and can be regarded

as the observed value of the true segmentation. Smooth

terms can be used to remove minor errors, and is helpful

to attain more accurate boundary if contrast information is

incorporated. The way of computing the smooth terms takes

no large difference in previous methods, specifically, almost

all are based on the contrast-sensitive Ising prior [3].

Equation (1) can be minimized efficiently with min-

cut [4]. Although min-cut is fast, for online video seg-

mentation it is still not fast enough. Min-cut costs about

60 ∼ 90ms for an input image of size 320 × 240, and thus

cannot be used for larger size of input image sequence if

real-time speed should be guaranteed.

2.2. Transductive video segmentation

Our basic idea to handle scenes with dynamic back-

ground is to segment input frames transductively, adopting

the segmentation of the previous frame as a non-parametric

model to segment the current frame. In this way we avoid

to maintain the segmentation model, but the segmentation

model is always updated. This is different from previous

methods, in which the segmentation model should be main-

tained explicitly, and any change of the scene may introduce

inconsistence.

Given the segmentation of previous frame, how can we

propagate it to current frame in a reliable way? In dynamic

scenes both background and motion information are hard to

be extracted, the most straightforward way is then to propa-

gate the segmentation based on the global color distribution

(GCD). Previous methods usually use a pair of Gaussian

Mixture Models (GMMs) to model the GCD of foreground

and background. GMM is a parametric model that needs to

be trained through Expectation Maximization (EM), which

is too slow to reach real-time speed. More importantly,

GCD cannot provide us with sufficient accuracy by itself,

in previous methods it is always used with other cues like

background and motion.

Under the continuity assumption, not only the global but

also the local color distribution (LCD) at each pixel can

be considered consistent between adjacent frames. LCD is

much more accurate than GCD because much less irrele-

vant pixels are included in the sample set. However, by

using LCD we need to train the color model for every pixel,

which would definitely introduce large computational cost

if no effective acceleration method is available.

To overcome the above difficulties, we propose the Fast

Local Kernel Density Estimation (FLKDE). FLKDE not

only can model LCD in real-time, but also combines the

temporal prior in an elegant way. FLKDE works if the con-

tinuity assumption holds, and performs very well for dy-

namic scenes.



(a) input (b) FLKDE (c) DGKDE (d) combined

Figure 1. Computing the probability map: (a) input frame, note

that in region A, the background has nearly the same color as the

head of the people, and in region B, the small background region

is occluded in the previous frame (not showed here); (b) proba-

bility map produced by FLKDE, region A is correctly classified;

(c) probability map produced by DGKDE, region A is misclassi-

fied, but in region B it performs much better than FLKDE; (d) the

combined probability map.

Occlusion may cause propagation fail because a region

appeared in the current frame may be occluded in the pre-

vious frame (e.g. region B in Fig.1). To handle this

case we must resort to information from other frames. A

dynamic global appearance model, namely, the Dynamic

Global KDE (DGKDE), is proposed for this purpose. Un-

like previous global color modeling methods, DGKDE not

only supports fast online updating, but also can dynamically

adjust the weights of sampled frames.

Fig.1 illustrates our procedure to compute the probabil-

ity map. The results of FLKDE and DGKDE are combined

to get the final probability map, after that we can solve for

the segmentation by incorporating smooth prior and image

contrasts. To overcome the bottleneck of efficiency, we in-

troduce a novel geodesic-based segmentation method which

is much faster than min-cut.

The idea to segment images transductively is not new. In

[7], J. Cui et al. proposed a transductive object cut method

to segment a group of similar images. After the first image

is manually segmented, other images can be segmented au-

tomatically. Recent popular video object cut methods also

work transductively [2, 11], and it has been proved that lo-

cal classifiers perform much better than their global coun-

terparts [2]. However, so far there is no local classifier can

reach real-time speed, and the FLKDE to be introduced in

this paper is the first local classifier that can be used for

frame-rate segmentation.

3. Algorithm
3.1. Propagation by FLKDE

As we have mentioned above, GMM is not fast enough

to be updated online. In [5], A. Criminisi et al. suggested

to use 3D color histogram instead of GMM, which allows

fast online updating. Kernel Density Estimation (KDE) is

a nonparametric probability estimation method that is very

similar to histogram. The advantage of KDE over histogram

is that it can result in smooth pdf and is independent on the

end points of bins (the point where the pdf is to be estimated

is always the center of the bin) . However, accurate estima-

tion of kernel density involves large amount of computation,

and thus is not suitable for our problem. In the following

we propose an approximate KDE method specific for the

256 × 256 × 256 color space, and then introduce the Local

KDE as well as its acceleration algorithm.

Approximate KDE: Given the training color sample set

S, a color histogram of 8 × 8 × 8 size of bins is first con-

structed. Denoted by Bi the i-th bin and |Bi| the number

of color samples falling into Bi, the frequency of samples

appearing at the position of x (in color space) can be ap-

proximately estimated as:

f(x|S) =
∑

Bj∈E(B[x])

ωj |Bj | (2)

where B[x] is the bin containing x, and E(B[x]) denotes the

set of neighbors of B[x], including the bin itself, so there

are total 27 bins in E(B[x]). The weighting function ωj can

be used to smooth the resulted pdf, and is defined as an

exponential function of the distance of Bj to the center bin

B[x]. Note that ωj is independent of x, so it can be pre-

computed.

The probability density function then should be:

p̂(x|S) =
1

h3|S|f(x|S) (3)

where |S| is the number of samples contained in S, h is the

bandwidth, which should be 24 (=8 × 3) here.

The above method is in fact an approximation of Parzen

windows of size 24×24×24. Compared with the color his-

togram used in [5], our method can produce smoother pdf

and at the same time, would never put the estimated point to

the boundary of the window (although it is still not exactly

the center). The sacrifice is a little more computational cost,

which is bearable for our problem. Therefore, approximate

KDE is a better trade-off between accuracy and efficiency.

Local KDE: The ”local” here means that the KDE model

(or the estimated pdf) is specific for each pixel, and not

shared by all pixels. Given the segmentation of the pre-

vious frame and a pixel location x (note that we use x to

denote a pixel as well as its color), the sample set can be

obtained from the W × W window centered at x. Denoted

by SF and SB the foreground and background sample set,

respectively. S∗ = SF ∪ SB is the set of all samples. The

foreground pdf with temporal prior then can be expressed

as:

p̃F (x) = p̂(x|SF )p(F|S∗) (4)



(a) (b) (c) (d)

Figure 2. The temporal prior and its effect: (a) input frame; (b) the

temporal prior; (c)(d) probability map produced by FLKDE with

(c) and without (d) temporal prior.

where the first term is the pdf estimated from foreground

samples, which models the local color distribution of fore-

ground at the location of x; the second term is the temporal

prior, which should be measured according to the segmen-

tation of previous frame so that the temporal continuity is

preserved, here we define it as:

p(F|S∗) =
|SF |
|S∗| (5)

one can easily interpret this by considering the special case

when the whole sample window is located in background

region (|SF | = 0), in which case the pixel x must be

very far from the foreground in previous frame, hence lit-

tle chance to be foreground in current frame and p(F|S∗)
should be 0.

Expanding equation (4) we have:

p̃F (x) =
1

h3|S∗|f(x|SF ) (6)

the above equation looks very similar to equation (3), and

can be interpreted as the foreground pdf with respect to the

sample set S∗. The background pdf p̃B(x) can also be de-

rived in a similar way.

Now the probability of a pixel belonging to foreground

can be computed as:

plkde(x) =
p̃F (x)

p̃F (x) + p̃B(x)
=

fF (x)
fF (x) + fB(x)

(7)

where fF (x) = f(x|SF ) and fB(x) = f(x|SB). The

above equation tells us that by using frequency instead of

probability density, the resulted probability is of the tem-

poral prior as defined in (4). Interestingly, equation (7) has

even simpler form than the version without temporal prior,

which needs to divide the frequency by the number of sam-

ples. Fig.2 demonstrates the temporal prior as well as its

effect.

Fast Local KDE: With the above approximate KDE

method, to train a KDE model is equivalent to construct

W

W

(a) (b)
Figure 3. Illustration of Fast Local KDE. (a) deleted (marked by

×) and new added (marked by
√

) pixels when making horizontal

movement; (b) scan order of pixels.

a color histogram. Although it is very fast, we still can-

not afford the time cost to re-construct the color histogram

at every pixel. Fortunately, the local color histograms can

be constructed additively using sliding window, which can

reduce its time cost greatly without loss of precision.

As illustrated in Fig.3(a), considering two successive

pixels x0 (red) and x1 (blue) on the same line, with the

color histogram of x0 already constructed. Let W0 and W1

be the sample window of x0 and x1. Obviously, W0 and

W1 are overlapped except the first column of W0 and the

last column of W1, to get the histogram of x1, we need only

slightly modify the histogram of x0, i.e. delete the first col-

umn of W0, and add the last column of W1 into it. Since

histogram is in fact a counting table, so deleting and adding

samples are both very easy.

Fig.3(a) illustrates the case of horizontal forward move-

ment, horizontal backward and vertical movement can be

performed additively in a similar way. To apply local KDE

for all pixels, we first apply it for the left-top pixel (bound-

ary should be filled properly first), and then adopt the addi-

tive approach to construct the KDE model of other pixels in

the order illustrated in Fig.3(b). In this way the complex-

ity is reduced from O(W 2N) to O(WN), where N is the

number of pixels. In addition, our additive approach avoids

re-initializing the large histogram table at every pixel, which

also saves a lot of time.

For 640 × 480 size of videos and W = 31, fast FLKDE

takes about 80ms for each frame, while the naive imple-

mentation of FLKDE takes more than 6000ms. Although

this has been a great acceleration, it is still not fast enough,

in section 4 we will introduce some techniques that can fur-

ther reduce its time cost.

3.2. Handle Occlusion by DGKDE

Dynamic occlusion can introduce newly appeared re-

gions that are occluded in previous frame, in these regions

FLKDE would definitely fail due to the missing of training

data. To handle this case we must resort to information from

other frames.



A global appearance model is used to record the color

distribution of foreground and background in past frames.

The technique we adopted is the approximate KDE method

proposed in section 3.1, which enables fast online updating.

After each frame is segmented, we first get the bounding

box of foreground, and then extend it to include some more

background samples. Note that it is unnecessary to use all

background pixels as samples because under the continuity

assumption, background pixels far from the foreground ob-

ject are irrelevant to the background color distribution in a

short future. To update the KDE model, we first scale the

histogram bins by a factor of s, 0 < s < 1, and then add

the new samples into it. The purpose of pre-scaling the bins

is to attenuate the influence of frames far from the current

frame. One can easily figure out that the average weight of

the t-th frame’s samples should be:

πt =
st′−t

∑t′
p=0 sp

(8)

where t′ is current time (zero based). In our experiment s is

chosen to be 0.95.

The above global appearance model is named as Dy-

namic Global KDE (DGKDE). Unlike the case in FLKDE,

in DGKDE the temporal prior cannot be represented as

equation (4), so the probability of a pixel belonging to fore-

ground should be:

pgkde(x) =
p̂F (x)

p̂F (x) + p̂B(x)
(9)

where p̂F (x) and p̂B(x) are the foreground and background

probability densities as defined in equation (3).

The advantage of DGKDE over previous appearance

modeling methods is that, first, it allows fast online up-

dating; second, it can dynamically adjust the weight of in-

volved frames. These advantages make DGKDE suitable to

be used in dynamic scenes. In addition, besides occlusion,

DGKDE can also be used to handle large displacement in

image space, which provides us a possible way to deal with

fast camera movement.

3.3. Combine FLKDE and DGKDE

As we know, the key of combining multiple classifiers is

to evaluate their individual reliability. Obviously, FLKDE

would be unreliable if the frequency of foreground and

background are both very high or very low. The former

case is caused by ambiguous colors, while the latter im-

plies the case of under-sampling, which is usually caused

by small regions of colors or the violation of the continuity

assumption. Therefore, FLKDE is considered to be reliable
at the location of pixel x iff min{fF (x), fB(x)} < f0 and
max{fF (x), fB(x)} > f1, with 0 < f0 < f1 two given
thresholds.

(a) prob. map (b) trimap (c) segmentation

Figure 4. Solve for the segmentation from probability map. The

gray pixels in (b) are unknown pixels need to be solved.

Our method to combine FLKDE and DGKDE is simple:

for each pixel x, FLKDE is first applied, if it is reliable,

we set the output probability p(x) to be plkde(x) and then

move to the next pixel; otherwise DGKDE is applied and

p(x) = pgkde(x).
Note that we did not make choice between FLKDE and

DGKDE by comparing their individual reliability, this is

because FLKDE is much more accurate than DGKDE for

most pixels. Our method prefers to trust FLKDE, DGKDE

is applied only for a small quantity of pixels which may be

occluded in the previous frame.

3.4. Solve for the Segmentation

Once the probability map is obtained, many methods can

be used to solve for the segmentation. As we have men-

tioned in section 2.2, min-cut is not fast enough for large

images. Fortunately, recent works on image segmentation

show that geodesic-based methods can be much faster than

min-cut [1, 6]. Here we introduce a simple yet effective

geodesic-based method that fits to our problem very well.

Given the probability map, morphological opening and

closing are first performed to remove small isolated re-

gions, in this way we can emulate the effect of smooth

constraint [6]. Then boundary pixels are marked out by

using fast max-/min-filters, the result is then a trimap as

demonstrated in Fig.4. The trimap divides image into three

types of regions: foreground (ΩF ), background (ΩB) and

unknown (ΩU ). The next step is to determine the states

of unknown pixels by incorporating contrast information.

Defining the distance of two pixels as the square of their

colors’ difference: dij =‖ xi − xj ‖2, then the geodesic

distance of unknown pixels to foreground and background

can be computed efficiently by fast geodesic distance trans-

form [13], after that we can get the alpha map as follows:

α(x) =

⎧⎪⎨
⎪⎩

gB(x)
gF (x)+gB(x)

if x ∈ ΩU

p(x) if x ∈ ΩF ∪ ΩB

(10)

where gF (x) and gB(x) are geodesic distance from x to

foreground and background, respectively. The states of pix-



els in ΩF and ΩB are copied from the probability map, so

only unknown pixels need to be solved. The larger the dis-

tance of unknown pixels to background, the greater their al-

pha values. The final segmentation is obtained by threshold-

ing the alpha map in order to remove false semi-transparent

regions, then the boundary is smoothed to suppress flicker-

ing.

The above method looks very similar to the method in

[1], the main difference is that in [1], the distance field is

defined over the probability map but not over the original

image, which makes it sensitive to error of the estimated

probability; on the contrary, our method makes use of only

image contrasts. Note that due to occlusion and color blend-

ing, the estimated probability is error-prone near the fore-

ground/background boundary. By using image contrasts in-

stead, our method can result in more accurate boundary.

Another advantage of our method is that it enables us to

compute the probability map in lower resolution and then

to solve for the segmentation in full resolution for accelera-

tion. We will discuss this problem further in section 4.

Note that with our method, image contrasts not on the

foreground/background boundary may cause undesirable

variation of alpha map. Fortunately, in practice the un-

known region is usually very narrow, in which case the fore-

ground/background boundary can dominate the variation of

alpha map and the effect of other contrasts would be invisi-

ble.

4. Acceleration

The method proposed in previous section yet cannot

achieve real-time speed, in this section we will introduce

two techniques that can further boost it performance.

The first technique is to exclude some background pixels

by tracking the position of foreground. Under the continu-

ity assumption, the position of foreground would not vary

much between two adjacent frames, so we do not need to

process the whole image, instead, we extend the bounding

box of foreground in the previous frame so that it can con-

tain the foreground in the current frame, then take the re-

sulted rectangle region as the ROI (region of interest) to be

processed. In this way we can save a lot of computational

cost if foreground object is small.

Second, since the probability map is just used to con-

struct the trimap, and takes no effect to the segmentation of

unknown region (see section 3.4). In other words, any er-

ror of the probability map in unknown region is ignorable.

Therefore, it is unnecessary to calculate the probability map

in full resolution, and a probability map upsampled from

half of the original size should be accurate enough. In ad-

dition, in lower resolution we can use smaller sample win-

dows for FLKDE, which makes the effect of acceleration

double-fold.

1 2 3 4 5 · · · average

GMM 1.70 1.63 3.77 6.08 2.69 · · · 2.91

AKDE 1.31 1.67 2.87 6.11 2.42 · · · 2.64

Table 1. Comparison of the error rates (%) of GMM and approxi-

mate KDE.

5. Experiments
We implemented the proposed method in C++, and

tested it on a PC with 2.2GHz CPU and 4G RAM. The

tested image sequences were captured by a DV camera of

frame rate 25fps1.

Implementation Details: In previous sections we have

not mentioned how to initialize our algorithm, that is, how

to get the segmentation of the first frame. Automatic initial-

ization is very hard in dynamic scenes, so in experiments we

initialized our program by segmenting the first frame manu-

ally. Real systems can initialize itself in any way according

to the available information at the initialization phase, for

example, it can be initialized as in [12] if the background

image of the first frame is known, or as in [5] and [16] if the

camera can keep stationary for a while at the beginning.

The sample window size W of FLKDE is chosen to be

one third of the minimum dimension size of foreground ob-

ject in previous frame, bounded by a minimum value of 15

and maximum value of 51. Larger sample window can cap-

ture larger displacement in image space; however, it also

involves more computations and can affect the accuracy of

FLKDE.

Accuracy of approximate KDE: Approximate KDE

(AKDE) is the foundation of FLKDE and DGKDE. In or-

der to verify its accuracy we compare it with GMM, which

has been widely used in previous methods. For convenience

we tested with image instead of video. The test image set

contains 20 images that have been manually segmented.

For each image, AKDE and GMM are first trained accord-

ing to the segmentation and then be used to classify pixels.

Tab.1 lists the error rates of AKDE and GMM. Surprisingly,

AKDE performs even better than GMM. Note that the accu-

racy of GMM is heavily dependent on the number of Gaus-

sian components K, the reported error rate is the lowest one

for K ∈ {5, 6, · · · , 20}.

Local vs. Global: As demonstrated in Fig.1, FLKDE can

produce very accurate probability map (except in occluded

regions), this is why our method can work under the conti-

nuity assumption without using background image and mo-

tion information, which are key to the accuracy for previous

1The test image sequences and initialization data are included in the

supplement material.



1 2 3 4 5 · · · average

min-cut 0.54 0.43 0.72 5.61 1.76 · · · 1.12

our 0.57 0.37 0.69 5.84 1.77 · · · 1.17

Table 2. Comparison of the error rates (%) of min-cut and our seg-

mentation method.

(a) (b) (c)

Figure 5. Background fine structures may be mistaken as fore-

ground (b), and can be removed by smoothing the boundary (c).

methods. In experiments we tried to use only DGKDE to

propagate segmentation (with FLKDE disabled), and found

it would fail in most cases. Examples about this can be

found in supplement material.

Accuracy of segmentation: To evaluate the accuracy of

the segmentation method proposed in section 3.4, we com-

pared it with min-cut using the 20 test images above.

The probability map was first learned through approximate

KDE, then min-cut and our method were used to get the seg-

mentation, respectively. The error rates are listed in table 2,

which shows that the accuracy of our method is comparable

with min-cut.

As is well known, min-cut may suffer from the problem

of ”shrink bias” due to the incorporation of smooth prior,

which may cause long thin object being cut off [14]. While

in our method, the smooth prior is imposed only implicitly

to remove small fragments by morphological operations,

and not used when solving the unknown region. Therefore,

our method can better keep fine structures of foreground.

However, if the background contains fine structures con-

nected with foreground, these structures may be mistaken as

foreground (Fig.5(b)). Fortunately, most of these errors can

be removed easily by smoothing the boundary (Fig.5(c)).

Robustness to shadow, etc.: As we have mentioned in

the introduction, dynamic shadow and moving background

object, etc. may cause problems in previous methods based

on the stationarity assumption. However, in our method

they would no longer cause any problem because the con-

tinuity assumption still hold when these events occur. In

order for verification we compared our method with Back-

ground Cut [12] by using some videos captured by fixed

(a) input (b) our (c) Bkg. Cut

Figure 6. Our method is insensitive to dynamic shadow (top) and

moving background object (bottom), column (c) is the result of

Background Cut [12] for comparison.

camera. The results are demonstrated in Fig.6. Comparison

of the whole sequence can be found in supplement material.

Computational efficiency: Recall that for better effi-

ciency, our method processes only the ROI that is large

enough to contain the foreground object. This strategy

makes the speed of our method dependent on the size of

foreground object. In the worst case when the whole im-

age needs to be processed, our method still can reach about

10fps for 640 × 480 size of inputs, in normal case it is able

to reach 15 ∼ 25fps, without any code-level optimization.

Failure cases: Our method would fail when neighbor re-

gions of foreground and background have similar colors,

in which case neither of FLKDE and DGKDE can pro-

duce reliable predictions. In fact, ambiguous colors may

be the greatest trouble of video segmentation, including

previous methods adopting background and motion cues

(background model can be regarded as a per-pixel color

model [12, 17]; motion is in fact represented by the color

difference of adjacent frames [5, 16]).

Fast camera movement and sudden illumination change

may violate the continuity assumption and cause the trans-

duction to fail. Fortunately, in practice these two cases oc-

cur rarely.

6. Conclusion
We have presented a method to segment live video cap-

tured by a hand-held moving camera. Since the conven-

tional stationarity assumption does not hold for many cases,

we propose to adopt the continuity assumption instead,

which tolerates continuous changes for both foreground

and background, thus introduces a natural way to handle

non-stationary background. Our method provides the first



Figure 7. Segmentation results of six dynamic scenes.

transductive framework of real-time video segmentation.

FLKDE can propagate segmentation reliably by combining

local color distribution and temporal prior; DGKDE is a dy-

namic appearance model capable of handling occlusion; the

geodesic-based segmentation method offers a very fast way

to solve for the segmentation. Fig.7 shows more segmenta-

tion results extracted from accompany videos.

The limitation of our method is that it makes use of only

color information, future work should account for other

cues like shape. A method to evaluate the segmentation

quality is also necessary if we want to detect and recover

from failure cases.
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