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Abstract

Many shape co-segmentation methods employ multiple descriptors to measure the similarities between parts of a
set of shapes in a descriptor space. Different shape descriptors characterize a shape in different aspects. Simply
concatenating them into a single vector might greatly degrade the performance of the co-analysis in the presence
of irrelevant and redundant information. In this paper, we propose an approach to fuse multiple descriptors for
unsupervised co-segmentation of a set of shapes from the same family. Starting from the over-segmentations of shapes,
our approach generates the consistent segmentation by performing the spectral clustering in a fused space of shape
descriptors. The core of our approach is to seek for an optimal combination of affinity matrices of different descriptors
so as to alleviate the impact of unreliable and irrelevant features. More specially, we introduce a local similarity based
affinity aggregation spectral clustering algorithm, which assumes the local similarities are more reliable than far-away
ones. Experimental results show the efficiency of our approach and improvements over the state-of-the-art algorithms
on the benchmark datasets.
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1. Introduction

Recently, there has been an increasing interest in
shape co-analysis. The premise is that we can ex-
tract more knowledge by simultaneously analyzing a set
of shapes, rather than an individual shape. The main
task of co-analysis isco-segmentation, which simul-
taneously segments all the shapes in the input set in
a consistent manner. The consistent segmentation has
demonstrated great utility in modeling [1, 2], shape re-
trieval [3, 4], texturing [5], etc.

Many methods have been designed for shape co-
segmentation [5, 6, 7, 8, 9, 10, 11]. In this paper,
we focus on unsupervised co-segmentation, where no
prior information is given and the entire knowledge
must be extracted from the input set. Previous at-
tempts in unsupervised co-segmentation can be clas-
sified into alignment-based and descriptor-based. In
the alignment-based setting [6, 7], the correspondences
among different parts are constructed by a global align-
ment. Since parts with similar semantics can be rather
dissimilar geometrically as well as topologically, these
methods cannot handle shape sets with large variations.

The descriptor-based methods [8, 9, 11] employ multi-
ple feature descriptors to measure the similarity of parts,
and obtain consistent segmentations by clustering the
descriptor space. Since the descriptors are indepen-
dent of the pose and location of shapes, they can han-
dle shapes with rich variations in part composition and
geometry.

Different shape descriptors describe different aspects
of the geometric characteristics, and often provide com-
plementary information. Figure 1 shows an example,
where the geodesic distance to the base of the shape
(GB) is more reliable than the shape diameter func-
tion (SDF) for discriminating semantic parts in Fig-
ure 1 (a,b), while SDF is more reliable than GB in Fig-
ure 1 (c,d). Thus, simply concatenating them into a
single vector might contain high degree of unreliable,
and redundant information. The consistent segmenta-
tion obtained by clustering this kind of vectors may be
not-optimal. However, with the exception of [9], co-
segmentation methods do not address the feature selec-
tion or feature weighting in an unsupervised setting.

In this paper, we propose an approach to fuse mul-
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tiple descriptors for descriptor-based unsupervised co-
segmentation of a set of shapes from the same class.
The proposed approach is based on the affinity aggrega-
tion spectral clustering (AASC) [12], which extends the
spectral clustering to the setting where multiple affini-
ties matrices are available. This algorithm can auto-
matically weight each descriptor properly and aggregate
multiple affinity matrices to construct a better one.

By assuming that the local similarities (high values)
are more reliable than the far-away ones [13], we con-
struct a sparse affinity matrix based onk-nearest neigh-
bor graph. The resulting affinity matrix not only cap-
tures the core structure of the feature but also partially
removes the unreliability, in comparison to the original
one. With that, our local similarity based AASC can ef-
fectively combines the strengths of different descriptors,
see Figure 2.

Compared with the subspace clustering approach [9],
our approach has two differences. First, our approach
explicitly weights each feature and provides an explicit
form of the learned affinity, while [9] finds a low dimen-
sional representation of each feature for concentrating
all affinity matrices together. Second, our approach in-
tegrates the feature selection and spectral clustering into
an unified procedure, while [9] works in a two-step pro-
cedure. To some extent, our approach is similar with
the learning based approach [5], where JointBoost clas-
sifier automatically computes the weight of each feature
in the classification.

We evaluate our approach on various shape cate-
gories and make comparisons with state-of-the-art ap-
proaches. The results show that our approach performs
better. Since our approach unifies the feature selection
and spectral clustering together, it is more efficient than
the previous methods. In summary, our contributions
are twofold.

• We propose an unsupervised metric weighting
method for shape co-segmentation, which simul-
taneously clusters the descriptor space to generate
the consistent segmentation and weights each de-
scriptor.

• We improve the affinity aggregation spectral clus-
tering algorithm with the local similarities, which
guarantees the consistency of the co-segmentation
results.

2. Related Work

Shape segmentation is a fundamental problem in
shape analysis, which refers to decomposing a 3D shape

(a) SDF (b) GB (c) SDF (d) GB

Figure 1: SDF and GB defined on a chair and vase, re-
spectively. The back and the seat of the chair are quite
similar in SDF (a), while they differ a lot in GB (b); the
handle is similar with neck in GB (d), but quite differ-
ent in SDF (c). Hence, different descriptors for differ-
ent shape categories should be assigned with different
weights.

into meaningful parts. Classical shape segmentation ap-
proaches focus on finding simple geometric criteria for
segmentation of a single input mesh [14]. Although a
variety of approaches have been proposed, no segmen-
tation algorithm is known to produce high quality re-
sults for all classes of shapes [15]. One reason is that
the individual shape may not provide enough geometric
cues to distinguish its meaningful parts.

Recently, researchers have proposed to rather analyze
sets of shapes and compute their consistent segmenta-
tion. Compared to traditional segmentation approaches,
consistent segmentation not only partitions the shapes
into segments, but also consistently labels the segments
across the set.

Early work by Golovinskiy and Funkhouser [6]
builds reliable correspondences across shapes using
shape alignment and then clusters the shape faces ac-
cording to an underlying graph. The graph links faces
that are adjacent in the models and faces that establish
a correspondence among different meshes after align-
ment. To deal with non-homogeneous part scales, Xu
et al. [7] factor out the scale variation in the shape parts
by clustering the shapes into different styles, which is
defined as the scales of the shape parts. However, these
approaches are limited to the shapes that can be properly
aligned.

Kalogerakis et al. [5] present a supervised method
to simultaneously segment and label shapes. Given a
training set with enough pre-analyzed shapes, a model
is learned with hundreds of geometric descriptors and
then assigns labels to the new shape based on its de-
scriptors. To enhance the correspondence among parts,
van Kaick et al. [16] augment the supervised segmen-
tation with content-driven analysis via a joint labeling
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Figure 2: Overview of the steps in our co-segmentation: (a) An over-segmentation is computed for each shape. (b,c,d)
The 2D spectral spaces of affinity matrices based on the three computed descriptors, where each patch is corresponding
to a point in such spaces. Three parts are mixed together in SDF and AGD spaces (b,d), while they fall in different
ranges but not clearly separated in GB space. (f,g,h) Our fused space (f) with different weights for each descriptor (g),
where the parts are clearly separated, resulting in the segmentation in (h). (e) In comparison, the 2D spectral space of
the affinity matrix of the descriptor generated by concatenating three descriptors together, where the bottom and body
of the lamp are mixed.

approach. However, these methods require a substantial
number of manually labeled training shapes. This poses
a challenge since users are required to manually create
training sets

To overcome this limitation, Sidi et al. [8] introduce a
descriptor-based method, which poses co-segmentation
as a clustering problem in a descriptor space. This
method can handle shapes with rich variations in part
composition and geometry. Instead of concatenating
the different feature descriptors into one vector, Hu et
al. [9] formulate the co-segmentation into a subspace
clustering problem in multiple features spaces. They
first find consistent sparse representation for all descrip-
tors’ affinity matrices, and then simply aggregate all
matrices into a new one, finally perform clustering to
get consistent segmentation. Here, we present a dif-
ferent approach to fuse multiple features. Rather than
taking a two-step pipeline, our approach integrates the
feature selection and spectral clustering into an unified
procedure, and automatically weights each descriptor.
Recently, Meng et al. [11] propose to manually weight
each descriptor before clustering. However, finding a
proper weighting is a difficult problem.

Since the geometry alone cannot always fully con-
vey shape semantics, it is hard to generate a perfect co-
segmentation of a set with unsupervised methods. Wang
et al. [10] propose a constrained clustering method to
co-segment a set of shapes, where the user can actively
assist in the clustering process. Since this method is also
achieved by clustering the descriptor space, our method
can be regarded as complementary to them.

There has been a large body of works in shape anal-

ysis using spectral methods [17]. In many applications,
there are multiple useful feature descriptors and thereby
multiple affinity matrices. However, almost all exist-
ing methods concatenate all descriptors into one feature
vector and thus perform clustering on a single affinity
matrix.

There are a few algorithms which improve the
spectral clustering for fusing multiple affinities. Cai
et al. [18] propose a multi-modal spectral clustering
(MMSC) algorithm, which integrates such heteroge-
neous features on unlabeled images and unsegmented
images. MMSC learns a commonly shared graph Lapla-
cian matrix by unifying different features. Huang et
al. [12] propose the affinity aggregated spectral cluster-
ing, which aggregates the affinity matrices from differ-
ent features into an affinity matrix with feature weight-
ing. The authors demonstrate the effectiveness of this
algorithm by a variety of clustering problems including
image clustering, face clustering and text clustering, in
the presence of multiple feature cues. Since the problem
of unsupervised co-segmentation can be represented as
a clustering problem, we adopt this algorithm to opti-
mally fuse multiple descriptors. In addition, in order
to better capture the cluster structure, we construct new
affinity matrices based on local similarities to obtain a
better clustering result.

3. Overview

Given a set of 3D shapes from the same class, our ap-
proach generates a consistent segmentation of a set. Fol-
lowing the similar pipeline with existing methods [9],

3



our approach consists of three steps. First, we over-
segment each shape into many small patches. Then, we
compute multiple feature descriptors for each patch. Fi-
nally, we perform affinity aggregation spectral cluster-
ing over all patches and obtain a co-segmentation of the
set. Figure 2 gives an overview of our method, show-
ing at the same time a set of results generated by our
algorithm.

Over-segmentation. Similar to some previous works
[9, 11], we employ normalized cuts [19] to decom-
pose each shape into primitive patches. The number
of patches per shape is set to 30. Then, we use graph
cuts [20] to refine the patch boundaries. Figure 2(a)
shows several examples of our over-segmentation re-
sults.

Feature descriptors. Our co-segmentation is
achieved by clustering the descriptor space. Thus, se-
lection of informative descriptors can help us better dis-
tinguish patches in different semantic parts.

Here five robust and informative shape descriptors
are chosen, i.e., Shape Diameter Function (SDF) [21],
Conformal Factor (CF) [22], Shape Contexts (SC) [23,
24], Average Geodesic Distance (AGD) [25], and the
geodesic distance to the base of the shape (GB) [8].
All these descriptors are defined on mesh triangles.
Taken the computation of SC as an example, given a
face, we measured the distribution of all the other faces
(weighted by their area) in logarithmic geodesic dis-
tance bins and uniform angle bins, where the angles are
measured relative to the normal of each face. Therefore,
for each face of shapes, there are five scalar values to de-
scribe its geometric characteristics. For each descriptor,
we compute a histogram to capture its distribution for
all faces in each patch. Letpi denote thei-th patch and
hk,i be the histogram forpi of the k-th descriptor. We
define the dissimilarity between two patchespi and p j

is dk(pi, p j) = EMD(hk,i, hk, j), whereEMD(x, y) is the
earth-mover’s distance [26] betweenx andy. Then, a
Gaussian kernel is applied to the distances in order to
construct the entries of the affinity matrix for each de-
scriptor:

wk,i j = exp(−dk(pi, p j)/2σ2), (1)

which represents the similarity distance between thei-
th patch and thej-th patch for thek-th descriptor. In our
implementation, we set the number of bins to be 50 for
each of histograms andσ is set to be the mean of all
distances. Figure 3 illustrates the shape descriptors and
their corresponding histograms on two examples.

Affinity Aggregation Spectral Clustering. For the
five selected descriptors, we construct an affinity matrix
for each of them with Equation 1. To better capture the

Figure 3: The histograms of five used descriptors of the
two tables.

core structure of each descriptor, we refine the affinity
matrix based on local similarities. The resulted affin-
ity matrix partially removes the unreliability of the dis-
tance measure. Then, we use affinity aggregation spec-
tral clustering to aggregate affinity matrices from differ-
ent descriptors into a better one. With a formulation of
learning the similarity matrix for spectral clustering, our
method simultaneously weights each descriptor prop-
erly and groups the aggregated affinity matrix to gen-
erate the consistent segmentation.

4. Affinity Aggregation Spectral Clustering

We begin by introducing our notation and summariz-
ing the key ideas of spectral clustering. For more de-
tails of spectral clustering we refer the reader to von
Luxburg [27]. Givenn points x1, · · · , xn, we define a
n × n affinity matrix W, where each entryWi j encodes
the similarity betweenxi andx j.

Spectral clustering partitions the data intom disjoint
clusters by finding the indicator vectorF = { f1, · · · , fn},
which satisfies

min
f1,..., fn

∑

i, j

Wk,i j‖ fi − f j‖2 = F′(D −W)F, (2)

whereD is a diagonal matrix, whosei-th diagonal ele-
ment is the sum of the elements in thei-th row ofW. We
adopt the normalized spectral clustering [28] to perform
clustering. Taking the constraintF′DF = 1, the indica-
tor vectorF can be obtained by finding the eigenvectors
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Figure 4: (Left) Spectral clustering based on the full
connected graph. (Right) Spectral clustering based on
thek-nearest neighbor graph wherek is 5.

u and eigenvaluesλ of the generalized eigenvalue sys-
temLu = λDu, whereL is the Laplacian matrix ofW.

4.1. Local Similarities

In Equation 2,W is constructed by computing the
pairwise similarities between any two points on a fully
connected graphG. The patches generated by the initial
over-segmentation in Section 3 have a large amount of
variability. Thus, the cluster structures inW may be de-
stroyed by noise, which are introduced by some small
patches.

By assuming that the local similarities are more re-
liable than far-away ones [13], we construct another
graphG̃ to remove the unreliable neighbors. The ver-
tices ofG are the same as iñG, and the edges are the
nearby ones inG. In other words, we selectk nearest
neighbors for each vertex. Usingk-nearest neighbors,
we constructG̃ with associated similarities matrix̃W:

W̃k,i j =

{

Wk,i j, p j ∈ knn(pi) or pi ∈ knn(p j)
0, otherwise

(3)

whereknn denotes k-nearest neighbors of the pointpi.
Figure 4 shows an example, where our local similarities
based spectral clustering performs better than the one
with full connected graph.

4.2. Affinity Aggregation

Now there arem descriptors, and each of them has
an affinity matrix Wk. As shown in Figure 1, differ-
ent descriptors should be assigned different weights.
Here, we use the affinity aggregation spectral cluster-
ing (AASC) [12] to automatically find an appropriate
weight for each descriptor. Letα = {α1, . . . , αm} be the
weights associated with the affinity matrices. AASC can

be formulated as:

min
α,F

∑m
k=1

∑

i, j

αkwk,i j‖ fi − f j‖2

= min
α,F

∑m
k=1αkF′(Dk −Wk)F (4)

= min
α,F

∑m
k=1αkrk, (5)

where Dk is a diagonal matrix ofWk which is con-
structed the same way as̃Dk, Dk − Wk is the Laplacian
matrix of thek-th descriptor and

rk = F′(Dk −Wk)F.

Compared to Equation 2, the weight of each descrip-
tor is also incorporated into this new objective function.
With a weighted combination of the affinity matrices,
the clusters can be better separated as shown in Figure 2.

This minimization involves two sets of unknown vari-
ables:α andF and is generally hard to solve. We design
a two-step approach to approximate the minimization
by alternatively fixingα and F. When the weightsα
are fixed,F can be found by the standard spectral clus-
tering. WhenF is fixed, we solveα by exploiting two
additional constraints.

The first constraint comes from the normalized spec-
tral clustering, i.e., the final diagonal matrixD must sat-
isfy the following equation:

1 = F′DF = F′(α1D1 + · · · + αmDm)F =
m
∑

k=1

αk sk, (6)

where

sk = F′DkF.

With this constraint, the spectral clustering usually con-
verges to a nice clustering result [29].

Since the diagonals of the affinity matrices are all 1s,
and all elements of these matrices are non-negative, we
denotewk,i j = v2

k,i j andVk denote the matrix constituted
of vk,i j. The second constraint comes from the sum of
the weighted matrices in a normalized condition, i.e.,

tr(
m
∑

k=1

√
αkVk) = n, (7)

wheretr is thetrace of a matrix. This constraint implies
that the traces of such matrices are bounded.

We introduce the above constraint because we pre-
fer a lower bound on the trace of the weighted matri-
ces. Specifically, if the trace of the weighted matrix is
lowly bounded, the sum of its eigenvalues is also lowly
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bounded. This could prevent the eigenvalues approach-
ing very small positive values so as to guarantee a stable
clustering result.

By Cauchy-Schwartz inequality, we have
∑m

k=1 tr(αkWk) ≥ 1
m (
∑m

k=1
√
αktr(Vk))2

=
n2

m .
Sincetr(Vk) = n, the second constraint becomes:

m
∑

k=1

√
αk = 1. (8)

By applying Lagrange multiplier to these two con-
straints, the problem of finding the properα can be re-
duced to a 1-D line search problem, which is easy to
solve. For more details, we refer the reader to [12].

In general, AASC can be solved with a two-step it-
erative algorithm. Specifically, starting withαk = 1/m,
we alternate between findingF with normalized spec-
tral clustering and searching optimal weightsαwith 1-D
searching under both constraints (Equation 6 and Equa-
tion 8), keep reducing the error and ensuring the con-
vergence of the iterative process. Hence, the time com-
plexity of AASC isO(n3 ∗m), wheren is the number of
points andm is the number of iterations. After obtaining
F, we run k-means in the indicator space to cluster the
data intoC classes.

4.3. Affinity Aggregation based Co-segmentation

Given N shapes from the same class, our goal is
to consistently segment each shape intoK meaningful
parts. As mentioned in Section 3, we first over-segment
each shape intoP patches and then extractH descriptors
from each patch and compute aNP×NP affinity matrix
W̃i for each descriptor.

After obtaining affinity matricesW̃1, . . . , W̃H , there
are two ways to apply AASC. First, we can directly ap-
ply AASC on them and get the results as shown in the
middle of Figure 5, which are not as good as we expect.
We conjecture that the reason is that there is much noise
in W̃i. Thus, before applying AASC, we first construct
local similarity based affinity matricesW1, . . . ,WH ac-
cording to Equation 3. The right of Figure 5 shows
the results, where the labeling results are better than the
ones in the left and middle of Figure 5. The accuracy
of the table set is close to error free, and the accuracy
of the human is 78.0%, which are better than previous
methods [9] (70.4%). Unless otherwise specified, all re-
sults in this paper are generated by this method of local
similarity based AASC.

For comparison, we simply concatenate all descrip-
tors into one and then apply spectral clustering to the
affinity matrix of this new descriptor. On the left of Fig-
ure 5, we can see the result generated by this manner,

Table 1: Statistical evaluation of the average accuracy
by our algorithm on all categories.

Category Accuracy Category Accuracy

Candelabra 97.2 Chair 87.6
Fourleg 87.7 Goblet 98.7
Guitar 97.4 Lamp 98.4
Vase 83.4 Table 98.4

Human 78.0 Cup 90.2
Iron 79.4 Tele-alien 75.3

Large vase 87.5 Large Chair 90.6

where almost all shapes are mislabeled especially the
human set. These results are close to what we expect,
because it assigns equal weight to each descriptor.

5. Results

In this section, we present our experimental results
with benchmark datasets, and compare our method with
some state-of-the-art methods.

Experimental Dataset. We test our approach on a
shape co-segmentation dataset (COSEG) [10], which
includes a consistent ground truth segmentation of 8
small sets and 3 large sets. In addition, we select 3
another categories (Human, Table and Cup) with up-
right orientation from the Princeton Shape Benchmark
(PSB) [15], and use the ground truth based on the la-
beled database [5]. For the ground truth with different
number of semantic parts, we manually merged some
labels according to the number of the desired clusters of
the categories.

Co-segmentation results. There are only two param-
eters in our approach: the number of neighbors (k) in
computing the local similarity and the number of clus-
ters. All results were generated withk = 20. Figure 5,
6, 7 show the co-segmentation results of our approach
on various categories. From these results, we can see
that our approach is able to consistently segment most
of shapes, despite the variety in the shape parts from
each of the categories.

Because the used descriptors can well characterize
the man-made objects, our approach does work well for
the Candelabra, Goblet, etc, see Figure 6. Although the
shapes in the Vase set have various topologies and low
geometric similarities among compounding parts, our
approach is able to identify the bases, the bodies and the
handles. For the articulated categories like Human and
Fourleg, our approach also works well, although there
are large variations in pose.
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(a) Table

(b) Human

Figure 5: We compare our approach with another two fusion strategies on the sets of Table and Human. (Left) The
result generated by first concatenating all descriptors into one descriptor vector and then applying spectral clustering
on the local similarity based affinity matrix. (Middle) The result generated by applying AASCon the affinity matrices,
which are constructed on the full connected graph. (Right) The result generated by applying AASC on the local
similarities based affinity matrices, which are constructed on thek-nearest neighbor graph. The parts within the red
box are mislabeled.

Figure 6 and Figure 7 visualize the weights of the de-
scriptors for each set. From the bar charts, we can see
that the weights of different descriptors are different but
the differences are not large. Almost all weights fall
in the range of 0.03 to 0.05. The reason is that these
descriptors are correlated with each other. For exam-
ple, GB and AGD both characterize the shape with the
geodesic distance.

Except the sets of Iron and Cup, SC and AGD are
ranked as top 3 descriptors for the left categories. This
is also verified by [5]. For the parts with different thick-
ness, such as the sets of Vase and Cup, SDF does work
well, but performs poorly for the Chair, since the thick-
ness of the middle part in the back is close to that of the
leg. This is also true for the Human set, where the thick-
ness of the arm is close to that of the leg. For the shape
with upright orientation, GB plays an important role, as
shown by results of the Vase and Chair sets in Figure 7.

Evaluation. To evaluate the quality of our results,
we use the accuracy measure defined in [10] using the

Figure 8: Comparison between our approach with two
state-of-the-art techniques [8] and [9] on some cate-
gories. Higher values indicate higher accuracies.

correctly labeled shape area:

Accuracy(l, t) =
∑

i

aiδ(li = ti)/
∑

i

ai, (9)

whereai is the area of facei, l is the label computed
by the co-segmentation,t is the ground-truth labeling,
αi is the area of facei, andδ(x = y) takes value 1 if
and only if x equals y. We then average the accuracies
for all the shapes in the set to obtain the accuracy of the
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(a) Candelabra (b) Chair

(c) Fourleg (d) Goblet

(e) Human (f) Vase

(g) Cup (h) Iron

Figure 6: Results of our co-segmentation on the COSEG dataset [10] and the PSB dataset [15]. Corresponding
segments are shown with the same color. Statistical evaluation for categories are shown in Table 1.

co-segmentation method. Table 1 shows the statistical
evaluation results, where our algorithm has obtained an
average accuracy of 89.3% over all categories.

The three categories having lowest average accura-
cies are Tele-alien, Human and Iron. The first two cat-
egories are non-rigid deformable shapes, whereas the
descriptors used in this paper are aimed for upright ori-
entable shapes. As for the set of Iron, the shape varia-
tion is too large to well distinguish the parts.

When the size of the set becomes larger, our method

tends to generate better results. From Table 1, we can
see that the accuracy on the large sets of Vase and Chair
are improved 3%-4% compared to the corresponding
small sets.

Comparisons to state-of-the-art. We make a com-
parison to two state-of-the-art works: the unsuper-
vised approach using concatenating descriptors [8] and
the unsupervised method using subspace clustering [9].
Figure 8 shows the comparison of results regarding the
co-segmentation accuracies among these three methods.
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(a) Sidi et al. [8]

(b) Ours

Figure 9: Co-segmentation results of Sidi et al. [8] and
ours on the Guitar dataset.

In Figure 8, we can see that the average accuracies
of [8] and ours are 87.7% and 92.9%, respectively. Our
results get higher accuracy than theirs for most of cate-
gories. Figure 9 shows some results by applying these
two approaches on the Guitar set. We can see that their
approach failed to separate the head and neck parts,
whereas ours can distinguish them well. This compar-
isons shows that our descriptor fusion is more efficient
than simple concatenating features in dealing with mul-
tiple descriptors.

Compared to the work of Hu et al.[9], our result is
slightly better than theirs, where the average accuracies
are 91.7% vs. 90.7%. For the sets of Lamp and Human,
our result is better than theirs. Figure 10 shows the re-
sult of Lamp set, where the method in [9] cannot accu-
rately identify the boundary of the top and takes some
tops as the bottom. One reason is that there is noise in
the initial affinity matrices due to large shape variations.
Compared to [9], our local similarity based AASC can
alleviate this problem. However, our approach performs
worse on the Cup set (see Figure 6(g)), arising due to the

(a) Hu et al. [9]

(b) Ours

Figure 10: Co-segmentation results of Hu et al. [9] and
ours on the Lamp dataset.

poor initial over-segmentation.
Performance. We evaluated the performance of our

approach on a 2.83GHz Intel CoreTM 2 Quad proces-
sor, 4GB of RAM. The execution time of our pipeline
mainly depends on the computation of descriptors,
particularly the computation of geodesic distance and
shape context, while the other steps are fast. Since the
number of superface for each shape is 30, AASC can be
finished in less than 1 min within 20 iterations given 20
shapes. One iteration of metric weighting takes on aver-
age less than 1 second for eigen-decomposition and 1-D
optimization. In all, it takes 8 minutes to go through
the whole pipeline for small datasets (20 shapes), and
around 30 minutes for large datasets (400 shapes).

6. Conclusions

In this paper, we presented a method to fuse multi-
ple descriptors for unsupervised shape co-segmentation.
Our main contribution is to simultaneously cluster the
descriptor space and weight each descriptor with the
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aid of affinity aggregation spectral clustering. We also
showed that local similarity based affinity aggregation
is more robust to guarantee the consistency of co-
segmentation results. We demonstrated the effective-
ness of our approach on several benchmark datasets.
The comparison between our results and some state-of-
the-art techniques shows that our approach is more ef-
fective.

Limitations and future work. There are many lim-
itations of our algorithm, which suggest many avenues
for future work. First, our approach suffers from lacking
of an automatic way to determine the clustering num-
ber which is now specified manually. In the future,
we plan to incorporate our feature weighting into self-
tuning spectral clustering [30] to resolve this issue. Sec-
ond, although our fusion method can effectively weight
different descriptors, it does not work if none of a good
descriptor can properly characterize the shape, since our
approach is purely driven by the shape descriptors. For
example, many robust descriptors, e.g. AGD and SDF,
do not work for non-manifold shapes. Thus, we plan
to explore more inherent information to analyze a set of
shapes. Third, our current affinity aggregation method
can still be improved. For example, fusing multiple de-
scriptors through diffusion process can further improve
the aggregation performance [31]. Finally, We hope that
the idea of fusing multiple descriptors has a great poten-
tial for other applications.
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(a) Large Tele-alien

(b) Large Vase

(c) Large Chair

Figure 7: Results of our co-segmentation on the large datasets of COSEG [10].
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