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Abstract

We introduce L1-medial skeleton as a curve skeleton representation
for 3D point cloud data. The L1-median is well-known as a robust
global center of an arbitrary set of points. We make the key obser-
vation that adapting L1-medians locally to a point set representing
a 3D shape gives rise to a one-dimensional structure, which can be
seen as a localized center of the shape. The primary advantage of
our approach is that it does not place strong requirements on the
quality of the input point cloud nor on the geometry or topology of
the captured shape. We develop a L1-medial skeleton construction
algorithm, which can be directly applied to an unoriented raw point
scan with significant noise, outliers, and large areas of missing data.
We demonstrate L1-medial skeletons extracted from raw scans of a
variety of shapes, including those modeling high-genus 3D objects,
plant-like structures, and curve networks.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—[Curve, surface, solid, and object
representations]
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1 Introduction

L1-median is a simple and powerful statistical tool that extends the
univariate median to the multivariate setting [Weber 1909]. It repre-
sents a unique global center of a given set of points [Daszykowski
et al. 2007], with the prominent property that it is robust to outliers
and noise. In this paper, we make the key observation that adapting
L1-medians locally, instead of globally, to a set of points represent-
ing a geometric shape, gives rise to a one-dimensional structure.
The structure can be seen as a localized center of the shape, i.e., a
medial curve skeleton. We introduce such a structure which we call
the L1-medial skeleton; it amounts to a spatially localized version
of the L1-median with conditional regularization.

Given an unorganized and unoriented set of pointsQ = {qj}j∈J ⊂
R3, we investigate the following definition for L1-medial skeletons
that leads to an optimal set of projected points X = {xi}i∈I :

argmin
X

∑
i∈I

∑
j∈J

‖xi − qj‖θ(‖xi − qj‖) +R(X), (1)
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(a) A deer model. (b) Raw scan. (c) L1-medial skeleton.

Figure 1: Given an unorganized, unoriented, and incomplete raw
scan with noise and outliers, our L1-medial skeleton algorithm is
able to extract a complete and quality curve skeleton.

where the first term is a localized L1-median of Q, the second term
R(X) regularizes the local point distribution of X , I indexes the
set of projected points X , and J indexes the set of input points Q.
The weight function θ(r) = e−r

2/(h/2)2 is a fast decaying smooth
function with support radius h defining the size of the supporting
local neighborhood for L1-medial skeleton construction.

The main advantage of our definition (1) is that it does not place
strong requirements on the quality of the set of points representing
the input shape. In particular, it can be directly applied to a raw
point cloud acquired by a range scanner and the use of L1-medians
leads to robustness against various imperfections of the data. This
is in contrast to the majority of existing methods for curve skeleton
computation, which require the input shape to be complete, wa-
tertight or represented by fine tessellations [Chung et al. 2000; Dey
and Sun 2006; Au et al. 2008; Hassouna and Farag 2009; Tagliasac-
chi et al. 2012; Willcocks and Li 2012].

Extracting a skeletal representation from a 3D shape is known to be
an effective means for shape abstraction and consequently an effec-
tive tool for shape analysis and manipulation [Cornea et al. 2007].
Analyzing clean and well-represented shapes is important in its own
right. However, there are also interests in directly processing raw
point clouds which can be noisy, outlier-ridden, and even incom-
plete. An immediate application of curve skeletons extracted from
a raw scan is surface reconstruction [Tagliasacchi et al. 2009]. In
this context, it would be especially desirable if the skeletonization
method does not rely on having accurate point normals since they
are often unavailable or difficult to obtain from a raw point scan
[Mullen et al. 2010]. Our L1-medial skeletons have been designed
to operate on raw point data directly, as shown in Figure 1.

Among the few works that have been proposed for curve skeleton
extraction from point data, the method of Tagliasacchi et al. [2009]
is the most notable and represents the state of the art. Their defini-
tion of a curve skeleton relies on a notion of generalized rotational
symmetry axis (ROSA) and as such it assumes the input shape to
be predominantly cylindrical. Correspondingly, the construction of
each skeletal point requires a search for a 2D local neighborhood,
namely a circular cross section. This highlights the key difference
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Figure 2: Overview of L1-medial skeleton extraction. Given an incomplete and noisy raw scan (b) of the object in (a), we randomly select
a subset of samples, shown in red in (c). These points are iteratively projected onto a skeletal point cloud with a gradually increasing
neighborhood size (d-g). After down-sampling, smoothing, and re-centering, the final curve skeleton is obtained (h).

to our L1-medial operator, which is inherently 3D without requir-
ing the cylindrical shape prior. Not less importantly, our projection
operator works directly on raw inputs, unlike ROSA which requires
normal information as well as a separate preprocessing for noise
and outlier removal. Experimental results show that our algorithm
outperforms ROSA even when the latter is preceded by a state-of-
the-art point cloud consolidation scheme [Huang et al. 2009]. Last
and not the least, our algorithm is significantly faster than ROSA.

The main contributions and advantages of our method include:

• Curve skeleton extraction from general 3D shapes represented
by point sets without prior assumptions on the shape geometry
(e.g., cylindrical) or topology.

• Directly operating on raw scan data, that is, without prepro-
cessing which may include denoising, outlier removal, normal
estimation, spatial discretization, data completion, or (global
or local) mesh reconstruction or parameterization.

• A simple formulation (1) that leads to fast and robust skeleton
extraction based on default parameter settings.

2 Related work

Skeletal shape representations have been intensely studied in vari-
ous fields and utilized in a variety of applications for shape mod-
eling and analysis. The best known example is the medial axis
transform (MAT) [Blum 1967], which belongs to the larger class of
medial representations [Siddiqi and Pizer 2009]. While the MAT of
a 2D shape is a 1D skeleton, for a 3D model, the MAT is generally
composed of 2D surface sheets forming a non-manifold structure.
In computer graphics, curve skeletons [Cornea et al. 2007] are more
widely adopted due to their compactness and ease of manipulation,
e.g., for character animation. In this section, we focus exclusively
on related works developed for curve skeleton extraction.

Most previous methods for curve skeleton extraction have been de-
signed to work on watertight surface meshes. Representative ap-
proaches include surface contraction via mean curvature flow [Au
et al. 2008; Chuang and Kazhdan 2011; Tagliasacchi et al. 2012],
coupled graph contraction and surface clustering [Jiang et al. 2013],
and the use of distance transforms [Dey and Sun 2006], centroidal
Voronoi tessellation [Lu et al. 2012], Reeb graph construction [Hi-
laga et al. 2001], or mesh segmentation [Katz and Tal 2003]. These
approaches all depend on mesh connectivity or surface-based mea-
sures to control the skeletonization process.

Sharf et al. [2007] generate a curve skeleton by tracing the front of
a smoothly grown blob inside a volume defined by a point cloud.

With significant missing data, it may be difficult to robustly detect
the shape’s interior and the blob may leak outside the shape. Li et
al. [2010] also develop a deformable model called arterial snakes
for curve abstraction from scanned shapes formed by tubular sec-
tions. They aim at extracting a set of functional curves that cap-
ture the structure of a shape, focusing on topology recovery. Cao
et al. [2010] extend Laplacian-based contraction [Au et al. 2008]
to point cloud skeletonization. However, the input point cloud
needs to be sufficiently clean and dense to build a point set Lapla-
cian. Recently, Livny et al. [2010] propose an algorithm to re-
construct skeletal structures from tree data. There have also been
works [Bucksch et al. 2010; Natali et al. 2011] which rely on Reeb
graph construction over point clouds to obtain a coarse characteri-
zation of the part structure of a shape.

The most related work is that of Tagliasacchi et al. [2009] on in-
complete point clouds. Their formulation relies on a cylindrical
shape prior and sufficiently accurate point normals to compen-
sate for missing data. For raw inputs, noise and outliers need to
be pre-filtered using a scheme such as locally optimal projection
(LOP) [Lipman et al. 2007]. In contrast, our algorithm computes
a medial curve skeleton by directly working on a noisy, outlier-
ridden, and possibly incomplete raw scan without requiring reliable
normal estimation or an assumption of cylindrical shape parts.

The concept ofL1-median has long been known in statistics [Weber
1909; Small 1990]. Recently, L1-median has been successfully ap-
plied to point set processing [Lipman et al. 2007; Huang et al. 2009;
Avron et al. 2010], all in the context of robust data fitting. An im-
portant novelty of our work lies in the utilization of L1-medians for
a new application, namely, curve skeleton extraction from raw point
clouds. Without building any point connectivity or estimating point
normals, we directly project point samples onto their local centers
as L1-medians with growing neighborhood and push the projected
samples via conditional regularization to obtain a uniform distribu-
tion of samples along skeleton branches.

3 Overview

The input to our algorithm is an unorganized set of points Q =
{qj}j∈J ⊂ R3, typically unoriented, unevenly distributed, and
containing noise and outliers. The output is a curve skeleton repre-
senting a one-dimensional local center of the shape underlying the
input Q. The main steps of the algorithm (Section 4) are as fol-
lows. A set of points (red in Figure 2(c)) is randomly sampled from
the given raw scan. Each point is iteratively projected and redis-
tributed to the center of the input points within its local neighbor-
hood. The size of the neighborhood is gradually increased to handle
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Figure 3: Insensitivity of the L1-median (red dot) to noise and out-
liers in the data. The bluish shade of the points reflects the relative
weight with respect to the L1-median center.

structures of different levels of details, yielding a set of clean and
well-connected skeletal points, e.g., as shown in Figures 2(d-g).

If the input point cloud is highly non-uniform, the skeletal points
obtained by the above algorithm may be non-uniform as well; see
Figure 7. In addition, for highly incomplete point clouds, the gen-
erated branches may be off-centered; see Figure 8. To alleviate
these two problems, Sections 4.3 and 4.4 present two enhance-
ments: density-based weighting and re-centering. The final, en-
hanced L1-medial skeleton is shown in Figure 2(h).

4 L1-medial skeleton and construction

Consider the problem of finding the location x of a point which has
the minimum total Euclidean distance to a set of points, i.e.,

x = argmin
∑
j∈J

‖x− qj‖.

In statistics, the solution of this optimization problem is the spa-
tial median or L1-median, considered by Small [1990]. When the
points {qj}j∈J are not collinear, the L1-median x is unique [Mila-
sevic and Ducharme 1987].

The first term in our fundamental definition (1) can be viewed as
a localized version of L1-median. The localization is associated
with the finite support radius h in the weight function θ. Different
from other L1-based approaches, e.g., [Lipman et al. 2007; Huang
et al. 2009], whose goal is to form a clean point set representing
a surface, the objective here is to compute a skeletal point cloud
goving a 1D representation of the input geometry. In other words,
we are seeking a set of local L1-median centers of the underlying
shape defined by Q. One key advantage of using L1-medians is
that, unlike the usual mean average, L1-medians are insensitive to
noise and outliers in the data, as shown in Figure 3.

In this section, we present our construction algorithm forL1-medial
skeletons. First, we define the regularization term R which pre-
vents the formation of point clusters. Section 4.2 describes in detail
the curve skeleton generation procedure. Finally, we present two
enhancements to the core algorithm, aimed at dealing with non-
uniform point density and the off-centering problem, respectively.

4.1 Conditional regularization

Applying the L1-median alone tends to yield a sparse distribution,
where local centers are likely accumulated into a set of point clus-
ters; see Figure 4(b). To avoid such clustering and maintain the
proper medial geometry representation, we need to prevent further
accumulation once points are already contracted onto their local
center positions. This is achieved using R(X) in (1), which adds a

(a) Input. (b) µ = 0. (c) µ = 0.1. (d) µ = 0.35.

Figure 4: Skeletal point clouds generated with conditional repul-
sion defined by different strengths (µ).

repulsion force whenever a skeleton branch is formed locally. Such
a penalization is referred to as conditional regularization.

We adopt classical weighted PCA to detect the formation of skele-
ton branches. At each point xi (a row vector), we compute the
eigenvalues and eigenvectors of 3× 3 weighted covariance matrix

Ci =
∑

i′∈I\{i}

θ(‖xi − xi′‖)(xi − xi′)>(xi − xi′),

where all eigenvalues λ0
i ≤ λ1

i ≤ λ2
i are real-valued and the corre-

sponding eigenvectors {v0
i ,v

1
i ,v

2
i } form an orthogonal frame, i.e.,

the principal components of the point set. Then we define the value

σi = σ(xi) =
λ2
i

λ0
i + λ1

i + λ2
i

(2)

as the directionality degree of xi within a local neighborhood. The
closer σi is to 1, the smaller λ1

i and λ0
i are compared to λ2

i ; and
hence, the more points around xi are aligned along a branch.

To conditionally apply the repulsion force, we define our regular-
ization function as

R(X) =
∑
i∈I

γi
∑

i′∈I\{i}

θ(‖xi − xi′‖)
σi‖xi − xi′‖

,

where the {γi}i∈I ’s are balancing constants among X .

When the gradient of the energy in (1) equals to zero, the following
relation is satisfied at every point location with fixed coefficients:∑
j∈J

(xi − qj)αij − γi
∑

i′∈I\{i}

xi − xi′
σi

βii′ = 0, i ∈ I,

where αij =
θ(‖xi−qj‖)
‖xi−qj‖

, j ∈ J ; βii′ =
θ(‖xi−xi′‖)
‖xi−xi′‖2

, i′ ∈ I\{i}.
After rearranging and setting

µ =
γi

∑
i′∈I\{i} βii′

σi
∑
j∈J αij

, ∀i ∈ I,

we get

(1− µσi)xi + µσi

∑
i′∈I\{i} xi′βii′∑
i′∈I\{i} βii′

=

∑
j∈J qjαij∑
j∈J αij

. (3)

Note that (3) can be viewed as a system of equations with X as
unknowns, i.e., AX = BQ. We therefore require 0 ≤ µσi < 1/2
to ensure that A is strictly diagonally dominant and therefore non-
singular. This yields the solution to the system: X = A−1BQ.

Applying a fixed point iteration, where given the current iterate
Xk = {xki }, k = 0, 1, . . . , we have the next iterate, ∀i ∈ I ,

xk+1
i =

∑
j∈J qjα

k
ij∑

j∈J α
k
ij

+ µσki

∑
i′∈I\{i}(x

k
i − xki′)βkii′∑

i′∈I\{i} β
k
ii′

, (4)



(a) Raw scan. (b) Initial samples. (c) h0.

(d) h1 = 1.5h0. (e) h2 = 2h0. (f) h3 = 2.5h0.

(g) h4 = 3h0. (h) Final skeleton.

Figure 5: Iterative point contraction and branch identification and
growth by gradually increasing the neighborhood size (h0 to h4

indicated with a transparent blue ball). We select 5% of the input
points as initial samples (b). In each intermediate step, branch
points are labeled in green, non-branch points in red, and bridge
points (points from which new branches grow) are in blue. Final
skeleton (h) is formed after down-sampling and smoothing.

where αkij =
θ(‖xki−qj‖)
‖xki−qj‖

, j ∈ J ; βkii′ =
θ(‖xki−x

k
i′‖)

‖xki−x
k
i′‖

2 , i′ ∈ I\{i};

σki = σ(xki ). As adaptive σki ∈ (0, 1] can be computed automat-
ically to adjust the local repulsion force along the points aligning
direction, we shall only select the parameter µ from [0, 1/2) to con-
trol the global level of penalty applied on accumulated points; see
Figure 4. We empirically use µ = 0.35 as the default setting for all
final results presented in this paper.

4.2 Curve skeleton via iterative contraction

Given a neighborhood size h, the aforementioned iterative projec-
tion scheme (4) produces a set of points X = {xi}i∈I , which rep-
resents theL1-medians of the local neighborhoods. In simple cases,
these points form a skeleton of the underlying shape directly; see
Figure 4(d). However, for more complex shapes, only some of these
points represent branches of the skeleton, whereas others require
further contraction; see Figures 5(c) and 6(e).

In what follows, we first describe how we identify and label points
belonging to skeleton branches (called branch points and colored
green in figures). Then we explain how to select bridge points (col-
ored in blue) from the remaining non-branch points (colored in red)
and use them to maintain the connectivity between the two groups.
Finally we show how the branches grow and merge iteratively by
gradually enlarging the neighborhood size.

We start from an initial set of sample points, which are all consid-
ered as non-branch points. The sample points are contracted based
on an initial neighborhood size h0 = 2dbb/

3
√
|J | by default, where

dbb is the diagonal length of the input Q’s bounding box and |J | is
the number of points in Q. To determine whether to label a point
as branch point after contraction, we employ the same directional-
ity degree measure σ (2) used in Section 4.1. Specifically, we first
compute σi for all non-branch points xi and smooth them within the

(a) Initial samples. (b) h = h0. (c) h = 2h0.

(d) h = 3h0. (e) h0. (f) h1 = 1.5h0.

(g) h2 = 2h0. (h) h3 = 2.5h0. (i) Final skeleton.

Figure 6: Comparing skeletal point clouds generated using fixed-
size neighborhoods (three choices of size h shown in (b-d)) and
result obtained (h) via iteration over growing neighborhood size (e-
h). Color choices and sample selection are the same as in Figure 5.

respective K-nearest neighborhood (K = 5 by default) to remove
isolated outliers, i.e., σi = Σj∈Knn(i)σj/K. If, after smoothing,
σi > 0.9, then xi is considered as a candidate for branch point
since points in xi’s neighborhood are well-aligned skeleton-wise.

To identify branch points from these candidates, we first locate a
seed point, namely x0 that has the largest σ value, and trace from
it to nearby candidates along the dominant PCA direction while
requiring

cos(∠(
−→

xixi−1,
−→

xixi+1)) ≤ −0.9, i = . . . ,−1, 0, 1, . . .

Tracing stops when there is no candidate in the local neighborhood
satisfying the above criterion. If at least five points (by default) are
found during the trace, these points are labeled as branch points.
Otherwise, they are removed from the candidates. This procedure
repeats from a new seed, one having the largest σ among the re-
maining candidates, until all candidates are processed.

As shown in Figures 5(c) and 6(e), the procedure described above
leaves some sample points labeled as non-branch points; they re-
quire further contraction under a larger neighborhood size h to form
new branches. However, relying on a fixed h, large or small, that
remains unchanged throughout the contraction process, would not
work. Figure 6 provides an example where with a large h, points
representing small subparts are “over-contracted” so as to not main-
tain the medial structure. Our solution is to gradually increase h
while excluding already identified branch points from further con-
traction. That is, hi = hi−1 + ∆h, i = 1, 2, . . . with ∆h = h0/2
by default, until all points become branch points.

Projecting the remaining non-branch points while fixing the branch
points may separate the two groups, resulting disconnected skeleton
branches. To address this problem, we select a bridge point along



(a) Without density weights. (b) With density weights.

Figure 7: Under non-uniform point distribution, skeleton points
tend to move close to high-density regions (a). Density weights
allow the points to be better distributed and centered (b).

each end of an identified skeleton branch. Denoting the endpoint
of the branch as e, then its corresponding bridge point b is a non-
branch point, satisfying i) along the direction of the branch, i.e., the

angle between
−→
eb and the branch direction is smaller than 90o; ii)

closer to e than any other non-branch points that satisfy i); and iii)
the distance ‖b− e‖ is small.

These bridge points provide proper connectivity between branch
points and non-branch points: each bridge point is linked to its cor-
responding endpoint of a branch and hence remains connected with
the existing branch. On the other hand, as a non-branch point, it
participates in further contraction and therefore is part of the new
branches to be formed. As a result, branches found under different
neighborhood sizes are connected, forming a complete skeleton.

Two additional rules are applied during contraction: i) when a lo-
cal neighborhood contains two or more bridge points, they are col-
lapsed into one branch point, which is connected to all branches to
which the original bridge points belong; ii) non-branch points are
removed when they are close to an existing branch but not along its
aligning direction or when there are no other points in their neigh-
borhood. The first rule leads to effective creation of joints, whereas
the second helps clean up isolated points.

Once all points are contracted onto the skeleton, down-sampling
and smoothing are applied to each branch independently to reduce
redundancy. Figures 5(h) and 6(i) show the final L1-medial skele-
tons generated for a 3D and 2D point cloud, respectively.

4.3 Density-based weighting

While L1-medians are robust to outliers as shown in Figure 3, if the
given point cloud is highly non-uniform, the local center tends to be
biased towards regions with higher point density; see Figure 7(a).
To alleviate this, we propose to incorporate locally adaptive density
weights into the iterative scheme (4).

Let us define the weighted local density for each point qj in the
original input Q as

dj = 1 +
∑

j′∈J\{j}

θ(‖pj − pj′‖),

with θ(‖pj − pj′‖) = e−‖pj−pj′‖
2/(hd/2)

2

, and embed it into (4).
Then the projection for point xk+1

i becomes

xk+1
i =

∑
j∈J qjα

k
ij/dj∑

j∈J α
k
ij/dj

+ µσki

∑
i′∈I\{i}(x

k
i − xki′)βkii′∑

i′∈I\{i} β
k
ii′

.

Thus, the influence of dense point regions in the set Q is relaxed by
the weighted local densities in the first term; compare the resulting

Figure 8: Skeleton re-centering (red point to green point in the
ellipses) on an incomplete raw scan via local ellipse fitting.

skeletal point clouds in Figures 7(a) and 7(b). Note that the local-
ity of point density is controlled by the supporting neighborhood
parameter hd in the function θ(‖pj − pj′‖). We set hd = h0/2
by default, where h0 is the initial smallest radius we use to apply
L1-median projection with conditional regularization.

4.4 Re-centering

By design, the generated L1-medial skeleton goes through the me-
dian location of nearby points from the input point cloud. However,
if large portions of the point cloud are missing (left in Figure 8), an
additional re-centering step can be applied to fine-tune the location
of the curve skeleton. To maintain efficiency and avoid distortion,
we run re-centering separately on each branch after down-sampling,
and then the curved branch is smoothed (right in Figure 8).

Taking one branch as example, for each point x on the branch, we
define the plane Px that passes through x and has a normal aligned
with the direction of the branch at location x. Next, points from the
input point cloud that are close to Px are projected over it. For most
natural shapes, we may expect the projected points to approximate
an ellipse. Hence, adjusting the location of x to the center of the el-
lipse cx allows the skeleton curve to better represent the input point
cloud; see Figure 8. Here the location of cx is estimated by solving
a nonlinear least squares problem [Gander et al. 1994], where the
geometric fitting error is minimized using Gauss-Newton.

5 Results and discussions

We tested our skeleton extraction algorithm on a variety of raw
scans. The 3D models chosen possess different geometric and topo-
logical characteristics: plants (Figure 5) along with other models
that exhibit heavy branching structures (Figures 1, 11 and 13), curve
networks (Figure 9), high-genus objects (Figures 2, 13, 9 and 14),
and shapes with non-cylindrical geometry (Figures 9, 10 and 11).
All the input point clouds to our algorithm are unorganized and un-
oriented raw scans without any preprocessing for noise or outlier
removal. These inputs exhibit varying degrees of data artifacts in-
cluding noise, non-uniform acquisition density, and missing data.

The default parameter sets in Table 1 are applied throughout all the
presented experiments except for the example in Figure 4 and the
coral example in Figure 13, where we demonstrate the influence of
parameter change. The average running time for our algorithm on a

Parameter µ h0 ∆h hd K

Default value 0.35 2dbb/
3
√
|J | h0/2 h0/2 5

Table 1: The default settings used for user controllable parameters.



(a) Raw scan. (b) w/o regularization. (c) w/ regularization.

Figure 9: The skeletal point clouds generated for a bamboo bas-
ket. Without conditional regularization (b), points are accumulated
into a few clusters. Conditional regularization can effectively push
points apart along the skeletal direction (c).

(a) A plane model. (b) Raw scan.

(c) ROSA skeleton. (d) L1-medial skeleton.

Figure 10: L1-medial skeleton constructed (d) correctly captures
the geometry of the non-cylindrical parts of the plane model (the
wings and the tail). Note also that in the highlighted area, the
skeleton is correctly placed outside the envelop of the input points
through re-centering. In contrast, ROSA skeleton (c) with its re-
centering step [Tagliasacchi et al. 2009] still yields unnatural re-
sults since the input violates the approximate cylindrical prior.

scan with 100K points is about 1 minute on an Intel Core i7-2700K
CPU @3.50GHz with 8GB RAM. In contrast, ROSA takes up to 5
minutes to process a point cloud of size 10K.

Results. The presented results justify various design choices in
our algorithm and demonstrate its ability to handle the various
data artifacts. In particular, Figures 1 and 2 demonstrate robust-
ness against noise, outliers, point non-uniformity, and missing data.
Figure 5 justifies the need for iterative growth of neighborhood
size. The necessity of adding conditional regularization is shown
in Figure 9. Figures 5, 9, and 10 demonstrate the handling of non-
cylindrical shapes, whereas Figure 11 highlights our strength in
dealing with complex topology. The dinosaur model in Figure 12
consists of shape parts whose sizes and shapes vary greatly. Yet,
our algorithm with the default parameter setting produces a proper
skeleton that can be immediately used for shape articulation.

Using default parameters for the coral model, on the other hand,
does not yield a satisfactory skeleton, since the default initial neigh-
borhood size h0 is too large to capture the coral’s fine structures and
small holes; see Figure 13(b). Lowering h0 and slowing down the

(a) Input scan. (b) Front view. (c) Top view.

Figure 11: L1-medial skeletons extracted from a raw lampshade
scan. A joint connecting 20 branches is correctly identified.

(a) A dinosaur model. (b) Raw scan. (c) Skeleton.

Figure 12: L1-medial skeleton (c) of a dinosaur model (a-b). The
skeleton properly captures topological relations between different
body parts, even though the parts differ greatly in size and shape.

(a) A coral model. (b) Default h0 & ∆h. (c) Smaller h0 & ∆h.

Figure 13: Curve skeletons extracted for a coral model (a) under
different parameter settings. The one (b) obtained using the default
parameters misses some fine structures and ignores three small
holes. Using a smaller initial neighborhood size (h0 = dbb/

3
√
|J |)

and a slower growth rate (∆h = h0/4) allows the algorithm to
capture the complicated topology of the model (c).

growth rate of the neighborhood size can effectively improve the
result as shown in Figure 13(c), correctly capturing all the loops
and coral twigs at the expense of a longer computation time. Note
that at this level of details, the bottom of the coral is treated as two
bumps, resulting in two branches that may look unnatural. This is a
trade-off controlled by h0 and ∆h.

Comparison to ROSA. Figure 10 compares ROSA with our al-
gorithm on the handling of non-cylindrical shapes. It is evident
that our approach produces skeletons which better capture the more
general geometry. Figure 14 makes the comparisons on a small set
of yoga poses. Since the data were captured from few views, the
amount of missing data is significant. Comparing with the ROSA
skeletons shown, which represent the best results we were able to
obtain following the authors’ guidelines, the L1-medial skeletons



(a) Original models.

(b) Raw scans.

(c) ROSA skeletons.

(d) L1-medial skeletons.

Figure 14: Comparing ROSA skeletons (c) from [Tagliasacchi et al.
2009] with our L1-medial skeletons (d) extracted from a set of raw
scans (b). Blue boxes emphasize where the errors (small or large)
occur. Note that ROSA requires correct normals on each input.

contain fewer geometrical and topological errors. We stress again
that all the ROSA results were obtained after the input scans were
preprocessed for noise and outlier removal, followed by normal es-
timation [Huang et al. 2009]. In contrast, our approach does not
need normal information nor separate data consolidation.

Relation to mean shift. Mean shift, which was originally pre-
sented in [Fukunaga and Hostetler 1975], is a simple iterative pro-
cedure that shifts each data point to the weighted average of data
points in its neighborhood. Recall the first term in (4)

xk+1
i =

∑
j∈J qjα

k
ij∑

j∈J α
k
ij

,

which can be viewed as a mean shift to repeatedly move data points
to the sample means, where αkij(x

k
i − qj) acts as a kernel function.

Thus, our formulation (4) can be considered as a regularized mean
shift that can generate skeletal points, whereas standard mean shift
would move points into a few clusters like standard L1-median.

(a) Raw scan. (b) Initial samples. (c) Skeleton.

Figure 15: L1-medial skeleton extraction from a tree scan (a). With
the input points too sparse, our algorithm misses several branches
and incorrectly runs the skeleton through the leaves in (c).

Curve skeleton properties. Recalling the list of desirable prop-
erties for curve skeletons from the survey of Cornea et al. [2007],
we would identify our approach as one which produces smooth,
thin, connected, and centered skeletons with robustness and effi-
ciency. Smoothness, thinness, and connectivity are by design. Cen-
tering is achieved via ellipsoidal fitting. Robustness and efficiency
have been demonstrated experimentally. In most cases, the skele-
tons produced are homotopic to the underlying shape. However,
claims on centeredness, robustness, or homotopy equivalence can-
not be made as data quality continues to degrade. At last, the curve
skeleton representation produced by our algorithm does not possess
the reconstruction property. It is not likely that the regularization or
contraction procedure is invertible.

Limitations. Like surface reconstruction, skeletonization from
point clouds is an ill-posed problem in general, in particular, when
there is missing data. If the amount of noise or missing data is too
large, our algorithm may miss certain fine-scale structures and pro-
duce erroneous outputs, e.g., see Figure 15. Also, in Figures 5(h)
and 11(b), we can notice that a few branches and a horizontal ring
were missing. One possible way to partially alleviate the problem
is to rely on a more sophisticated sampling scheme than the random
sampling we apply now. For complex shapes that contain close-by
surface sheets, it is difficult to distinguish points from different sur-
faces using position information only. As a result, our algorithm
may produce skeletons with incorrect topology as highlighted in
Figure 14(d). If more information is available, e.g., normals or out-
ward directions directly derived from scanners, our algorithm can
be enhanced to generate more accurate results.

6 Conclusion and future work

This paper presents a simple yet powerful approach for extracting
curve skeletons from unorganized, unoriented, and incomplete 3D
raw point clouds. It opens opportunities for analyzing various other
imperfect representations, e.g., polygon soups, which may result
from part composition or other editing operations. Applying high-
level analysis over imperfect representations may lead to better re-
construction and better means to fix these representations.

As for future work, we would like to extend our technique to an-
alyze imperfect (4D) spatio-temporal scans. It is also interesting
to explore the ability of L1-medians to capture meso-skeletons of
models, such as a cup or baseball cap [Tagliasacchi et al. 2012], for
which a centered one-dimensional solution becomes inappropriate.
We would also like to explore the possibility of using the extracted
skeletons to guide animation and/or deformation of point clouds di-
rectly without going through an explicit mesh reconstruction.
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