
User Interface Design and Realization of a
Design-by-Sketches System

Amit Shesh Baoquan Chen
University of Minnesota at Twin Cities
{ashesh|baoquan} @cs.umn.edu

ABSTRACT
This paper describes the user interface design techniques for
a design-by-sketches system. The overall goal of the system is
to support 3D object design through natural and interactive
sketching processes. The system entails four unique features:
(1) a tight coupling of direct and gestured sketching in both
2D and 3D domains; (2) a user invokable feedback system
for supervised stroke interpretation, processing and 3D re-
construction; (3) harnessing both the hardware (pen device)
and software (development toolkits) of the commodity Tablet
PC; and finally (4) blending the new interface with limited
amount of well accepted WIMP interface elements to ease
a smooth adaptation to the new drawing conventions intro-
duced in our system. We present issues and propose solu-
tions to achieve these interface features and relevant sketch-
ing and construction operations. In addition to the interface
design, we also discuss the reconstruction of sketched curved
objects. Finally, we provide preliminary user evaluation and
offer insights drawn from it.

KEYWORDS: Pen-based interaction, sketching, CAD

1 INTRODUCTION

Design of objects and entities requires imagination and quick
ways to record ideas, which is why designers prefer papers
and pencils to computers even today. This is because the
currently prevalent WIMP-style user interfaces do not offer
room for more direct input like sketching, as they are based
on selecting an option from a given set.

We present SMARTPAPER, an interactive and intuitive design-
by-sketches system for creating and manipulating rigid 3D
objects. There are two main avenues of research that we
pursue through SMARTPAPER. The back-end sketch recon-
struction module has been discussed in Sheshet al [11] and
has been provided as supplemental material. This paper elab-
orates on its user interface design which makes it flexible and
easy to use.

There are four aspects to the user interface of SMARTPA-
PER that make it unique and successful. First, SMARTPA-
PER contains a tight coupling ofdirect andgesturedsketch-

ing in 2D and 3D domains. Direct sketching of objects
of interest is given more importance when creating them
from scratch, as the requirement of recalling learned gestures
should be relaxed when the user is trying to record ideas. In
addition to creating new objects, the user can directly sketch
over existing 3D objects to augment them. Gestured sketch-
ing assumes more importance when reconstructed objects
need to be modified as more specific meaning can be attached
to strokes for specific operations. Secondly, SMARTPAPER
facilitates interactive feedback for more active user participa-
tion in sketch reconstruction. SMARTPAPER does not strive
to be a perfect, “oracular” reconstruction system that inter-
prets sketches correctly every time. When the user is not sat-
isfied with any output, s/he can explicitly invoke a feedback
dialogue to monitor interpretation and quickly make changes
through gestures. The feedback system is wholly optional
and comes into play only when the user explicitly invokes
it. Moreover, the feedback is unobtrusive and so the user is
never distracted by unexpected pop-ups.

Thirdly we attempt to use features of commodity pen hard-
ware to emulate the paper-and-pencil experience and cre-
ate a better and more natural user interface for sketching.
SMARTPAPER is implemented on a Tablet PC that makes it
easy to design-on-the-go without elaborate hardware setup.
Fourthly, we strive to create a blend of current user inter-
face frameworks with new ones for sketch-based applica-
tions instead of rendering the former as irrelevant for such
applications. Although most WIMP interfaces are not natu-
ral enough for sketching, some have been adapted well to suit
the sketching domain. As most computer users are so used
to them, adaptation to radically new ways of user interac-
tion using specialized hardware will be difficult for everyday
users.

The user interface goals for a sketch-based application are
aptly summarized in Xuet al [16]: it should be humanistic,
intelligent and individualized. SMARTPAPER is humanis-
tic because it allows the user to draw freely as s/he draws
on paper, in addition to employing gestures which often de-
crease sketching effort at the expense of having to learn them.
SMARTPAPER is intelligent because it allows user sketches
to be imprecise and shabby, and yet generates plausible 3D
models. This is a feature that all CAD systems lack, as they
require precise line drawings, if not dimensions, to generate
and display a 3D model.

Figure 1: SMARTPAPER at a glance: (a) a sample scene generated by SMARTPAPER, (b) SMARTPAPER on a Tablet
PC showing envisioned architecture design application, (c) the Tablet PC stylus (the button for right-click is marked)

2 RELATED WORK

2.1 General overview
Sketch-based tools have found applications in diverse fields.
Grosset al [3] interpret schematic diagrams in architectural
design. Landayet al [6] investigate sketchy design of user
interfaces in their SILK system, whereas Xuet al [16] de-
sign electronic circuits using sketching. Teddy [5] inter-
prets sketches for the design of freeform objects. Others
[4, 18, 14, 13] discuss sketchy design in the context of rigid
3D objects. SMARTPAPER facilitates design of arbitrary
closed rigid 3D objects and is aimed at architectural design.

Most systems have atheme of interactionwith the user,
which affects their user interfaces as well as the classes of ob-
jects whose design they support. Some themes include an it-
erative process of sketching, scanning and aligning [14, 13],
but these approaches are only suitable when a freehand de-
sign is to be formalized, and are not interactive when a design
has to be created. Suggestive interfaces proposed by Igarashi
et al [4] and Xuet al [16] generate suggestions as the user is
sketching so that s/he can select what object s/he was trying
to sketch. While this may decrease sketching effort and fa-
cilitate more accurate reconstruction, such feedback may be
intrusive to the user. Also these approaches cannot be gen-
eralized enough without greatly increasing the complexity of
the suggestion-generating engines. A more popularthemeis
to let the user sketch and then reconstruct the sketched ob-
ject after s/he is done. SKETCH [18] is such a gesture-based
sketching system, where design is specified by predefined
gestures for various operations. Though gestures decrease
sketching effort and simplify reconstruction, they are not the
most natural forms of input. Moreover, as more and more
objects are supported by such systems, the user is required
to learn more and more gestures. Teddy [5] is a system for
the design of freeform objects that uses gestures more im-
plicitly. Gestures are not critical to their system as many
operations can be performed by directly sketching on an ob-
ject. This works well because they support only freeform ob-
jects whose reconstruction is more defined than 3D objects
in general. Nevertheless, we draw inspiration from existing
systems, especially SKETCH and Teddy, to effectively blend
direct and gestured sketching.

Some systems allow sketching only in two dimensions. Oth-

ers like the VIKING [9] system allow the user to augment an
existing 3D object by directly sketching on it. SMARTPA-
PER supports both types of sketching.

There are certain problems specific to interfaces of sketching
applications. Since a pen/stylus has fewer buttons and greater
applications, it has to be multiplexed to work like a pen and
an ordinary mouse. Thus, various modes of operation have
to be explicitly indicated by the user, as in the VIKING sys-
tem [9]. This problem is discussed by Saundet al [10] and
a heuristic solution is provided to guess what a pen move-
ment means in the current context. The solution proposed is
very specific to and highly dependent on the operations and
gestures offered by a system, and so may not scale well as
more and more ink/gestured operations are supported. We
have chosen to “hide” the gesture by minimizing the user ef-
fort required, by using available pen hardware, as explained
in Section 5.

2.2 SMARTPAPER – A Primer
Our previous work focussed on sketch reconstruction in SMART-
PAPER is discussed in a recent paper [11]. Its sketch pro-
cessing and 3D reconstruction pipeline are summarized here
for completeness.

Sketch Pre-processing: When strokes are placed on the
tablet, some pre-processing is done irrespective of their pur-
pose (creation of new object, cutting, etc.). A stroke is char-
acterized by the ink produced between a pen-down and pen-
up event. Short strokes that are intended to collectively repre-
sent larger strokes are combined by using heuristics on stroke
slope and inter-stroke distance. The consolidated strokes are
compiled into an edge-vertex graph.

Sketch Reconstruction: The following operations are per-
formed in sketch reconstruction:

1. Clustering [12] is performed in order to remove sketch im-
perfections such as two edges not intersecting at a vertex or
going beyond it. In this operation, end points of edges that
are within a certain distance from each other are merged.

2. The clustered graph is processed to determine all faces
of the object using two algorithms devised by us. The
graph is then “inflated” by determining depth coordinates
for all its vertices. Various constraints like parallelism and

 1
2

Arrow gesture: numbers indicate
sequence of drawing and red ar-
rows indicate possible pen paths.

Use of the arrow gesture
in drawing by extrusion.

Use of the arrow gesture
in cutting by extrusion.

Selection of an object.

Combined gesture for
transferring an object to
the feedback window.

Figure 2: Gestures in drawing and editing modes of
SMARTPAPER.

perpendicularity of edges and faces are used to set up a
constrained optimization system as originally proposed by
Lipsonet al [7] and modified by us.

If an object is drawn by extrusion, then a new graph of
the bounding cube is formed and the original object is
“carved” out of it after reconstruction of the cube. Thus all
objects specified by extrusion take the same time approxi-
mately for reconstruction irrespective of their complexity.

All reconstructed objects are projected in the viewing planes
so that their augmentation is possible by directly placing
strokes on or near them. If the user sketches to augment an
existing 3D object, the unaffected vertices are marked and
are not moved in the optimization process.

3 SMARTPAPER INTERFACE OVERVIEW

3.1 User Interface Theme
The general theme of the user interface is that after the
required sketching is done, the user signals completion of
sketching and the operation to be performed by making a
single menu selection or pressing a single button from the
toolbar. A direct consequence of this is that the user is free
to sketch in neat lines as well as short discontinuous strokes
without worrying about misinterpretation caused by such a
style of sketching, as SMARTPAPER does not make an at-
tempt to interpret the strokes until explicitly signalled to do
so. This also adds uniformity to the kind of user input re-
quired to perform various operations. For example, SMART-

PAPER does not count pen-up and pen-down events for ges-
tures and so the user is allowed to over trace gestures as well,
within certain limits.

3.2 User Walkthrough
SMARTPAPER starts by providing a blank window to the
user. The user can immediately start sketching on it with the
pen. The other end of the pen can be used as an eraser to
erase sketched strokes.

If the user wishes to create a new object, s/he must draw it
from a view in which edges and vertices do not hide behind
each other, and must draw all edges, whether visible or invis-
ible. Alternatively, the user can specify an object by drawing
a closed profile followed by an arrow gesture as shown in
Figure 2 to extrude it. The closed profile may be curved. The
user can also sketch directly on a previous reconstructed 3D
object to augment it. Sketches are reconstructed and the re-
sulting 3D model is rendered using non-photorealistic tech-
niques.

To cut an object, the user either draws the cutting lines di-
rectly or specifies the cutting planes by an open or closed
profile followed by an extruding arrow and presses the “cut”
button. To join two objects, the user first positions them so
that the faces to be joined are visible, then draws a stroke
between them and finally presses the “join” button. To se-
lect one or more objects, the user draws an enclosing circle
around them and presses the lasso button (Figure 2).

In order to modify the structure of an existing object or to
diagnose an error in reconstruction, the user first opens the
feedback window. Then s/he encircles the object in question
and draws an arrow gesture as shown in Figure 2. This results
in three views of the object in the feedback window as shown
in Figure 3. The user then specifies strokes in each view as
required, as explained in Section 4. In this window too, the
user presses the OK button to signal completion of sketching.
After the user is satisfied with the changes in the feedback
system, s/he can transfer it back to the original scene in the
left window.

4 FEEDBACK SYSTEM

There are many uncertainties in sketch reconstruction and
sketching systems in general. The reconstruction process is
based on optimization and heuristics and hence results may
not always satisfy the user. Also, the sketch can be unpre-
dictably dirty leading to misinterpretation.

We feel that the best way to improve the performance of
a system like SMARTPAPER is to facilitate user feedback
and dialogue. If the user sees what the problem is, s/he can
greatly assist in quickly correcting it. This is the motivation
behind the feedback system in SMARTPAPER.

The goals of this system are effective visualization to enable
the user to pinpoint the problem, allowance to changes and
suggestions and quick response to them, and the provision of
ways to refine a correctly reconstructed object. Visualization
is important because an erroneous result often offers little
insight into its cause. Therefore, three views of an object are
offered (Figure 3).

Figure 3: A single object shown in three views in the
feedback system: (a) Sketch view: The thick black
lines show strokes entered by the user after prepro-
cessing and the green lines show result of clustering,
(b) Face view: an exploded view of the object, (c) Ob-
ject view: the reconstructed 3D object.

Figure 4: Example of clustering by giving a hint.
The thick black lines show the original sketch and the
green lines show result of automatic clustering: (a)
Initial sketch and clustering output, (b) the vertices to
be clustered are marked by encircling, (c) the result
of the hint, showing overall correct clustering by just
one hint.

4.1 Sketch View
This view shows how the system interpreted the user’s strokes.
If the sketch is dirty, then clustering may be incorrect leading
to an erroneous reconstruction. This view shows the cleaned
graph superimposed on the user’s input (after preprocessing
as described in Section 2.2). This makes any incorrect clus-
tering obvious.

The user can manually suggest clustering by enclosing all
the vertices to be clustered as shown in Figure 4 (b). When
s/he presses OK, the points are combined, the whole graph
is re-clustered and the results are immediately shown as in
Figure 4 (c). It can be seen from these figures that correcting
one clustering can produce wholly correct results. The user
can then press the refresh button to make the other views
consistent with this view.

4.2 Face View
The face view shows an exploded view of the object(Figure
3). This view is useful in verifying if the faces have been
determined correctly. If any faces have been incompletely
or incorrectly determined, the user can sketch a face directly
in this view (Figure 5). Whenever a new face is sketched
by the user, all edges that are part of more than two faces are
marked, and all faces made of only marked edges are deleted.

Figure 5: Gestures in the face view: (a) a sam-
ple object with incorrectly determined faces, (b) and
(c)upper figures show a face sketched and lower fig-
ures show their respective results, (d) the resultant ob-
ject (with all faces correctly determined.)

4.3 Object View
This view shows the reconstructed object, which is topolog-
ically correct if the clustering and face determination was
done correctly. This view is used to further refine the ob-
ject by specifying additional constraints on its structure. All
algorithms use and modify the properties of the underlying
graph of the object. To visualize these algorithms it is helpful
to imagine the solid as a region enclosed by several bounded
or unbounded planes and move them as per the operation.
Our current implementation supports the following structural
changes:

4.3.1 Making two edges of a face congruent to each other
It is difficult to sketch two congruent lines, and a gesture is
used to specify such a constraint. The edges are specified by
drawing one line across each of them (Figure 6). By default,
the length of the second edge is modified to match that of
the first. The algorithmMakeEdgesCongruentis provided in
appendix A.1.

4.3.2 Making two edges of an object parallel to each other
Again, as it is difficult to sketch two perfectly parallel edges,
this operation is useful in making two edges parallel. The
two edges are specified by drawing two parallel lines across
them as shown in Figure 6. By default, the second edge is
made parallel to the first. The affected vertices are moved
as explained in the algorithmMakeEdgesParallelgiven in
appendix A.2.

4.3.3 Making two edges of a face perpendicular to each
other This operation is useful to make a face rectangular. It
is specified by drawing a bracket between the two edges as
shown in Figure 6. The two edges specified have to belong to
the same face. After determining the edges from the bracket
gesture, they are made perpendicular by moving vertices of
the graph using the algorithmMakeEdgesPerpendicularpro-
vided in appendix A.3.

4.3.4 Making two faces of the object perpendicular to each
other This is specified by drawing two lines along the two
faces meeting near their common edges, and a bracket be-
tween them as shown in Figure 6. The two faces must share
an edge. These faces are determined from the end points of

Making two edges congru-
ent to each other.

Making two edges of a face
parallel to each other.

Making two connected
edges perpendicular to each
other.

Making two faces perpen-
dicular to each other. The
right figure is rotated to
show the result.

Figure 6: Gestures in feedback system (In the first col-
umn, figures on the right show the result of the respec-
tive operation).

the first two strokes by traditional ray-casting. The algorithm
MakeFacesPerpendiculargiven in appendix A.4 is then used
to accordingly move the affected vertices.

4.3.5 Making two faces of an object parallel to each other
The two faces are specified by drawing two parallel lines
on them (one face is marked, the object is rotated and then
the second face is marked). By default, the second face is
changed to make it parallel to the first. Affected vertices are
moved according to the algorithmMakeFaceParallelgiven
in appendix A.5 to complete the operation.

Our experience shows that an object can be quickly refined to
regular shapes using these gestures. Regularity cannot be im-
plicitly assumed in the sketch because it will artificially clas-
sify all sketches into a small class of regular objects. How-
ever, it can be achieved easily through operations like these.

5 SWITCHING MODES AND GROUPING OBJECTS

The pen is used both as a sketching and a pointing device,
leading to the ambiguity problem discussed earlier. The right
click button on the pen is conveniently located near the grip
(Figure 1 (c)). Pressing it and tapping the screen changes
the mode and the change is visible by depression of a but-
ton. This is a semi-implicit gesture because the user does not
have to move the pen away from the sketching surface nor
does s/he have to change the hand position or grip. Pens that
do not have this feature can use the button provided for this

purpose.

For moving an object, we define an “interactor” that man-
ages and supplies the transformation matrices for movement
by mouse/pen. Each such interactor contains a queue which
points to the objects under its control. Every object stores its
transformation matrices. Thus, grouping objects consists of
identifying them and attaching them to the same interactor.
Henceforth, when this group is moved, the interactor passes
the relevant transformation matrices to all the objects in its
queue. This creates an implicit object and transformation hi-
erarchy.

6 RECONSTRUCTION OF CURVED OBJECTS

We support drawing objects with curved edges by extrusion,
which is not part of our prior system [11]. Extrusion re-
quires a closed profile. However, the user may draw a curve
whose end points either do not meet or cross each other. To
generate a smooth closed curve from such input, we employ
a modified version of the Snake algorithm [15, 2].

The original Snake algorithm is interactive in semi-automatic
conditions where the user explicitly inputs an approximated
closed curve that is used as an initial guess, resulting in fast
convergence. This is not feasible in our case as this prob-
lem is transparent to the user. Therefore we fit a circle using
least-square approximation to the stroke data and use it as the
initial guess. This potentially decreases the rate of conver-
gence and hence we modify the implementation of the Snake
algorithm in the following ways:

1. It is required to compute the nearest point in the input data
(edge data) to a point on the closed curve in a particular
direction during each iteration. This is an expensive opera-
tion if there are a lot of points in the input data. Therefore,
we allow 3 initial expensive iterations to “guess” a subset
of the input for every point on the closed curve, and cache
it for further iterations. This greatly speeds up the program.

2. The original condition for convergence in the Snake algo-
rithm is the number of points moved in one iteration. This
causes points to oscillate if the input data is not smooth, as
in the case of strokes. Hence, we eliminate points on the
closed curve from further consideration if they are within
a certain distance to the input data. Thus more and more
points are culled as the iterations proceed, leading to an
increase in speed.

The wheels of the car in Figure 1 are cylinders constructed
by this process.

7 DISCUSSION AND USER EVALUATION

SMARTPAPER has been implemented on a Toshiba Portege
3500, which runs Windows XP on a 700 MHz PIII Mobile
processor with 512 MB RAM. It has been coded in Microsoft
VC++.NET.

SMARTPAPER was demonstrated to 10 students of the De-
partment of Architecture at the University of Minnesota. Two
graduate students from the Department of Architecture and

four computer science graduate students participated in a de-
tailed user evaluation session. The users were briefed about
its functionality, gestures and usage and then were asked to
perform some pre-defined tasks.

Support for over traced sketching was appreciated by the stu-
dents, as a lot of them indulged in similar sketching practices.
They were asked to construct primitive objects like cubes and
prisms and curved objects like cylinders which they did with
reasonable ease.

In an effort to confirm the intuitiveness of the gestures in
the feedback system, they were not explained to the archi-
tecture students beforehand and were asked to do whatever
they deemed intuitive. Some gestures were guessed cor-
rectly by them, which showed that they were fairly intuitive
to users of non-computer science background. Other ges-
tures were learnt easily when they were explained. The users
received the seemingly “new” theme of explicit gestures and
direct sketching very well, compared to their experience with
mouse-based CAD software. The overall theme of the feed-
back system and the feature of instant shape modification
found immediate support among our users. In an attempt
to evaluate how all the gestures worked in tandem towards a
common goal, the users were asked to make the object shown
in Figure 3 into a uniform cube. The total time inclusive of
the time taken to learn the gestures by both users was approx-
imately 2.5 minutes. Some useful suggestions made by them
are discussed in the next section.

8 CONCLUSION AND FUTURE WORK

In summary, the general goal of the user interface features
in SMARTPAPER is to emulate the paper and pencil in us-
ability. The first step towards this goal has been achieved
by using convenient, portable and easily available pen hard-
ware like a Tablet PC. We believe that the user interface can
be made intuitive by striving to create a mix of direct and
gestured sketching. More and more domain-based practices
must be learned and incorporated to provide a user-centered
practical sketching system.

There are several avenues which we plan to pursue in the fu-
ture towards a smarter SMARTPAPER. We envision SMART-
PAPER to work in conjunction with another project indepen-
dently pursued by our group, which deals with acquisition,
digitization and rendering of data obtained by scanning out-
door environments [1]. An architect would be able to view a
design site through this work and then sketch ideas and build-
ings directly in this site model using SMARTPAPER (Figure
1 (b)). The ability to design “on site” has been highly de-
sired by the architecture community, and this will be a very
captivating experience and will provide an ideal design envi-
ronment for conceptual design in architecture.

Secondly, we are working closely with the students and fac-
ulty of the Department of Architecture at our university to
gain more knowledge about the practices of architectural de-
sign. We plan to incorporate such domain knowledge in
SMARTPAPER to make it more practical for architects and
students of architecture. In particular, the practice of drawing
“construction lines” for reference in sketching, the ability to

draw open objects and environments and drawing only the
visible parts of an object, etc. are included in our immediate
research plans. We also plan to investigate the importing and
exporting of data in compatible formats so that SMARTPA-
PER can be used in real design environments in conjunction
with other design software.

The initial positive feedback from our users about our feed-
back system has encouraged us to strive for supporting more
and more “prototyping” operations. A few suggestions like
making all sides of a face mutually parallel and perpendic-
ular, making one face congruent to another and making an
edge perpendicular to a face made by our users will be in-
corporated in SMARTPAPER shortly. More operations like
subtraction and union of objects will also be incorporated and
the user interface will be modified to specify these in an easy
manner.

Navigation in 3D environments using 2D pointing devices
has been identified as a problem, and this problem is some-
what more obvious in a pen-based application than a mouse-
based one. The degrees of freedom (DOF) of 3D operations
cannot be mapped to the limited DOF of 2D pointing devices
like mice and pens. Zelezniket al[17] propose two cursors to
achieve this mapping. However, their recommendation of us-
ing a mouse with a keyboard is not feasible for hand-held de-
vices like the folded Tablet PC. Also, we feel that this method
is significantly intuitive in transforming operations like rota-
tion, etc. but is not as effective in sketching operations. The
method proposed by Llamaset al [8] is worth consideration
if it can be generalized to operations other than sculpting.

A Algorithms for 3D Operations

A.1 MakeEdgesCongruent
Input: Edgese ande′ of faceF .

//By default makel(e′) = l(e).

Let e′(v, v′). LetF ′ be the face sharinge′ with F . Lete′′ be
the edge incident onv′ in faceF . Let e′′(v, v′′). LetF ′′ be
the face sharing edgee′′ with F . Lete1 be the edge incident
on v′ not in F . Let e1(v′, v1). Finally, let e2(v1, v2) be the
edge inF ′ incident onv1 and is note1.

Movev′ alonge′ till the length is equal toe. Now movev1 an
equal distance alonge2 in F ′ by an equal distance to keep
the slope ofe1 unchanged. FaceF ′ has a new plane formed
by newv′, newv1 and unchangedv′′.

For all vertices V inF ′′ that are notv′, v′′andv1:

Find the edgeE incident onV that is not inF ′′. Find the
intersection ofE with newF ′′ to find the new position ofV .

A.2 MakeEdgesParallel
Input: Edgese ande′ of faceF .

//By default makee′ parallel toe.

Let F ′ be the face sharing edgee′ with F . Lete′(v, v′). Fix
v. Lete′′ be the edge incident tov′ and inF . Lete′′(v, v′′).
Lete1(v, v1) be the edge incident atv in F ′.

Movev′ along e′′ till e and e′ are parallel. FaceF ′ has a
new plane formed byv,v1 and the newv′.

For all verticesV in F ′ that are notv andv′:

Find the edgeE incident onV that is not inF ′. Find the
intersection ofE and the newF ′ to find the new position of
V .

A.3 MakeEdgesPerpendicular
Input: Edgese ande′ of faceF .

Let v be the common vertex betweene ande′. If there is no
such vertex, then the operation cannot be performed.

Let e′(v, v′). Let F ′ be the face sharinge′. Let e′′ be the
edge inF other thane′ incident onv′. Let e1(v, v1) be the
edge incident atv which is not inF . Movev′ alonge′′ till e
and e′ are perpendicular. FaceF ′ has a new plane formed
byv, newv′ andv1.

For all verticesV of F ′ that are notv,v′ andv1:

Find the edgeE incident onV that is not inF ′. Find the
intersection ofE and the newF ′ to find the new position of
V .

A.4 MakeFacesPerpendicular
Input: FacesA andB with common edgee.

LetnA andnB be the normals ofA andB respectively. Move
B′ by computing a new normaln′B which is perpendicular to
nA.

For all verticesV of B not in edgee:

Lete′ be the edge atv which is not inB. Find the intersection
of e′ and newB to find the new position ofV .

A.5 MakeFacesParallel
Input: FacesA andB with faceF which shares an edge each
with A andB.

Let nA andnB be the normals ofA andB. Let e(v, v′) be
the edge inF which is shared withB. Let e′ be the other
edge inF that is incident onv′. Let e′′ be the edge inB
incident atv and not inF . Let e′′(v, v′′). Movev′ alonge′
till nB equalsnA. FaceB has a new plane formed byv, new
v′ andv′′.

For all verticesV in B that are notv, v′ andv′′:

Find the edgeE incident atV that is not in faceB. Find the
intersection ofE andB′ to get the new position ofV .

REFERENCES
1. 3d scanning project. www.cs.umn.edu/ bao-

quan/scan.html.

2. Active image contours. www.cs.wisc.edu/ pin-
gelm/Algo.html, Date retrieved: April 6, 2004.

3. Mark D. Gross and Ellen Yi-Luen Do. Ambiguous
intentions: a paper-like interface for creative design.
In Proc. ACM Conference on User Interface Software
Technology (UIST) 1996, pages 183–192, 1996.

4. Takeo Igarashi and John F. Hughes. A suggestive in-
terface for 3d drawing. In14th Annual Symposium on
User Interface Software and Technology, ACM UIST
2001, pages 173–181, 2001.

5. Takeo Igarashi, Satoshi Matsuoka, and Hidehiko
Tanaka. Teddy: A sketching interface for 3d freeform
design. InProc. SIGGRAPH 1999, pages 409–416,
1999.

6. James A. Landay and Brad A. Myers. Interactive
sketching for the early stages of user interface design.
In Proc. SIGCHI 1995, pages 43–50, 1995.

7. Hod Lipson and Moshe Shpitalni. Optimization-based
reconstruction of a 3d object from a single freehand
line drawing. Journal of Computer Aided Design,
28(8):651–663, 1996.

8. Ignacio Llamas, Byungmoon Kim, Joshua Gargus,
Jarek Rossignac, and Chris D. Shaw. Twister: A space-
warp operator for the two-handed editing of 3d shapes.
In Proc. SIGGRAPH 2003, pages 663,668, 2003.

9. David Pugh. Designing solid objects using interactive
sketch interpretation. InProc. of 1992 Symposium on
Interactive 3D Graphics, pages 117–126, 1992.

10. Eric Saund and Edward Lank. Stylus input and editing
without prior selection of mode. InProc. of the 16th an-
nual ACM symposium on User Interface Software and
Technology (UIST) 2003, pages 213,216, 2003.

11. Amit Shesh and Baoquan Chen. Smartpaper–an inter-
active and intuitive sketching system.Accepted and to
appear in Eurographics 2004, 2004.

12. Moshe Shpitalni and Hod Lipson. Classification of
sketch strokes and corner detection using conic sections
and adaptive clustering.ASME Journal of Mechanical
Design, 119(2):131–135, 1997.

13. Osama Tolba, Julie Dorsey, and Leonard McMillan.
Sketching with projective 2d strokes. InProc. UIST
1999, pages 149–157, 1999.

14. Osama Tolba, Julie Dorsey, and Leonard McMillan. A
projective drawing system. InProc. I3D Symposium on
Interactive 3D Graphics, 2001.

15. Donna J. Williams and Mubarak Shah. A fast algorithm
for active contours and curvature estimation.CVIGP
Computer Vision Graphics Image Processing:Image
Understanding, 55(1):14–26, 1992.

16. Xiaogang Xu, Wenyin Liu, Xiangyu Jin, and Zhengx-
ing Sun. Sketch-based user interface for creative tasks.
In Proc. 5th Asia Pacific Conference on Computer Hu-
man Interaction (APCHI2002), pages 560,570, 2002.

17. Robert C. Zeleznik, Andrew S. Forsberg, and Paul S.
Strauss. Two pointer input for 3d interaction. InSympo-
sium on Interactive 3D Graphics, pages 115,120, 1997.

18. Robert C. Zeleznik, Kenneth P. Herndon, and John F.
Hughes. Sketch: An interface for sketching 3d scenes.
In Proc. SIGGRAPH 1996, pages 163–170, 1996.

