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Figure 1: Given a video with a pre-segmented foreground subject, our method can replace the original background with a background from
another video, even when both videos are captured using a hand-held camera with different motion. One of our main goals is to avoid the
slippage artifact, which cannot be appreciated with the still frames shown in this and other figures. Please view the companion video!

Abstract

We introduce a method for replacing the background in a video of
a moving foreground subject, when both the source video captur-
ing the subject, and the target video capturing the new background
scene, are natural videos, casually captured using a freely moving
hand-held camera. We assume that the foreground subject has al-
ready been extracted, and focus on the challenging task of gen-
erating a video with a new background, such that the new back-
ground motion appears compatible with the original one. Failure to
match the motion results in disturbing slippage or moonwalk arti-
facts, where the subject’s feet appear to slide or slip over the ground.
While matching the motion across the entire frame is impossible for
scenes with differing geometry, we aim to match the local motion
of the ground in the vicinity of the subject. This is achieved by re-
ordering and warping the available target background frames in a
manner that optimizes a suitably designed objective function.
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1 Introduction

Replacing the background in a video of a performing subject is fre-
quently used as a real-time effect in television news and weather
broadcasts, and for special effects in the motion picture industry. In

these settings, the performance is usually captured in a studio, typi-
cally with controlled camera motion and in front of a green screen.
With the increasing abundance of digital video content in personal
collections and on the world-wide-web, the goal of this work is to
provide a simple, yet effective tool for background replacement for
the challenging case of casually captured hand-held videos.

Convincing background replacement involves overcoming several
non-trivial challenges. First, the performance should be extracted
from its original background, along with an alpha matte for each
frame. Second, the camera motion used to capture the performance
must match the apparent camera motion after compositing the sub-
ject with its new background. Finally, the lighting of the subject
and the new background must be made consistent.

While there has been extensive research on foreground extraction
and matting (e.g, [Chuang et al. 2002; Agarwala et al. 2004; Bai
et al. 2009]), the issue of matching the camera motion between the
original and the new background has not received nearly as much
attention. Failing to match the camera motion may yield various ar-
tifacts that severely undermine the realism of the composited result.
Perhaps the most disturbing artifact, for performances involving lo-
comotion, is the impression that the subject is sliding or slipping
across the ground. Henceforth, we refer to this artifact as slippage.
Significantly incompatible motion of the new background, e.g., due
to strong changes in zoom, may yield unnatural results, even if the
point of contact between the subject and the ground is not visible.

In this work, we introduce a method for motion-compatible back-
ground replacement, where both the source video of the moving
subject, and the target video of the new background scene, are natu-
ral videos, captured using a freely moving hand-held camera. In the
absence of 3D models, and due to differences between the scene ge-
ometries and the camera motions, it is impossible to perfectly match
the source background motion by re-projecting the target frames. In
fact, no simple model is able to adequately describe the overall mo-
tion of either background. However, by assuming that the ground
around the foreground subject is locally planar, we are able to use a
homography to model the local motion in that portion of the frame.
Thus, the gist of our approach is to temporally reorder and spa-
tially warp the target background frames, so as to match as closely
as possible the local motion in the vicinity of the contact between
the foreground subject and the ground. We refer to this process as
dynamic space-time warping.

http://doi.acm.org/10.1145/2661229.2661281
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We begin by tracking the estimated contact point between the sub-
ject and the source background. As stated earlier, the motion of the
background near the contact point is modeled using a homography
between each pair of successive frames. Next, we precompute the
homographies between pairs of sufficiently similar (but not neces-
sarily successive) frames in the target video, and produce a similar-
ity graph that represents the geometric relationships among target
frames. We show that using dynamic programming, we can find a
path in this graph, along with a suitable warp function for each node
(frame) along the path, such that the resulting sequence of warped
background frames appears to match the local motion recovered
from the source video.

Note that we do not describe an end-to-end solution for the en-
tire background replacement process. We address neither the fore-
ground extraction task, nor the relighting of the subject, and focus
only on motion compatibility, a challenging aspect of background
replacement, which has not been addressed by previous work.

Our approach has some limitations: (i) the source video should
show the subject on a roughly planar ground region without other
dynamic objects in the vicinity of the ground contact point; (ii) dy-
namic objects in the target background are allowed, but may limit
the ability to match the camera motion; (iii) the local geometry of
the ground in the target background should be similar to that in the
source video (i.e., we cannot composite a person climbing stairs
onto a planar background). However, we do not require the overall
geometry of the scene or the camera motion to be well coordinated
with that of the source video. To our knowledge, ours is the first
method capable of handling such a scenario.

2 Related Work

Video Compositing is routinely used in movie production for com-
bining visual elements from a variety of different sources into a sin-
gle video stream. The main challenge in this setting is the extraction
of the foreground along with an alpha matte, while the alignment
of the camera motion is achieved using a motion controller, which
is expensive and not widely available. In a studio, foreground ex-
traction may be accomplished using a constant color screen [Smith
and Blinn 1996]. Although there has been much work on natu-
ral video matting and segmentation [Chuang et al. 2002; Agarwala
et al. 2004; Wang et al. 2005; Bai et al. 2009], it remains a chal-
lenging problem. In this work we use existing user-assisted tools
to extract the foreground from a natural source video, and focus
only on the alignment of camera motion between the source and
the target videos.

Video Textures: Several researchers describe methods for synthe-
sizing larger or longer videos from an input video. Such methods
have been used for synthesis of video sprites [Schödl et al. 2000],
fire [Zhang et al. 2011], fluid [Okabe et al. 2011], and panoramic
videos [Agarwala et al. 2005]. Human performances can also be
synthesized from a pre-captured human video database [Flagg et al.
2009], with user-specified character and viewpoint motions [Xu
et al. 2011]. While the latter works focus on controlling the fore-
ground subject, while keeping the background unchanged, our goal
is to keep the performance unchanged, while completely replacing
the background. The central task in video texture synthesis is to
search for smooth transitions in the foreground sequence, while in
this work the challenge is to ensure that the new background’s mo-
tion matches that of the original background.

Video Stabilization methods effectively impose a new, smoother,
camera motion on a video sequence, and are therefore somewhat
related. 2D video stabilization methods operate by estimating and
smoothing the 2D transformations between consecutive frames in

the sequence [Grundmann et al. 2011; Liu et al. 2013]. 3D meth-
ods use structure from motion to recover the 3D structure of the
scene and the camera parameters [Liu et al. 2009], which is diffi-
cult. More recent methods achieve 3D path smoothing implicitly
using 2D feature trajectories [Liu et al. 2011; Goldstein and Fattal
2012], requiring moderately long trajectories for good results.

Our method is closer in spirit to the 2D methods, since we also only
estimate 2D transformations between consecutive frames. How-
ever, in contrast to the video stabilization setting, our source and
target videos may differ significantly in their camera motions, frame
rates, and scene geometry, introducing additional challenges.

Video-Based Rendering methods typically represent a dynamic
scene as a collection of video streams with correspondences among
them, allowing to re-render the performance from novel views (e.g.,
[Stich et al. 2008; Germann et al. 2012]). In our case, the source
and the target videos are captured in different scenes, and our goal
is to replay the performance from the same (moving) point of view,
but using a different background. Thus, our task is to re-render
the target sequence approximating the camera motion of the source
sequence without the benefit (or the cost) of 3D reconstruction.

Video Matching: Sand and Teller [2004] explore spatio-temporal
alignment of two videos of the same scene, captured using spatially
similar, though not identical, motions. In contrast, in this work the
scenes and camera motions may differ significantly.

3 Overview

The input to our method consists of a source video It of a perform-
ing subject, and a replacement (target) background, captured by a
collection of frames B′i. We assume that each source frame It has
already been segmented into a foreground region Ft, capturing the
performance of interest, and the source background Bt, which we
would like to replace. The target background frames B′i may be-
long to one or more video sequences, whose lengths and camera
motions typically differ from those of the source video. Given the
above inputs, our goal is to generate a convincing composite of the
performance Ft over the target background. This entails synthe-
sizing a new background video B̂t, whose motion with respect to
the camera closely approximates the apparent motion of the source
background Bt. In other words, denoting by Mt the motion from
Bt to Bt+1, and by M̂t the motion from B̂t to B̂t+1, our goal is
to ensure that Mt and M̂t are as close as possible, for every t. We
refer to this process as motion-compatible video synthesis.

3.1 Challenges and Requirements

Motion-compatible synthesis is a highly challenging task. In our
scenario, the source and target sequences come from a hand-held
camera, with different camera motions and background scene ge-
ometries. Thus, in general, it is impossible to reproduce the source
motion Mt by using the target frames B′i as they are, or by merely
reshuffling their order. Warping the target frames may be used in
order to better match the source motion, but any such warps must
be applied sparingly in order to avoid visible artifacts. Specifically,
we seek a solution that satisfies the following properties:

Slippage-free: For foreground subjects in contact with the back-
ground, the relative motion between the subject and the back-
ground must be matched by the new background B̂t. Viola-
tion of this requirement might result in the impression that the
subject is slipping across the ground.

Minimal distortion: Transformations applied to the target frames
B′i should introduce minimal geometric distortion.



Maximal coverage: Warping the target frames to meet the above
two requirements might result in only a partial coverage of
the frame area. The missing portions can be filled using im-
age completion or by stitching with nearby frames, but if the
missing areas are large, this can result in visible artifacts.

3.2 Straighforward Approaches

Before describing our approach, let us first briefly discuss two more
straightforward alternatives for motion-compatible video synthesis.

Using panoramas: One might consider stitching the target back-
ground video frames into a large panoramic mosaic (cf. [Steedly
et al. 2005]). Each of the new frames B̂t may then be obtained
by applying the appropriate transformation Tt to the panorama and
clipping it to the frame window. Assuming that the initial trans-
formation T0 is provided by the user, Tt can be obtained by con-
catenating the motion transformations between the source frames:
Tt = MtMt−1 · · ·M1T0. A major limitation of this approach
stems from the panoramic stitching, which is known to be difficult
in many cases, e.g., large parallax, zooming, etc.

Background propagation: Instead of precomputing a panorama,
one might attempt to transform and stitch the background on de-
mand. Each frame B̂t+1 can be obtained by transforming B̂t with
Mt, and then filling any uncovered regions by stitching neighboring
target frames. However, note that a large portion of each resulting
frame consists of transformed parts of previous frames. This intro-
duces two problems: First, B̂t becomes progressively less similar to
the original source frames B′i, making feature matching and stitch-
ing more difficult; Second, frames become increasingly blurry due
to repeated resampling, which decreases the quality and further in-
creases the difficulty of matching and stitching.

The above approaches address only slippage and coverage. Distor-
tion could be reduced by making M̂t consist mainly of 2D transla-
tion and limited uniform scaling. However, restricting the motion
model in this manner might not approximate well the original back-
ground motion, thereby re-introducing slippage artifacts. Also, the
local nature of the background propagation approach may quickly
lead to a dead-end after running out of target background images. In
addition, because the resulting background images are essentially
clipped from a panorama, no parallax effects can be produced, and
any dynamics in the target background video are lost.

3.3 Our Approach

The basic idea in our approach is to obtain the new background
frames B̂t by selecting a subset of the target video frames, {B̂′t} ⊂
{B′i}, and applying a warp Wt to each frame (see Figure 2). In
order to determine the frames B̂′t and their corresponding warps
Wt, we use global optimization that simultaneously considers slip-
page, distortion, and coverage. We refer to our method as Dynamic
Space-Time Warping (DSTW), since we effectively warp the origi-
nal target background video in both space and time, using dynamic
programming.

We begin by tracking the approximate contact point between the
subject in Ft and the original background Bt. The motion of the
background Mt in the vicinity of the contact point is modeled by a
homography.

Next, we organize the target background frames B′i as a similarity
graph, where two frames are connected if a smooth transition be-
tween them can be produced. For static scenes, this only requires
that the transformation between neighboring frames is well approx-
imated by a low-distortion homography (see Section 5.2). This
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Figure 2: Dynamic Space-Time Warping. For each source fore-
ground frame Bt, a corresponding target background frame B̂′t is
chosen, along with a spatial warping function Wt. The new back-
ground frame B̂t is produced by warping B̂′t with Wt.
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Figure 3: The neighborhoods of source background frames, and
the path of selected frames (blue line). Note that the path direction
may be different from time axis, and may use multiple videos.

means that the graph neighbors of each frame are not necessarily its
temporal neighbors in the sequence; in fact, they could even belong
to different target video sequences (of the same scene), as shown in
Figure 3. Such remote connections are useful for overcoming the
significant differences that might exist between the camera motions
of the source and target sequences. For dynamic scenes, the original
temporal order of target background frames must be preserved, and
remote connections also should be disabled. This may be achieved
if the target background video is captured a bit more carefully. Be-
low we mainly focus on static scenes, and discuss the handling of
dynamic scenes in Section 5.3.

Finally, we use dynamic programming to find an optimal path in
this graph, along with a suitable warp function Wt for each node
(frame B̂′t) along the path, such that the resulting sequence appears
to match the camera motion in the source video. The objective
function optimized in this process consists of terms designed to
achieve the desired motion, while minimizing distortion and maxi-
mizing frame coverage. The next section describes these terms and
presents the dynamic programming algorithm that we use.

4 Dynamic Space-Time Warping

Our goal is to find an optimal path B̂′t in the similarity graph defined
over the collection of target background frames B′i, along with a
suitable warp Wt for each frame in the path. Formally, we seek
a sequence of configurations Φ = {Φ0,Φ1, · · · ,ΦL−1}, where
Φt = (B̂′t,Wt) is the configuration of the t-th frame, and L is
the length of the source foreground video. The sequence Φ should
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Figure 4: Relationship of transformations between successive
video frames.

minimize the objective function

E(Φ) = Em(Φ) + Ed(Φ) + Ec(Φ), s.t. W0 = Ẇ0 (1)

where Em, Ed, Ec are motion, distortion and coverage terms, re-
spectively. Em measures the motion consistency between B̂ and
B, which is crucial for avoiding slippage, as well as the smooth-
ness of the resulting motion. Ed penalizes undesirable distortion of
the target background, and Ec measures the coverage of the result-
ing video frames by the new background. Ẇ0 is a user specified
initial warp that determines the initial relative position and scale of
the subject in the first replacement background frame B̂′0. The first
frame itself can be automatically determined by the optimization
(as demonstrated in Figure 9), but it can also be specified by the
user, if necessary, as described in Section 4.4.

The goal of the optimization is to ensure that the apparent motion
of the new background is compatible with that in the source video.
In general scenes, the motion of the background is too complex to
capture with a simple motion model. Furthermore, since the ge-
ometries of the source and target background scenes can differ sig-
nificantly, even if we had an exact motion model, it would not be
reasonable to simply force the source motion onto the target back-
ground everywhere in the frame.

Therefore, our idea is to focus on matching the motion mostly in
the vicinity of the contact point between the moving foreground el-
ements and the background. Assuming that the ground is locally
planar, we use a homography Mt to describe the local motion be-
tween source background frames Bt−1 and Bt. The eight param-
eters of Mt are estimated using tracked feature points in the vicin-
ity of the contact between Ft and Bt, as described in Section 5.1.
We also use a homography M ′t to describe local motion between
successive replacement candidates B̂′t−1 and B̂′t, estimated as de-
scribed in Section 5.2. Note that B̂′t−1 and B̂′t must be neighbors
in the similarity graph.

The main constraint that provides the basis for our motion term
and for the entire dynamic programming process, is the following
relationship between a pair of successive warp functions Wt−1 and
Wt (also see Figure 4):

W̃t = MtWt−1M
′−1
t . (2)

Thus, given the configuration (B̂′t−1,Wt−1) and a candidate for the
next frame B̂′t, the corresponding warp Wt is given by eq. (2).

Removing distortion: The warp W̃t that is directly given by (2) is
also a homography, and therefore may introduce perspective distor-
tion. Since each warp depends on the previous one, these distortions
might accumulate quickly. Figure 5 shows such an example. In or-
der to reduce such distortions, we restrict our warps Wt to consist
of only 2D translation, uniform scaling, and rotation.

Obviously, these more restricted warps can only approximate the
homographies W̃t. In order to reduce slippage artifacts due to this

source frame 0 result frame 100 result frame 120

Figure 5: Distortion caused by using homographies for warping.
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Figure 6: The representative points around the contact point.

approximation, we first compute W̃t as a full homography using
eq. (2), and then approximate it with a more restricted warping
function by minimizing the difference between Wt and W̃t over
a few points pi positioned around the contact point in the source
frame Bt (see Figure 6):

Wt = arg min
∑
i

ωi ‖ pi −WtW̃
−1
t pi ‖2 (3)

As shown in Figure 6, for each contact point, we select 9 points
around it. p0 is positioned at the contact point itself, in order to
capture the translation of the contact point, which should be well
fit in order to avoid slippage. p1, p2, p3, p4 are close to the con-
tact point, and capture the local effect of W̃t. p5, p6, p7, p8 are
intended to capture the more global effect of W̃t, and positioned
farther from the contact point. The relative position of pi with re-
spect to the contact point is the same for all framesBt. The weights
ωi balance the fitting of local and global effects, and are defined as
ωi = 1

1+‖pi−p0‖γ
, where γ controls the attenuation away from the

contact point. We use γ = 2, while larger γ would decrease the
weight of global effect fitting. Note that this particular layout of pi
is fairly arbitrary, and was simply chosen to ensure that local and
global motions are assigned different weights.

The above spatially-variant fitting method effectively removes dis-
tortion, without re-introducing slippage, while at the same time ac-
counting for overall image motion. Thus, it produces much better
results than naive approaches that attempt to represent global mo-
tion using a restricted model (please see the supplementary video
for a comparison with a 2D similarity transform).

Hybrid warp models: Wt can be chosen as any combination of 2D
translation, uniform scaling and rotation. The choice might have a
significant effect on the motion of the new background. Allowing
translation, scaling, and rotation can better fit the original motion,
but might lead to easily noticeable accumulation of rotation error.
Using only translation or a combination of translation and scaling
may produce more visually pleasing results in most cases, but the
resulting overall background motion may differ more. To address
this issue, we use a mixture of warp models. For each frame, the
proper warping model that minimizes eq. (1) can be automatically
determined. This is described in more detail in Section 4.4.
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Figure 7: Warping a selected target background image.

4.1 The Motion Term

The motion term measures how well Wt satisfies the constraint
given by eq. (2) by computing the residual error of eq. (3):

err(Wt) =
〈
ωi ‖ pi −WtW̃

−1
t pi ‖2

〉
, (4)

where 〈.〉 is the expectation operator. Besides minimizing the
above error, we also require the resulting background motion to be
smooth, so the entire motion term is defined as follows:

Em(Φ) = ωm
∑
t

err(Wt) + ωs
∑
t>0

〈
‖Wt−1qi −Wtqi ‖2

〉
,

(5)
where qi are the four image corners of the source background im-
ages, which are assumed to have a fixed size (see Figure 7).

The added smoothness constraint is important for a more stable
background motion. Note that the motion term considers mainly
the local motion around the contact point, and there is no special
constraint for the motion of the more distant image regions, because
the geometry of source and target scenes might be quite different.
Thus, the smoothness constraint serves as a regularization term for
these regions.

4.2 The Distortion Term

Undesirable distortion of the warped background usually arises due
to perspective effects and large rotations, while the mismatch of
translation and scale is less noticeable. Therefore, our distortion
term is designed mainly to penalize perspective and rotation:

Ed(Φ) = ωd
∑
t

|x̃0− x̃1|+ |x̃2− x̃3|+ |ỹ0− ỹ3|+ |ỹ1− ỹ2| (6)

Here x̃i, ỹi, i = 0, 1, 2, 3 are the x̃, ỹ coordinates of the four
warped background image corners q̃i (see Figure 7), so the
above equation penalizes any transformation that results in a non-
rectangular or rotated image region. Although there exist more so-
phisticated methods to estimate the anisotropic scaling of a homog-
raphy warping [Hartley and Zisserman 2004], the above equation is
simple and was found to work well. Note that the coordinate dif-
ferences above are not normalized, so the strength of the distortion
term is dependent on the region’s size. In theory, this could result
in a tendency to reduce the scale of the warped image; in practice,
however, excessive down-scaling is prevented by our use of the cov-
erage term. On the other hand, this term does penalize increase in
scale, which is desirable in order to maintain a reasonable relative
scale between the foreground and the background.

4.3 The Coverage Term

Our final requirement is that the resulting new background frames
cover as much of the area of the original frames as possible, mini-
mizing any remaining blank regions. This issue has also been dis-
cussed in previous video stabilization works. Gleicher and Liu
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Figure 8: (a) Solving for the optimal sequence by dynamic pro-
gramming. (b) Incorporating a hybrid motion model into the opti-
mization (ts or tsr in this figure).

[2008] avoid blank regions by applying a proper scaling to the
warped frame. Liu et al. [2013] consider the area of blank regions
in their optimization process, and remove remaining blank regions
by cropping.

To penalize large blank regions we define the coverage term as the
total area of blank regions:

Ec(Φ) = ωc
∑
t

area(It 	Wt ∗ B̂′t)
area(It)

(7)

where 	 denotes the set difference, and ∗ is the image warping op-
erator. Note that the coverage term could encourage increase in the
scale of the target frame. However, in practice, we find that our
method does not result in unnecessary upscaling. This is because,
first, the coverage term becomes zero when there is no blank region,
making upscaling unnecessary; second, Wt is restricted by the mo-
tion term (2), and thus is not arbitrary; and third, the distortion term
penalizes large scales, as explained earlier.

Local stitching: in order to facilitate reduction of blank regions,
we can also expand each target background frameB′i by stitching it
with its neighboring frames in the similarity graph. Because image
stitching is difficult in some cases, it is performed only when two
images can be well aligned by a homography. Other more sophisti-
cated stitching methods, such as local warping or seam finding, may
align images better, but may also cause temporal inconsistencies in
the resulting video.

Note that the target background frames may no longer be quadri-
lateral after stitching. We represent the region of each expanded
frame as a general polygon. Since it is not known in advance which
frames will be used in the final result, we compute only the polygo-
nal outline of each stitched frame during pre-processing. The actual
stitching is performed only when necessary for the final output.

4.4 Dynamic Programming Optimization

We solve for the optimal sequence of configurations

Φ = {B̂′0, (B̂′1,W1), · · · , (B̂′L−1,WL−1)}

by minimizing eq. (1), under the constraints imposed by eq. (2) and
eq. (3). This may be done efficiently using dynamic programming
(DP), as summarized in the pseudocode in Table 1.

As illustrated in Figure 8(a), for each source video frame It, there
areN candidates for B̂′t. For each possible choice of B̂′t, the associ-
ated warp function Wt is determined from a previous configuration
(B̂′t−1,Wt−1) using equations (2) and (3). Rather than consider-
ing all N possible previous frames for every choice of B̂′t, we only



Define A[L][N ], with A[ t ][ j ] = {cost , parent ,warp}

Set A[ 0 ][ j ] = {0, −1, W0} for 0 ≤ j ≤ N − 1
for every source frame Bt, t = 1 : L− 1

for every target frame B′j , j = 0 : N − 1

Set B̂′t = B′j and A[ t ][ j ] = {max ,−1, identity};
for each B′k ∈ neighbors(B′j)

Set B̂′t−1 = B′k and Wt−1 = A[t− 1][k].warp;
Compute Wt using equations (2) and (3);
Compute E(Φt) as the increment of E(Φ) by the
appending of B̂′t;
Set cost = A[t− 1][k].cost + E(Φt);
If cost < A[t][j].cost , then set A[t][j] = {cost , k,Wt};

end for
end for

end for

Set k = arg mink{A[L− 1][k].cost | 0 ≤ k ≤ N − 1}
for t = L− 1 : 0

Output B̂′t = B′k, Wt = A[t][k].warp
Set k = A[t][k].parent ;

end for

Table 1: Pseudo-code for our DP-based optimization.

consider neighboring frames in the similarity graph. Thus, for each
candidate B′j for B̂′t we can efficiently compute and store the low-
est cost sequence of t + 1 configurations ending with B′j . Having
reached t = L − 1 we can trace back and retrieve the lowest cost
sequence of length L.

In order to initialize this process we only need the initial warp func-
tion Ẇ0. This warp function is determined from the user-provided
initial scale and position of the target background with respect to the
first foreground frame F0, so Ẇ0 is represented as three parameters
[scale, dx, dy]. In our implementation we use the default setting of
[1.2, 0, 0]. This setting was used in most of our results (see Section
6 for details). In order to deal with different size of source and tar-
get frames, before applying Ẇ0 we first scale the target frame to be
the same size as the source and align the frame centers. Note that
changing W0 affects both Wt and B̂′t; the effect of W0 on the first
frame B̂′0 is demonstrated in Figure 9. Thus, the ability to specify
Ẇ0 is an important means of user control, because the proper initial
scale and position cannot be inferred from the video data without
geometry and semantics.

Incorporating hybrid warping: Our DP-based approach is easily
extended to support hybrid warping, allowing warp functions Wt

of different types: we support translation+scale (ts), and transla-
tion+scale+rotation (tsr) warps. Figure 8(b) illustrates this exten-
sion: the candidate set of frames is simply multiplied by the number
of supported models, and thus choosing a specific candidate deter-
mines both frame and its warp model. Generally, increasing ωd and
ωs will result in more frequent usage of ts, while increasing ωm

results in more usage of tsr. Figure 10 shows the effect of using a
hybrid warp model. Note that although excessive rotation can also
be removed by increasing ωd, in practice, the proper value of ωd is
difficult to determine without using the hybrid model.

Adding user constraints: The algorithm in Table 1 automatically
determines the initial selected target frame B̂′0, which provides
the most flexibility for the optimization. However, sometimes the
user might want to explicitly specify B̂′0 in order to impose a spe-
cific starting frame, or more generally, indicate a range of frames
from which B̂′0 should be chosen. Such a constraint may also be

source frame W0 = [1.2, 0, 0] W0 = [1.2, 80,−80]

B̂′
0 = 195 B̂′

0 = 169

Figure 9: Effect of W0 (= [scale, dx, dy]) on the selected target
correspondence B̂′0.

tsr, ωd = 0.1 tsr, ωd = 10 ts+ tsr, ωd = 0.1

Figure 10: Effect of using the hybrid warp model. The shown image
is frame 260 of BASKETBALL. Using only tsr warping results in
excessive rotation, even when ωd is set to be very large.

used to avoid improper initial position of the subject (e.g., Figure
18 right). To incorporate such constraints, we set the initial cost
(A[0][j].cost) to a large number for any frame B′j outside the de-
sired range. A similar range constraint may be also specified at any
other time t, but we have not used such constraints in our results.

5 Pre-processing and Implementation

Our system processes input videos by first performing a fully au-
tomatic pre-processing, followed by the optimization described in
Section 4. The pre-processing is time-consuming, but it needs only
to be executed once. Once the pre-processing is complete, the opti-
mization takes only a few seconds (see Table 3).

5.1 Pre-processing of Source Video

We pre-process the source sequence It in order to locate the contact
points between the moving subjects and the ground, and to compute
the motion Mt between successive frames. As stated earlier, Mt

is a homography that captures the local motion of the background
around the contact point(s). If there are multiple subjects, we as-
sume that they are roughly on the same plane, so that their local
motions can be represented by the same homography.

To estimate Mt, we first detect a set of KLT features in Bt−1

(foreground regions are excluded), and then filter these features
to find out those that are most likely to be on the ground. This
is achieved by first selecting K0 features nearest to the contact
points, where K0 is set to be small, to ensure that the selected
features are on the ground. Other features are sorted according to
their appearance difference (SSD over a 7 × 7 window centered
at each feature) to the K0 seed features, and the most similar K1

features are then selected. The K0 + K1 features form our final
selected feature set. We then run a KLT tracker to obtain their cor-
responding locations in the next frame, and compute a homography
transformation Mt using RANSAC. In our implementation we set
K0 = 10,K1 = 90, and for the RANSAC procedure we use the
OpenCV function findHomography with default parameters.

Given the alpha matte of each foreground subject, the contact points
are easy to estimate. Regardless of whether there is a single contact
point, or an entire contact area, we simply compute and use the



average coordinates of the bottom 10 rows of foreground pixels.
This is applicable also for cases where the actual contact point is
not visible in the frame, such as BOY in Figure 11. The resulting
positions are then smoothed temporally using a time window size of
15. Note that these positions only serve as the centers of the areas
around which we estimate the local motion. Thus, small deviations
between these positions and the actual contact points do not cause
any problems in practice.

5.2 Pre-processing of Target Background Frames

The collection of target background frames is pre-processed to de-
termine the neighbors of each frame, as well as to compute the
transformations between neighboring frames. Note that for static
scenes, the neighbor of a frameB′i is not necessarily temporally ad-
jacent to it, but may be any other frame B′j , provided that a smooth
transition between the two frames may be generated.

To determine the neighbors of each frame, firstly the temporal
neighbors in the range t − 10 and t + 10 are selected as neighbor
candidates; and then remote neighbor candidates are searched by
SIFT feature matching. For each pair of frames B′i and B′j , SIFT
detection and matching is first performed, and then the homogra-
phy between them is estimated with RANSAC. We then compute
the residual error rij and the distortion dij of the homography. dij
is computed using eq. (6), without scaling by ωd, and normalized
by the length of the image diagonal. B′i and B′j are defined as can-
didates to become neighbors in a similarity graph if both rij and
dij are less than specified thresholds (rij < 5, dij < 0.3). Hierar-
chical search is used for acceleration by first considering every 16th
frame, and then checking every frame only in the ranges that were
identified during the first pass.

The next step is to further refine the candidates and compute local
transformations. For each candidate pair of neighbors B′i and B′j ,
we first align them with the homography computed in the previ-
ous step, and then invoke a KLT tracker to find a set of matching
features. KLT usually produces more matched features than SIFT,
especially in regions without strong features. Using the matched
KLT features, we re-compute the homography between B′i and B′j ,
as well as the residual error and the distortion score. A candidate is
eliminated if it does not pass the threshold test (rij < 3, dij < 0.2)
— in this step we use smaller thresholds in order to meet the re-
quirement of smooth transition. The final similarity graph usually
contains 15-25 neighbors for each frame.

Unlike in the case of the foreground video, here we do not yet have
the position of the contact point for computing local motion. One
solution is to store the features computed and matched in the pre-
processing stage, and then estimate the motionM ′t in the area where
it is needed during the optimization process. However, this makes
the dynamic programming considerably slower. In our implemen-
tation, we pre-compute a grid of local homography transformations
with the method of Liu et al. [2013], and then retrieve the appro-
priate local homography from the grid cell containing the contact
points. In our experiments we found that a coarse 5 × 5 grid suf-
fices for all of our examples.

5.3 Handling Dynamic Scenes

Our technique, as described so far, assumes that the target back-
ground is static. The optimization then has more flexibility in
matching the source camera motion by considering not only suc-
cessive target video frames as neighbors in the graph, but also al-
lowing backward and remote jumps. However, if coherently mov-
ing objects are present in the target background, backward or re-
mote jumps might introduce visible discontinuities into their mo-

tion. Also, selecting the same target frames several times in a row
will cause dynamic background object to become still for a few
frames.

Thus, for dynamic target backgrounds several temporal constraints
are enforced. First, any backward or remote neighbors are removed
from the graph. Specifically, for each target frame B′t we restrict
its neighbor candidates to the frames from B′t to B′t+3. Second, we
slightly modify the algorithm in Table 1 to prevent it from select-
ing the same frame more than twice in a row. Note that the above
constraints are only necessary for large coherent motions. For ex-
ample, for periodic motions like sea waves, backward neighbors
can also be used; and for small stochastic motions like tree leaves,
both backward and remote neighbors can be allowed.

5.4 Additional Implementation Details

Pre-segmentation: In this paper we do not address the foreground
extraction task. This task is outside the scope of this work, and may
be carried out using a number of existing interactive tools, such as
Rotobrush in Adobe After Effects [Bai et al. 2009]. The required
interaction time to extract the foreground ranges from half an hour
to several hours, depending on the user’s skill and on the nature and
length of the source video.

Shadow compositing: Shadows are important for a realistic com-
posite. Since the direction of illumination in the target background
is generally different from the source, there is no point in extracting
the shadow along with the source foreground. Instead, in our imple-
mentation we use a simple method to generate a fake shadow. The
shape of the shadow is approximated by applying a homography
transformation to the foreground mask, which simulates the pro-
jection of the foreground mask onto the target ground plane. This
trick is commonly used by Photoshop artists. The transformation is
easy to specify interactively by dragging the corners of a rectangle
around the foreground mask.

Illumination and auto-gain smoothing: Our method may use re-
mote jumps between target background frames, which may intro-
duce sudden illumination changes in the resulting video. One pos-
sible solution is to apply the method of Farbman et al. [2011] in
order to stabilize tonal fluctuations in the target background video
before using it. Our current implementation employs a simpler so-
lution, which smoothes the mean intensity (L channel of Lab color
space) of the frames in the resulting new background sequence us-
ing a temporal window of size 51. LetGt denote the mean intensity
of a frame, andG′t denote the intensity after smoothing, then the in-
tensity of each background pixel is shifted by G′t − Gt. We found
this simple solution to suppress illumination and auto-gain discon-
tinuities in a satisfactory manner, as demonstrated in the companion
video.

6 Results

In this section we present, discuss, and evaluate the results produced
by our method on several test examples. Representative frames
from six examples are shown in Figure 11. Each row shows the
frames before and after background replacement. All of the videos
include typical free camera motions, including panning, rotation,
zooming, and combinations thereof. Most of the captured scenes
have planar ground, but differ from each other in the surrounding
geometry. The cumulative motion difference between the origi-
nal and new backgrounds is visualized using superimposed trian-
gle pairs, as explained in Section 6.1. Obviously, the static nature
of the figures in this paper makes it impossible to visually demon-
strate the effectiveness of our results, and we refer the reader to the
companion video, which includes all of them.



Figure 11: Results, from top to bottom: BOY, GIRL, WALK, SKATER, GOAT, COUPLE. Left: source frames (frame 10, 100, and 200). Right:
The corresponding frames with new background. The green and blue triangles are the transforming triangles of the source and the result,
respectively. The source videos of BOY, GIRL, SKATER, GOAT were obtained from pond5.

Table 2: Resulting matching costs (×103) for our cross test. Each
source video (row) is tested with all 6 target videos (columns) in
Figure 11 to obtain the optimal matching cost for each. All tests are
performed with the default setting of initial warpW0 and weighting
parameters, without using dynamic scene constraints.

BOY GIRL WALK SKATER GOAT COUPLE

BOY∗ 3.76 24.5 105 109 112 4.00
GIRL∗ 36.3 22.6 8586 7187 15472 21.9

WALK∗ 223 6759 75.5 41.5 155.4 213
SKATER∗ 78.2 207 117 8.31 1130 181

GOAT∗ 60.9 410 7226 1286 18.9 1405
COUPLE∗ 14.1 19.2 21.2 20.5 21.9 9.97

Several source videos were obtained from pond51, while others
were captured by the authors using a hand-held camera. Videos of
the target backgrounds were mainly captured by a non-author vol-
unteer using a hand-held camera, after viewing the source videos
several times; others were either downloaded from pond5 (BOY
and GIRL), or captured by a volunteer based only on a verbal
description of the required motion (WALK and PENGUIN). For
common camera motions like panning and zooming, motion-based
video retrieval can be developed to facilitate the process of finding
a suitable target video from a video stock website. Our method can
support such retrieval by ranking according to the optimal cost com-
puted by our method. To demonstrate this we ran a cross test using
the examples shown in Figure 11. Each of our 6 source videos was
tested against each of the 6 target videos, with the resulting match-

1A stock footage website: http://www.pond5.com

ing costs are listed in Table 2. For GIRL and WALK, our selected
target videos are not the ones that received the best score; however,
they received the second best score, and are very similar in motion
to the best matching ones (please see the video).

In both the BOY and GIRL examples, the source camera moves
backward, while the target camera moves forward. Since our
method reorders the target frames as needed to best fit the source
motion, this poses no problem. In the BOY example, the source
background has the ground plane extending to the horizon, while
in the target scene the background has mostly vertical geometry
(trees) surrounding the narrow road. Since our method extracts and
matches only local motion, the result is not affected by these differ-
ences in geometry, and maintains realism.

In the SKATER example, the source camera is tracking the skating
girl, while zooming in and out. This complex camera motion is
difficult to match using only a single target video with a simpler
motion. In such cases, the ability to capture multiple videos of
the target background becomes helpful. Three target video clips
were captured, and provided as input to our method, which selected
target frames from all three clips, and the selected target frames are
dramatically re-ordered so as to best match the source motion (as
seen in Figure 12).

Although our method assumes that the geometry around the contact
points is locally planar, it can still handle some mild violations of
this assumption. This is demonstrated in the GOAT example, where
the ground is not truly planar.

In the COUPLE example, both the source and the target background
scenes contain significant dynamic activities. Because of the fea-
ture filtering introduced in Section 5.1 and the use of RANSAC,



−10

−5

0

5

10
target 1
target 2
target 3

Figure 12: Visualization of selected target videos and frame jumps
for frames of SKATER. The line height denotes target frame jumps
between adjacent source frames (negative for backward).

source frame 90 local motion global motion

Figure 13: Comparison of motion inconsistency using local and
global motion matching.

our method is not sensitive to dynamic objects in the source back-
ground. Dynamics in the target background are preserved using the
method described in Section 5.3, so long as the source and target
camera motions do not differ too much in their speed. Please see
the video for additional examples of dynamic backgrounds.

We found that in some cases applying video stabilization as a post-
processing step (using Adobe AfterEffects Warp Stabilizer) im-
proved the quality of the result. One such example is WALK-
SEASIDE in the companion video. However, we found that sta-
bilization can also sometimes produce overly cropped results. The
results shown in the paper and video are all without stabilization.

6.1 Evaluation

Motion inconsistencies between source and result videos can be vi-
sualized and quantified by the differences between point trajecto-
ries, as they are transformed with the motion. Starting with an equi-
lateral triangle centered around the contact point in the first frame,
at each subsequent frame we transform the triangle by applying the
local motion model, estimated near the contact point. By doing this
for both the source video and the result, we can assess how well
the local source motion is matched. Ideal matching would keep the
source and result triangles aligned, while accumulation of matching
error causes the two triangles to drift apart and/or deform or rotate
differently from each other.

Figure 11 shows a pair of triangles transformed in this manner over
each result frame. The green triangle corresponds to the source
motion, while the blue to the result motion, with the contact point
shown as a red dot. Note that in some examples the triangles even-
tually become small due to the retreating motion of the camera in
these examples. It may be observed that some differences between
the source and result triangles arise with time, but overall the trian-
gles remain similar to each other.

Figure 13 uses the same visualization to compare the results pro-
duced by our method using local vs. global motion models. For a
global motion model we use an affine transformation, estimated us-
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Figure 14: Motion inconsistency (shape difference of transforming
triangles) when using our spatially-variant fitting (blue) vs. naive
fitting (red, see text).
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Figure 15: Effect of the coverage term weight.

ing the OpenCV function estimateGlobalMotionRobust.
It may be seen that with global motion after 90 frames there is a
much bigger discrepancy between the motion of the result and that
of the source.

The approximation of the homography in eq. (3) is designed to bal-
ance between eliminating slippage and avoiding distortion. Replac-
ing our spatially-variant fitting scheme with a more naive scheme,
which does not consider the contact point, is not able to achieve
our goals. Figure 14 shows this by plotting the shape difference
(sum of the squared distances between corresponding vertices) of
the transforming triangles resulting from our fitting scheme vs. a
naive similarity fitting that uses the four image corners.

Our coverage term is evaluated in Figure 15, which shows the rel-
ative amount of blank regions using different weights of coverage
term ωc for serval examples. By increasing ωc, the selected source
background frames B̂′t will be adjusted to reduce the blank region;
on the other hand it also may result in a larger scale factor to the
source background frames, which may result in incorrect relative
size of foreground and background. The use of local background
stitching is helpful in this case. Note that the stitched background
region is computed during pre-processing, and is accounted for in
the optimization process, which is more effective than only attempt-
ing stitching during post-processing.

Our hybrid warp model is effective for adaptive handling of differ-
ent camera motions. By using both ts and tsr, small rotations are
filtered, while significant rotations are still preserved under the con-
straint of the motion term. Figure 16 plots the distortion cost with
and without the use of a hybrid warp model, showing that the hybrid
model produces much less distortion with the same parameters.

The default values for the weights of the four energy terms are
ωm = 10, ωs = 0.1, ωd = 0.1, ωc = 1000. ωm and ωc use
these default values in all our examples. ωd is increased in the case
of excessive rotation (we set it to 0.5 for the DANCE and HIP-POP
examples). ωs is increased when the new background seems not
stable enough (increased to 0.5 for BOY, DANCE, and WALK).
Changing the weights only requires recomputing the dynamic pro-
gramming optimization, which is relatively fast (see below).
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Figure 16: Comparison of distortion cost resulting from using tsr
only vs. the hybrid warp model for the DANCE example, with
ωm = 10, ωs = 0.1, ωd = 0.1, ωc = 1000.

Table 3: Processing time for selected examples.

Fg Frames Bg Frames Pre-Pro. (s) DP (s)

GOAT 187 383 293 4
BOY 494 2022 2154 43

PENGUIN 250 653 562 18
GIRL 599 795 756 31

6.2 Performance

Table 3 reports the computation times for several examples. Most
of the computation time is spent in pre-processing, which is slow
because of searching for similar neighbors among the target frames,
and computing the transformation between each pair of neighbors.
Fortunately, pre-processing is not sensitive to parameters, and needs
to be performed only once for each example. We did not perform
special optimizations to the pre-processing code.

After pre-processing, the dynamic programming optimization stage
is rather fast with our optimized C++ implementation. The most
costly operation in optimization is to compute the fitting given by
eq. (3), which may be written as a least squares problem Ax = B.
Note that there are only 4 parameters for tsr and 3 parameters for
ts, and for better efficiency we use a direct method to solve the least
square problem, x = (ATA)−1ATB, where ATA is a 3 × 3 or a
4× 4 matrix, whose inverse can be computed analytically.

Further speedup can be achieved by using the GPU. The algorithm
in Table 1 is highly parallel because for each time t, the processing
of each candidate B′j is independent.

6.3 Limitations

Our method is fully 2D-based, and operates by searching for a set
of optimal correspondences and warping functions, so its ability to
produce a good result is greatly dependent on the inputs, and arti-
facts will appear whenever the required background motion cannot
be reproduced via this mechanism. A few examples are described
below.

Figure 17 shows a case where the background is scaled up too
much. This typically happens when the source camera zooms in,
but not the target camera. Our method then attempts to compensate
for the lack of suitable target frames by introducing more scaling.
On the other hand, when a zoom-out is present in the source, but
not in the target, it may result in introduction of blank regions, as
shown in Figure 18(left). Generally, blank regions can appear if
the target scene is not covered well enough to “contain” the source
camera movement. Such a case is shown in Figure 18(middle).

Significant differences in view direction and perspective can also
introduce artifacts. To test the tolerance of our method to the dif-

Figure 17: Excessive zoom in of the background (left), the green
rectangle is the clipping region in the original background.

Figure 18: Blank regions due to camera zoom out (left) and un-
captured regions in the target scene (middle). The rightmost figure
shows the case of unnatural subject placement (feet in the air).

ference in view direction, we use the WALK example for a stress
test. The original camera simply pans from right to left, with the
view direction almost perpendicular to the moving direction. We
captured several target videos where the camera translates almost
in the same way as the source camera, but with different view di-
rections (the horizontal angular difference ranges as 0◦, 15◦, 30◦,
45◦). The results are shown in Figure 19. For this example we
find that our method can tolerate an angular difference up to 15 de-
grees, while larger differences introduce undesirable rotation and
blank regions. Note that although video-based novel view synthe-
sis has been extensively studied [Germann et al. 2012], this remains
a difficult problem in general scenes.

Since our method does not consider geometry and semantic mean-
ing, sometimes it may place the subject in unnatural positions, as
demonstrated in Figure 18(right). Generally, if the ground area is
large enough, the user may avoid this case by adjusting W0. In
addition, if the geometry of the ground supporting the subject is
significantly different between source and target, unnatural results
would also be produced.

The above limitations may be aggravated in dynamic scenes, as
has been pointed out in Section 5.3. Although we show some ex-
amples of dynamic scenes, as the camera motion becomes more
complex, and the differences between the source and target cam-
era motions increase, our solution will reveal its limitations sooner
with dynamic scenes than with static ones. Dynamic scenes usu-
ally prove more challenging in many video editing tasks, such as
video panoramas, video retargeting, stabilization, etc. Our method
is no exception in this regard, and future work is needed on motion
compatible dynamic background replacement.

7 Conclusion

This paper proposes an effective method for background replace-
ment in hand-held video, making it possible to produce challenging
video composites without using expensive professional equipment.
To our knowledge, we present the first effective solution for this
purpose.

Our method is elegantly formulated as the problem of Dynamic
Space-Time Warping, which produces slippage-free results by
searching for the optimal set of target correspondences and warping
functions for the entire source sequence. Slippage is eliminated by
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Figure 19: Limitation in handling difference of view direction. The
shown image is frame 150 of WALK.

matching the local motion around contact points, and distortion is
reduced by our spatially-varying fitting of a restricted hybrid warp
model. No 3D reconstruction or view interpolation is performed in
the process, making our method more robust in general cases. The
globally optimal solution can be found efficiently using dynamic
programming.

Future work is needed to alleviate existing limitations in handling
differences in geometry and camera motion, as well as improved
handling of dynamic target scenes. Our current method does not
make any changes to the foreground; however, in some situations
it could be helpful to alter the foreground in order to better fit the
target camera motion and scene geometry. In addition, in this paper
we focus on motion consistency, while for a more comprehensive
compositing solution, other related issues, such as more sophisti-
cated shadow generation, as well as illumination and appearance
harmonization [Sunkavalli et al. 2010] should also be addressed.
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