
POP: A Hybrid Point and Polygon Rendering System for Large Data

Baoquan Chen Minh Xuan Nguyen

Department of Computer Science and Engineering
University of Minnesota at Twin Cities

http://www.cs.umn.edu/�baoquan
Email:fbaoquan,mnguyeng@cs.umn.edu

250,279 pts, 16 tris, 4.58 fps 261,925 pts, 57,029 tris, 3.16 fps 29,076 pts, 274,802 tris, 3.19 fps

Figure 1:POP system chooses a different number of points and triangles based on viewing location (red for points; blue for triangles).

Abstract

We introduce a simple but effective extension to the existing pure
point rendering systems. Rather than using only points, we use both
points and polygons to represent and render large mesh models. We
start from triangles as leaf nodes and build up a hierarchical tree
structure with intermediate nodes as points. During the rendering,
the system determines whether to use a point (of a certain interme-
diate level node) or a triangle (of a leaf node) for display depending
on the screen contribution of each node. While points are used to
speedup the rendering of distant objects, triangles are used to en-
sure the quality of close objects. Our method can accelerate the
rendering of large models, compromising little in image quality.

Keywords: Rendering system, Spatial data structures, Level of
detail algorithms, hybrid rendering systems

1 Introduction

Computer graphics systems have traditionally used triangles as ren-
dering primitives. Scenes consisting of large amounts of triangles
(millions or even billions) are common for some applications, how-
ever, they cannot be interactively rendered by the current commod-
ity graphics hardware due to the expensive setup and rasterization
costs of triangles. Two approaches have been experimented by
graphics practitioners. The first approach is to reduce the num-

ber of triangles by resorting to a number of techniques, such as
selecting appropriate level-of-detail, visibility culling, and utilizing
view-dependent techniques, etc. The second approach is to propose
simpler primitives with less setup and rasterization cost. A point
represents one kind of simple primitive. Over the past decade, sev-
eral researchers have proposed to use points as display primitives
[1, 5, 18]. Recently, this research direction has attracted increasing
interest because of the processing power increase of CPUs. Gross-
man and Dally [8, 29] have developed a complete graphics system
using points as both modeling and rendering primitives. More re-
cently, two other point based graphics systems, QSplat [25] and
Surfel [23], were introduced. All these systems convert other graph-
ics primitives (e.g., polygons) into a uniform point representation
and take advantage of their simplicity to speedup the rendering.
Both QSplat and Surfel employ a level-of-detail representation of
points so that points of appropriate level can be selected based on
their screen projection for maximum speedup.

While these point systems have been proven to be effective in
accelerating the rendering of objects with a large number of small
triangles and high surface details viewed at distance, they have
some problems which are inherent to point representation. (1) Once
objects are represented in point representation, their resolution is
fixed. When objects are viewed very closely, even the highest res-
olution points may be projected to larger than one pixel; there-
fore, interpolation between adjacent points must be done to ensure
smooth shading. This is difficult to perform due to the lack of con-
nectivity information between points, resulting in either a blocky
image if no interpolation is performed at all (e.g., in QSplat [25])
or an image with artifacts if interpolation is approximately done in
screen space (e.g., in Surfel[23]). (2) For large, flat surfaces, point
rendering becomes less efficient than polygon rendering when the

gain of incremental rasterization of polygon rendering outweighs
the extra setup required. Specifically, using large textured polygons
provides better image quality at lower rendering cost than using a
large number of textured points. In this paper we present a hybrid
approach, coded POP, in which both points and polygons are used
to represent scenes. Points or triangles are chosen during the ren-
dering to guarantee the highest image quality while delivering the
maximum rendering speedup. Switching between points and trian-
gles is determined on-the-fly based on their screen projection size.
Figure 1 shows three images of the same model viewed at different
distances using different numbers of points and triangles. We build
up a tree structure similar to QSplat, but the leaf nodes are triangles
instead. While QSplat works best with models consisting of trian-
gles of approximately equal size, POP works well for any triangular
model. Overall, the POP system is an extension of previous point
rendering systems which makes three contributions by:

1. employing a hybrid of point and polygon representations to
take advantage of the simplicity offered by points and quality
offered by triangles,

2. utilizing frame coherence to further accelerate rendering
speed,

3. presenting a hybrid of forward and backward orders to deliver
effective antialiasing for texture mapping.

We also employ other traditional methods to speedup the rendering,
such as visibility culling and level-of-detail. Some of the previous
work is reviewed in the next section.

2 Previous Work

There have been many methods developed for representing and ac-
celerating rendering of large data. Rusinkiewicz and Levoy [25]
have given an excellent review on this. Here we give a short review
on topics that are related to our method: level-of-detail control, vis-
ibility culling, and point sampling and rendering. Specifically, we
review QSplat [25] and Surfel [23], two methods on which we build
our system.

Level-of-Detail (LOD) Representation and Control: For
large data sets, primitives are often projected to less than one pixel
size. To accelerate rendering, primitives are first ‘prefiltered’ into
a multi-level representation, and then at the run-time, primitives at
certain levels are selected and rendered. This avoids always render-
ing the full resolution data, hence, obtaining acceleration. Levels
can be selected based on both viewing configuration and illumina-
tion parameters [32, 11, 12]. Different primitives utilize different
schemes to perform such ‘prefiltering.’ For polygon meshes, this
prefiltering operation corresponds to mesh simplification by col-
lapsing edges or removing vertices. For irregular meshes, examples
like progressive meshes use a base mesh together with a series of
vertex split operations [10] to build up continuous LOD meshes.
For semi-regular meshes, a subdivision scheme can be implemented
to create multi-resolution meshes [9]. Wavelet transformation is
another tool to build up multiresolution mesh [2]. For rectilin-
ear points, i.e., volumes, multi-resolution can be easily built up by
low-pass filtering [26, 17]. Multi-resolutions can be generated on
other data representations, such as Layered-Depth-Images [3], Sur-
fel [23], and scattered points [25]. We will review more on QSplat
and Surfel later in this section.

Visibility Culling: Culling away primitives that do not contribute
to the final image before sending them for display represents a
valid approach to accelerating rendering without any image qual-
ity loss. Visibility culling typically includes backface culling, frus-
tum culling, and occlusion culling. For backface culling, Kumar

and Manocha have presented an algorithm for hierarchical back-
face culling based on cones of normals [15]. For frustum culling,
Samet has employed an octree data structure to perform hierarchi-
cal frustum culling [27]. For occlusion culling, Zhang et al. [33]
have utilized a hierarchical occlusion map to discard primitives that
are blocked by a closer geometry group. When the scene is highly
structured, e.g., architectures, more specialized occlusion culling
algorithms can be utilized for more effective culling [31].

Point Representation and Rendering:
Compared to polygons, points are simpler to render. The use of

points as rendering primitives can be dated as far back as 1974 when
Catmull [1] observed that geometric subdivision may ultimately
lead to points. Particles were subsequently used for objects that
could not be rendered with geometry, such as clouds, explosions,
and fire [21, 24]. Later, Levoy and Whitted [18] used points to
model objects for the special case of continuous, differentiable sur-
faces. Cline et. al. [5] proposed the ”dividing cubes” algorithm for
volumetric iso-surface display — cells intersecting an iso-surface
are subdivided until subcells project to less than one pixel and then
the subcellls are rendered as points. Over the last two decades,
volume rendering has become an effective tool to visualize medical
data, such as MRI, CT, etc., which consist of sampled points on rec-
tilinear grids. Volume graphics [14], using this data format to model
and render graphics objects, represents another point rendering sys-
tem. As volumes store points in 3D rectilinear grids, for surface
models, this is very inefficient. More recently, image-based render-
ing has become popular because complex scenes are represented
with 2D sprites with ([30, 28]) or without ([4]) depths or 3D/4D
plenoptic modeling [7, 16, 22], and the rendering time is approx-
imately proportional to the number of pixels in the source and/or
output images. However, all these methods use view-dependent
samples/points to represent an object or scene. View-dependent
samples are ineffective for dynamic scenes with motion of objects,
changes in material properties, and changes in position and inten-
sities of light sources. People have thus researched using view-
independent samples to model a scene. Max uses point samples
obtained from orthographic views to model and render trees [20].
More recently, Grossman and Dally [8] describe a point sample rep-
resentation for fast rendering of complex objects. Chang et al. [3]
presented the LDI tree, a hierarchical space-partitioning data struc-
ture for image-based rendering.

The most recent QSplat and Surfel systems employ view-
independent object models that can be illuminated and rendered
from arbitrary points of view. They both utilize a data hierarchy to
represent and render a scene. But they employ different schemes
to build up the hierarchy. Surfel samples the model on multi-
resolution rectilinear grids. Points from the same resolution grid
are stored in a compact format, called layered depth cubes (LDCs)
[19]. LDCs for different resolutions together form an LIC tree (sim-
ilar to LDI tree [3]). Points from the same level have the same size.
On the other hand, QSplat builds up a hierarchical representation
from the input mesh directly. Rather than explicitly sampling the
mesh, QSplat takes the mesh vertices as the initial input points and
generates a hierarchical data structure (quad-tree) from them. After
that, the mesh topology, i.e., connectivity, is discarded. As points
from the same level do not necessarily have the same size, QSplat
has to explicitly record the point size (or bounding sphere size) for
each node. For both QSplat and Surfel, each node records other at-
tributes such as colors, normals, etc. After obtaining data hierarchy,
both QSplat and Surfel traverse the tree and determine appropriate
nodes for display. They all perform some sort of block culling to
accelerate the rendering. Surfel also does fast incremental forward
warping as points from the same level are on a rectilinear grid.

Both Surfels and QSplat intend to use a uniform point repre-
sentation to represent different kinds of objects. Surfel’s point
sampling is ideal for modeling objects with very high shape and

V1

V2 V3

V4

V0 V1

V2
V3

V4

V0

V1V2 V3 V4V0 V2V3V0
V3V4V0V1V2V0

V4V1V0

(a) (b)

Figure 2:Bounding sphere and hierarchy used by (a) QSplat and (b) POP.

shade complexity (i.e., small triangles), but it is less efficient in
representing large flat surfaces with slowly changing shading at-
tributes. When objects are moved close enough to the view point,
the splats of points become visible. For QSplat, the image will ap-
pear blocky due to its splified splatting. Surfel’s two-pass rendering
using visibility splatting plus image reconstruction in screen space
can produce higher image quality, but is expensive due to the lack
of hardware support. In this paper, we present a hybrid of point and
polygon representations to represent and render arbitrary polygonal
models. We directly build up data hierarchy from the input mesh
similar to QSplat, but we take original triangles as leaf nodes. Tri-
angles are represented and rendered as points when they are small
on screen to obtain speedup; but they remain as triangles when their
projection on screen become large enough. Also, we perform pre-
texturing for triangles and points when building up the data hierar-
chy. This hybrid representation facilitates high quality and efficient
texture mapping.

3 POP System

POP uses triangles as leaf nodes and computes points as interme-
diate nodes. During the rendering, the tree is recursively traversed
and appropriate nodes are chosen for display. Depending on the
viewing position, nodes chosen may be either points or triangles.
As POP is built mainly on top of QSplat, we refer readers to the
QSplat paper for details of the system. Here we emphasize issues
new to our approach, but may repeat some issues for completeness.

3.1 Building up Data Hierarchy

The input of POP is general triangular models. The triangle sizes
can vary, meaning they do not have to be in approximately uniform
size as QSplat favors. These triangles are taken as leaf nodes. For
each triangle, a bounding sphere is computed together with other
information, such as color, normal and other attributes. The normal
is computed as the average of the triangle’s three vertices’ normals.
The color represents the color of the whole triangle. If texture map-

ping, this color is computed by convoluting (or averaging) all texels
inside the triangle. After we get the point representation, we start
to build up a quad tree to represent the hierarchy, similar to QSplat.
For each intermediate node in the tree, the attributes (e.g., normal,
color, etc.) are computed as the average of these attributes of its
child nodes. The bounding sphere is set to tightly bound the child
nodes.

Figure 2 illustrates the tree difference between QSplat (Figure
2a) and POP (Figure 2b). QSplat takes every vertex as the leaf node
and its bounding sphere radii are computed so that all bounding
spheres of the connecting vertices touch (or overlap) each other.
One problem of this representation is that when objects move close
to the view point, the leaf nodes’s splats project to larger than one
pixel so that the generated image becomes blocky. Instead, POP
computes bounding spheres of triangles and uses triangles as the
leaf nodes. As triangles maintain connectivity between vertices,
color and other attributes can be smoothly interpolated inside the
triangle, therefore increasing image quality.

Although bounding sphere hierachies have been used for accel-
erating ray tracing, computing tight bounding spheres remains a
very important step in pre-processing because the bounding spheres
are used to compute the termination condition of the run-time tree
traversal. An overestimated bounding sphere may cause the pro-
gram to unnecessarily descend the tree and send more primitives,
while an underestimated bounding sphere may degrade the image
quality. Let us look at the bounding sphere computation for both
leaf triangle nodes and intermediate point nodes.

For the leaf triangle nodes, as a triangle defines a plane, the ra-
dius of its bounding sphere is equal to the radius of the bound-
ing circle on the plane. We consider two scenarios: (1) when
all three angles of the triangle are less than or equal to90� (e.g.,
4v0v1v4 and4v0v3v2 in Figure 2), we have the bounding circle
pass through all vertices; (2) when one of the angles is larger than
90� (e.g.,4v0v2v1 and4v0v4v3 in Figure 2), we have the diame-
ter of the circle coincide with the longest edge of the triangle.

For intermediate point nodes, the bounding spheres are com-
puted from their child nodes’ bounding spheres. First, we need to
check whether the bounding sphere of one child node may enclose

bounding spheres of all other child nodes. If this is the situation,
we simply use that child node’s bounding sphere as the bounding
sphere for the current node. When the input mesh has triangles of
various size, this may happen very frequently. Otherwise, we com-
pute the bounding sphere according to different scenarios based on
the number of child nodes:

1. Two child nodes: the center of the bounding sphere is on
the connection edge between the centers of two child nodes
and the radius is computed asr = d+r1+r2

2
, whered is the

distance between two child node centers;r1; r2 are radii of
bounding spheres of two child nodes.

2. Three child nodes: we first connect three child node centers
as a triangle and find the center of the triangle using the same
scheme described above for leaf triangles; the radius is the
radius of the triangle plus the maximum of the radii of three
child bounding spheres.

3. Four child nodes: the centers of four nodes form a tetrahedron
in 3D space. We enumerate four cases with each case corre-
sponding to a triangle face of the tetrahedron. For each case,
we take the corresponding triangle and find its center and ra-
dius as above; then the center of the tetrahedron will be on
the line which is perpendicular to the base triangle and passes
through its center. Once we have obtained bounding spheres
for all four cases, we take the one with the minimum radius as
the final bounding sphere.

3.2 Rendering Algorithm

Similar to QSplat, POP recursively traverses down the hierarchical
tree and chooses suitable nodes for display. If the node is com-
pletely outside the view frustum or back-facing, it is simply culled
away; otherwise, its bounding sphere’s screen projection (or splat
size) is evaluated. If the splat size is larger than the threshold area,
its children are recursively evaluated; otherwise, it is drawn imme-
diately. If the node is a leaf node, a triangle is drawn; otherwise, a
point is drawn by splatting. As an option, we pay extra attention to
silhouette. When the normal of the node is almost perpendicular to
the viewing direction, we use triangles. The pseudo code of this op-
eration is illustrated in the following as functionRENDER(node).
Variablethreshold is for defining the threshold of screen projec-
tion size. To guarantee high quality image, it is usually set as one
pixel.

One of the major rendering expenses is the tree traversal. As
for each node, we have to perform a number of operations, such
as frustum and backface culling and splat size checking. We can
improve the performance by traversing fewer nodes. Rather than
always starting from the root node for the traversal, we desire to
utilize the coherence between adjacent frames to minimize the num-
ber of nodes needed to be traversed. When displaying a frame, we
set a flag for all the displayed nodes as well as the culled nodes.
When displaying the next frame, we start from those nodes whose
flags are set; depending on the current splat size of the node, we
traverse the tree either up or down to find the most appropriate
nodes for display. As there is usually considerable coherence be-
tween adjacent frames, the nodes displayed in two adjacent frames
are either the same or very close in the tree, hence we minimize
the number of nodes traversed. The coherence traversal algo-
rithm RENDER-COHERENCY(node) is described in the following
pseudo code. There are two flag variables in the code. Variable
flag1 indicates the node that is either displayed or discarded (in-
visible node) in the previous frame (set in bothRENDER(node) and
RENDER-COHERENCY(node)); variableflag2 indicates the node
which is traversed by upward traversal.

RENDER-COHERENCY(node)
if node:flag1 == 1 then

if node visible and node:splatsize > threshold then
node:flag1 = 0
RENDER(node)

else ifnode is a leaf then
draw a triangle for node

else
currentnode node
while TRUEdo
childnode currentnode
childnode:flag1 = 0
currentnode currentnode:parent
if currentnode! = NULLthen

if currentnode visible and
currentnode:splatsize > threshold then

break
else
currentnode:flag2 = 1

end if
end if

end while
if childnode visible then

draw childnode
end if

end if
else
node:flag2 0
for each child of node do

RENDER-COHERENCY(child)
if node:flag2 == 1 then

return
end if

end for
end if

END of RENDER-COHERENCY

RENDER(node)
if node is not visible then
node:flag1 = 1
skip node

else ifnode is a leaf then
draw a triangle for node
node:flag1 = 1

else
if node:splatsize < threshold then

draw a single point for node
else

for each child of node do
RENDER(child)

end for
end if

end if
END of RENDER

3.3 Computing Splat Size

One major computation in traversing the data tree is computing the
splat size of each node based on its bounding sphere. To precisely
compute the splat size is not only expensive but also unnecessary
because the bounding sphere itself is an approximation. This ap-
proximation sometimes appear too conservative. Illustrated in Fig-

(a) (b)

d

A

B

E
θ

θ

r
A

r
B

θ
r
2

O
A

O
B

r
1

screenscreen

z

Figure 3: Splat size computation. (a) Using a bounding sphere rather than a bounding ellipse may be too conservative; (b) geometry for
approximating bounding sphere at arbitrary 3D location.

ure 3a, a thin, long triangle is oriented in the viewing direction, and
its projection size on screen is very small (the left line segment,
purposely drawn off the viewing plane for clarity). However, its
bounding sphere has a uniform size in every direction, so its pro-
jection on screen (the right line segment) may be overestimated. A
possible solution is to use a bounding ellipse instead, but this would
cause extra computation. Furthermore, the consequence of this over
estimation is that we switch to triangle rendering earlier than neces-
sary. It may slow down the rendering somewhat, but does no harm
to the image quality.

Computing splat size based on a bounding sphere’s precise lo-
cation is still expensive. We want to optimize this computation by
computing the splat size based only on a bounding sphere’sz co-
ordinate in eye space. Illustrated in 2D, Figure 3b explains our
approach. When a node is on the z axis, the maximum projection
length of its bounding circle can be approximated as the projection
length of the circle’s vertical diameter. In the following, we only
consider the projection of the radius. For sphere A, its radiusR’s
projection lengthrA can be computed asrA = d

z
R, where d is the

distance between the eye (E) and the viewing plane;z is the z co-
ordinate of sphereA. Now we want to compute the projection of
the same size sphereB at the same z coordinate but away from the
z axis. Let the angle betweenEOA andEOB be�. The length of
EOB is then z

cos �
. The projection of sphere B’s radius on a viewing

plane is then computed asr1 = d
z

cos �

R = d cos �

z
R. Its projection

on the vertical plane at that point is thenr2 = r1

cos �
= d

z
R, which

is drawn as the blue line segment. ThenrB = r2

cos �
, whererB is

the projection of sphereB’s radius on the viewing plane, such that,
r2 < rB . In our implementation, we choose to user2 to approxi-
mate the splat size of sphere B. The consequence of this approxima-
tion is that we underestimate the splat size so that we terminate the
tree traversal earlier than when it should be, resulting in sending
larger points for display. The error increases as sphereB moves
further away from the z axis. However, as the nodes move away
from the projection center, they become less important, therefore
our error tolerance increases.

3.4 High Quality Rendering

When the splat size threshold is increased to over one pixel, holes
may appear between points. POP has implemented two rendering
methods for hole filling. The first method is to draw every splat of

a certain size using a constant color, similar to QSplat [25]. This
approach can leverage graphics hardware support, hence it is the
most efficient. However, splats with constant color makes the im-
age blocky. (see Figure 4d.) The second rendering method that POP
has implemented is visibility splatting plus image reconstruction
in screen space as in Surfel [23]. Even for a large threshold, this
method provides smooth rendering. Straightforward implementa-
tion of Surfel rendering has to resort to software implementation
since these operations are not directly supported by graphics hard-
ware. We have modified visibility splatting for limited hardware
support. Here, every point node is drawntwice. The first time it is
drawn with its full splat size using the background color; the second
time it is drawn with only one pixel splat size using its own color.
Of course, the triangle nodes are still drawn with only one pass.
Figure 4b depicts the rendered image after visibility splatting. The
background color on the object indicates holes to be filled in the im-
age reconstruction step. Since we have not recorded for every hole
pixel the distance to the nearest visible point due to our hardware
supported visibility splatting, we cannot adapt filter size for hole
pixel reconstruction as is being done in Surfel rendering. Instead,
we use a uniform sized reconstruction filter. The size of the filter is
simply specified the same as the threshold value of the splat size for
rendering. Figure 4c is the final image after image reconstruction,
which appears almost indistinguishable from the image generated
using much smaller threshold value (see Figure 4a).

Due to the lack of connectivity information, image reconstruc-
tion on screen space is approximate because the points contribut-
ing to a certain pixel are solely determined by their adjacency to
the pixel. This approach results in artifacts in generated images;
although usually not apparent for smoothly shaded objects, they
can be visible for texture mapped models. To eliminate this ar-
tifact, we have to ensure polygon rendering whenever the node’s
splat size goes beyond one pixel so that accurate interpolation can
be performed. This can be achieved by specifying the splat size
threshould as one pixel. Figure 5 compares the texture mapping
results using different thresholds. Figure 5a uses a threshold of
two pixels and a Guassian filter for image reconstruction. Arti-
facts show up for the hole pixels. Figure 5b uses a threshold of one
pixel, therefore no image reconstruction is needed. Nodes with a
splat size larger than one pixel are rendered using triangles. The
compared images are produced using a purely software approach
and the antialiasing is done using the supersampling method as in
Surfel [23]. While points are rendered by forward projection, tex-

(a) (b) (c) (d)

Figure 4: POP rendering with different methods: (a) simplified splatting (threshold = 0.9), (b) visibility splatting (threshold = 4.7), (c)
reconstructed image of (b), (d) simplified splatting (threshold = 4.7).

(a) (b)

Figure 5: Texture mapped POP rendering using (a) two-pixel
threshold and Guassian filter for image reconstruction and (b) one-
pixel threshold and their zoom-ins of the marked rectangles. Arti-
facts appear in the image generated by image reconstruction while
not for texture mapped polygonal rendering.

ture mapping of triangles can be considered as backward projection
because pixels’ colors are computed in texture domain. Therefore,
our hybrid point and polygon rendering also facilitates a hybrid pro-
cessing order, easing high quality texture mapping.

3.5 Data Structure

The general data structure of POP is very similar to that of QSplat,
but because we keep triangles at the lowest level of the hierarchy
tree, this will make the data structure almost always twice as big as
that of QSplat. This is because each object model can be considered
a planar graph (or at least with a small genius), so by Euler formular
for planar graphs (or graphs with small genius), the number of faces
of that graph will be at most twice the number of vertices plus a con-
stant. To overcome this, at a level node of the hierarchical structure,
we keep more than one adjacent triangles (at most four). Doing this
has immediately reduced the number of leave nodes twice on aver-
age (as in practice) and thus the number of leave nodes is roughly
equal to the number of vertices, making the hierarchical data struc-
ture of similar size to QSplat.

Besides the hierarchical data structure, we have to store the ver-
tices and the faces explicitly to redraw the mesh when the lowest

level of the hierarchy is reached. To store vertices, each vertex is
quantized using the quantized compression method in [6, 25]. For
faces, no compression is implemented for now. They are simply
stored as a linear list of indices to vertices. Each leaf node will
keep a single index to this list and the number of indices it needs.

4 Implementation and Results

We have implemented POP on an 800MHZ Pentium III PC with
256MB memory and nVIDIA’s GeForce2 GTS graphics card.
We have experimented on Happy Buddha (1,087,716 triangles,
543,652 vertices) and Hand (654,666 triangles, 327,323 vertices)
from Stanford and Georgia Tech. The preprocessing time averages
52 seconds for Buddha and 30 seconds for Hand. We have per-
formed comparison mainly with QSplat using simplified splatting.
The visibility splatting we have implemented is far from interactiv-
ity even though some hardware support has been leveraged. The
QSplat system is obtained from the original authors. Because POP
and QSplat are implemented in two different systems, the lighting
condition and the viewing location etc. may not be identical for the
following comparison, but we have tried to make them as compara-
ble as possible. Also because QSplat software uses different way of
measuring frame rate from our system, for the sake of fair compar-
ison, we instead record and compare the number of primitives that
these two systems use to generate images.

It is confirmed that POP can generate a superior image quality
to QSplat at lower cost. Figure 6 compares the image generated by
QSplat (Figure 6(b1)) with the images generated by POP (Figure
6(a1, c1, d1)) using different splat size thresholds. When POP gen-
erates comparable image quality (Figure 6(d1)) to QSplat, it uses
only around half of the number of primitives that are used by QS-
plat, therefore, the rendering is twice faster.

5 Conclusions and Future Work

In this paper, we have presented a hybrid rendering system, POP,
which uses both points and polygons. POP takes advantage of the
simplicity of point rendering for distant objects as well as the qual-
ity of triangle rendering for close objects. Our experiments have
proven that we can deliver higher image quality than similar sys-
tems such as QSplat at a lower rendering cost. In addition, building
a data hierarchy directly on triangles makes POP applicable to any
arbitrary triangular models. POP also facilitates a hybrid of forward
and backward order texture mapping for high quality.

Although the basic idea of POP is a simple extension over the
previous point rendering systems, such as QSplat and Surfel, this
extension implies an important message: rather than seeking out
a uniform representation, it may be more valid to develop mecha-
nisms to seamlessly integrate different representations for efficient
and high quality rendering. An immediate future work in this re-
search direction is to extend and integrate the existing advanced
data compression methods, such as geometry compression, and fur-
thermore, to design more effective hybrid representation, for more
efficient data representation and smoother transition between lev-
els as well as high quality rendering for an even wider viewing
range. Possibilities include (1) combining surface LOD methods
with the hybrid approach, (2) integrating a subdivision scheme
into this hybrid representation for an even smoother close-up view,
(3) designing and incorporating additional point attributes, such as
differentials [13] and Bidirectional Reflectance Distribution Func-
tions (BRDFs), for more effectively conveying the geometric shape
and rendering properties. Moreover, high quality and efficient an-
tialiasing for texture mapping remains a challenging problem and
is worth more research effort. The limitation of the current imple-
mentation is that the data hierarchy is precomputed therefore elimi-
nating an immediate support for dynamic scenes. We are interested
in designing schemes to make our hybrid approach applicable to
dynamic scenes. Our future work also includes techniques that will
make rendering more efficient. We are working on designing occlu-
sion culling techniques for our hybrid rendering system. Occlusion
culling is important for large scenes with high depth complexity.
Finally, we plan to extend our method to other applications, such as
volume surface display. Following Cline et al’s “dividing cube”
practice [5], we can use points to represent volume cells which
project to less than a certain threshold area (e.g., one pixel), but for
cells larger than the threshold, we then construct triangular surfaces
for their display.

6 Acknowledgement

We would like to acknowledge Grant-in-Aid of Research, Artistry
and Scholarship from the Office of the Vice President for Research
and Dean of the Graduate School of the University of Minnesota.

References
[1] E. Catmull. A subdivision algorithm for computer display of curved surfaces.

Ph.D thesis, Univ. of Utah, 1974.

[2] A. Certain, J. Popovi´c, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. In-
teractive multiresolution surface viewing. In H. Rushmeier, editor,SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 91–98. ACM SIG-
GRAPH, Addison Wesley, Aug. 1996. held in New Orleans, Louisiana, 04-09
August 1996.

[3] C.-F. Chang, G. Bishop, and A. Lastra. LDI tree: a hierarchical representation
for image-based rendering.SIGGRAPH ’99 Proc., pages 291–298, Aug. 1999.

[4] S. E. Chen. Quicktime VR - an image-based approach to virtual environment
navigation.Computer Graphics (SIGGRAPH 95), pages 29–38, Aug. 1995.

[5] H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, and B. C. Teeter. Two
algorithms for the three-dimensional reconstruction of tomograms.Medical
Physics, 15(3):320–327, May 1988.

[6] M. Deering. Geometry compression. InSIGGRAPH ’95 Proc., pages 13–20,
Aug. 1995.

[7] S. J. Gortler, R. G., R. Szeliski, and M. F. Cohen. The lumigraph.Computer
Graphics (SIGGRAPH 96), pages 43–54, Aug. 1996.

[8] J. Grossman and W. Dally. Point sampled rendering.Proc. Eurographics Ren-
dering Workshop, 1998.

[9] I. Guskov, W. Sweldens, and P. Schr¨oder. Multiresolution signal processing for
meshes. In A. Rockwood, editor,Siggraph 1999, Computer Graphics Proceed-
ings, Annual Conference Series, pages 325–334, Los Angeles, 1999. ACM Sig-
graph, Addison Wesley Longman.

[10] H. Hoppe. Progressive meshes.Computer Graphics, 30(Annual Conference
Series):99–108, 1996.

[11] H. Hoppe. View-dependent refinement of progressive meshes. In T. Whitted, ed-
itor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages
189–198. ACM SIGGRAPH, Addison Wesley, Aug. 1997. ISBN 0-89791-896-
7.

[12] H. H. Hoppe. Smooth view-dependent level-of-detail control and its application
to terrain rendering. In D. Ebert, H. Hagen, and H. Rushmeier, editors,IEEE
Visualization ’98, pages 35–42. IEEE, 1998.

[13] A. Kalaiah and A. Varshney. Differential point rendering.Proc. Eurographics
Rendering Workshop, 2001.

[14] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics.Computer, 26(7):51–64,
July 1993. Also in Japanese,Nikkei Computer Graphics, 1, No. 88, 148–155 &
2, No. 89, 130–137, 1994.

[15] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical back-face compu-
tation. In X. Pueyo and P. Schr¨oder, editors,Eurographics Rendering Workshop
1996, pages 235–244, New York City, NY, June 1996. Eurographics, Springer
Wien. ISBN 3-211-82883-4.

[16] M. Levoy and P. Hanrahan. Light field rendering. InSIGGRAPH ’96 Conference
Proceedings, pages 31–42, Aug. 1996.

[17] M. Levoy and R. Whitaker. Gaze-directed volume rendering.Computer Graph-
ics (Proc. 1990 Symposium on Interactive 3D Graphics), 24(2):217–223, Mar.
1990.

[18] M. Levoy and T. Whitted. The use of points as a display primitive. University of
North Carolina at Chapel Hill Technical Report TR 85-022, 1985.

[19] D. Lischinski and A. Rappoport. Image-based rendering for non-diffuse syn-
thetic scenes. InRendering Techniques ’98, Eurographics, pages 301–314, 1998.

[20] N. Max. Hierarchical rendering of trees from precomputed multi-layer Z-buffers.
Rendering Techniques’96, pages 165–174, June 1996.

[21] N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer views. In
Proc. Eurographics Workshop on Rendering, June 1995.

[22] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering
system. InSIGGRAPH 95 Conference Proceedings, pages 39–46, Aug. 1995.

[23] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as
rendering primitives. InSIGGRAPH ’00 Proc., pages 335–342, 2000.

[24] W. T. Reeves. Particle systems — A technique for modeling a class of fuzzy
objects.SIGGRAPH ’83 Proc., 17(3):359–376, July 1983.

[25] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering sys-
tem for large meshes. InSIGGRAPH ’00 Proc., pages 343–352, 2000.

[26] G. Sakas and M. Gerth. Sampling and anti-aliasing of discrete 3D volume density
textures.Eurographics ’91, pages 87–102, 1991.

[27] H. Samet. Applications of spatial data structures.Addison-Wesley, 1990.

[28] G. Schaufler. Per-object image warping with layered impostors. In G. Drettakis
and N. Max, editors,Rendering Techniques ’98, Eurographics, pages 145–156.
Springer-Verlag Wien New York, 1998.

[29] G. Schaufler and H. W. Jensen. Ray tracing point sampled geometry.Rendering
Techniques 2000, pages 319–328, 2000.

[30] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered depth images. In
SIGGRAPH ’98 Proc., pages 231–242, July 1998.

[31] S. Teller and C. H. S´equin. Visibility preprocessing for interactive walkthroughs.
Computer Graphics: Proceedings of SIGGRAPH’91, 25, No. 4:61–69, 1991.

[32] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based ren-
dering for polygonal models.IEEE Transactions on Visualization and Computer
Graphics, 3(2):171 – 183, June 1997.

[33] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using hierar-
chical occlusion maps.SIGGRAPH ’97 Proc., pages 77 – 88, Aug. 1997.

(a1) thres=1.0, 272,047 pts, 255,708 tris, 1.62 fps

(a2)

(b2) (b1) 317,557 pts

(c1) thres=2.0, 267,567 pts, 48,143 tris, 2.84 fps

(c2)

(d2) (d1) thres=3.4, 147,263 pts, 7,348 tris, 5.43 fps

Figure 6:POP (a1, c1, d1) generates superior image quality to QSplat (b1) as triangles other than points are rendered for the front part of
the object. (a2), (b2), (c2) and (d2) are zoom-ins of the marked rectangles of (a1), (b1), (c1) and (d1), respectively.

