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ABSTRACT

The aspect ratio of a plot can strongly influence the perception of
trends in the data. Arc length based aspect ratio selection (AL)
has demonstrated many empirical advantages over previous meth-
ods. However, it is still not clear why and when this method work-
s. In this paper, we attempt to unravel its mystery by exploring
its mathematical foundation. First, we explain the rationale why
this method is parameterization invariant and follow the same ra-
tionale to extend previous methods which are not parameterization
invariant. As such, we propose maximizing weighted local curva-
ture (MLC), a parameterization invariant form of local orientation
resolution (LOR) and reveal the theoretical connection between av-
erage slope (AS) and resultant vector (RV). Furthermore, we es-
tablish a mathematical connection between AL and banking to 45
degrees and derive the upper and lower bounds of its average ab-
solute slopes. Finally, we conduct a quantitative comparison that
revises the understanding of aspect ratio selection methods in three
aspects: (1) showing that AL, AWO and RV always perform very
similarly while MS is not; (2) demonstrating the advantages in the
robustness of RV over AL; (3) providing a counterexample where
all previous methods produce poor results while MLC works well.

Index Terms: 1.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

1 INTRODUCTION

The aspect ratio of a plot (height/width) can heavily influence the
visual perception of trends in given data. Taking line charts as an
example, changes in aspect ratio induce changes in the orientations
of line segments, which strongly affects the ability of the viewer
in judging rates of change [12]. Hence, choosing an appropriate
aspect ratio is essential to reveal important patterns in the data.
William Cleveland [4] pioneered the principle of banking to 45°,
which laid the perceptual foundation for aspect ratio selection. It
assumes that centering the orientations of the plots line segments
around 45 degrees can minimize the error in visual judgement of
slope ratios. Based on this principle, Cleveland et al. [1, 2, 3] pro-
posed two methods: median slope (MS) and weighted average ori-
entation (AWO), where AWO generally yields reasonable aspect
ratios. Following the formulation of MS, Heer and Agrawala [6]
suggested to set the average slope (AS) to be one. To further im-
prove the visual perception, they proposed to maximize the angle
between line segments, including two methods: global orientation
resolution (GOR) and local orientation resolution (LOR). All these
methods choose the aspect ratio based on adjusting the orientations
or slopes of line segments.

*e-mail: fubo.han.1106@gmail.com
fe-mail:wang.yh@sdu.edu.cn (corresponding author)
*e-mail:zhangjian @sccas.cn

$e-mail:oliver.deussen @uni-konstanz.de
fe-mail:baoquan @sdu.edu.cn

Jian Zhang*

Oliver Deussen?®
University of Konstanz, SIAT

Baoquan Chenl
Shandong University

Table 1: Comparison between various aspect ratio selection method-
s, where AO and AWO, AS and RV, LOR and MLC are three paired
parameterization variant and invariant forms, “?” represents that we
differ in our observation to Talbot et al. [16].

Parameterization Invariant ~ Symmetry Preservation Robust
AO X X X
AWO v’ x(?) X
AS X X X
RV v’ v’ v’
LOR X X X
MLC v’ x x
GOR X X X
MS X X X
AL v’ v’ v (D

Motivated from the geometric observation, Guha and Cleve-
land [13] suggested the resultant vector (RV) that uses the ratio
of the total variation of line segments in the y and x directions as
the aspect ratio. Likewise, Talbot et al. [15] proposed an alternative
method, arc length based aspect ratio selection (AL), which deter-
mines the aspect ratio by minimizing the arc length while keeping
the area of the plot constant. As shown in Table 1, this method has
demonstrated many empirical advantages over previous methods,
such as parameterization invariance, symmetry preservation and ro-
bustness. Among them, the property of parameterization invariance
is quite important, since it indicates the invariance of the select-
ed aspect ratio under changes to the parameterization of the curve.
However, many aspects of this method are still unclear. For exam-
ple, it is not clear why this method is parameterization invariant or
if there is a connection between this method and the principle of
banking to 45°.

In this paper, we attempt to unravel the mystery of AL by delv-
ing into its mathematical foundation. We first unveil its property
of parameterization invariance with a line integral representation.
By extending LOR and AS to be parameterization invariant with
such representation, we present a new aspect ratio algorithm, max-
imizing weighted local curvature (MLC), and reveal a theoretical
connection between an extension of AS and RV. We establish the
connection between AL and the principle of banking to 45° and
derive the upper and lower bounds of its produced averaged ab-
solute slopes. Finally, we conduct a comprehensive quantitative
comparison between the five methods AL, AWO, RV, MS, MLC,
with similar experimental setting of Talbot et al. [15]. Our results
contribute to the understanding of aspect ratio selection methods in
three aspects: first, we show that AWO always performs similarly
to AL, while MS is not. Secondly, we find that RV is very similar
to AL but faster and more robust in handling zero-length segments.
Lastly, we provide a counterexample where all previously proposed
aspect ratio methods produce poor results while MLC works well.

2 RELATED WORK

Cleveland et al. [4] studied aspect ratio selection systematically for
the first time. They conducted human-subject experiments and ob-
served that the visual judgement of slope ratios between adjacent



line segments is most accurate when the orientation resolution be-
tween segments is maximized. They also found that the orientation
resolution is maximized when the average orientation between them
is 45°. Based on these two observations, Cleveland et al. [1, 2, 3]
and the following Heer and Agrawala [6] as well as Talbot et al. [15]
proposed a few methods for aspect ratio selection with different
properties, see Table 1.

For comparing these methods, we represent the input curve by
a sequence of adjacent line segments {(Axy,Ay),- -, (Axy,Ayn)},
where Ax; and Ay; are the lengths of the i-th line segment in x and
y directions.

Median absolute slope (MS) [4] chooses the aspect ratio such
that the median absolute slope of the line segments is one. Like-
wise, Heer and Agrawala [6] suggest to set the aspect ratio as the
reciprocal of the average absolute slope (AS). Since our perceptual
processes are more sensitive to orientation than slope, Cleveland et
al. [1, 2, 3] suggest choosing the aspect ratio such that the average
absolute orientation (AO) approximates 45°. However, this method
generates different results for the same curve with different param-
eterizations. To avoid this problem, they later propose the weighted
average absolute orientation (AWO), that weights the orientation
of each line segment with the line segment length:

Yil6i(o)|li(a)
Yili(o)

where 6; and /; are the orientation and length of the i-th line seg-
ment, respectively. Cleveland et al. [1, 2, 3] concluded that AWO
can generate a more satisfactory aspect ratio than other methods.

Rather than banking the line orientation to 45°, Heer and A-
grawala [6] propose to directly maximize the orientation resolution
between line segments, which is defined as the smallest angle be-
tween two line segments:

=45° 1)

%,j = min(|6;(e) — 6;(a)],180 —[6;() — B;()]). ()

A method that maximizes ¥ ; between all paired line segments is
called global orientation resolution (GOR),

maxZnyj, 3)
i

which produces in most practical cases similar results to AO but
is quite expensive. In contrast, local orientation resolution (LOR)
only maximizes ¥, ; between successive line segments

n—1
max ¥ 7,1, )
i=1

which is more efficient. However, both methods have two draw-
backs. First, they cannot handle perfectly horizontal and vertical
segments so that such segments must be culled first. Second, they
are not invariant to parameterization changes where different sam-
plings of the input curves will lead to different aspect ratios. In this
paper, we extend LOR to be parameterization invariant and show
its relationship with local curvature.

Guha and Cleveland [13] proposed the resultant vector (RV)
method, which banks the line to 45° with a simple tractable alge-
braic form:

4 - Lildl
L |Ayil

Geometrically, this method first reflects each line segment to a vec-
tor in the first quadrant and then selects the aspect ratio to set the
slope of the resultant vector to be one. In this paper, we provide
an alternative interpretation of this method by showing that it can
also be derived by generalizing AS to a continuous representation.
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Figure 1: Comparison of the aspect ratio methods on the curve
y = 1/x, where the line segments in the above row are equally s-
paced on x axis while the ones in the bottom row are non-equally
spaced. AL, AWO and RV are not only parameterization invariant but
also symmetry preservation. MLC generates similar but different as-
pect ratios for two parameterizations due to a local optimal solution,
although it is essentially parameterization invariant.

Moreover, we found it performs similarly to AL but is faster and
more robust.

Rather than following the 45° principle, the arc length based
method (AL) [15] chooses the aspect ratio by minimizing the ar-
¢ length of the plotted curve while keeping the plotted area as a
constant:

n

. Ax;
min leﬁ,ﬁmyi\l. (6)
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AL has demonstrated many empirical advantages over previous
methods, such as parameterization invariance, symmetry preserva-
tion, and robustness. Talbot et al. [15] found that among all existing
aspect ratio selection methods, only AL can preserve symmetry for
a curve that is symmetric around y = x. They generalize the aspect
ratio methods for 2D contour plots and show that AL performs sim-
ilarly to MS by banking circles to circles, whereas AWO produces
ellipses. Unfortunately, the mathematical and perceptual principles
behind this method are still unknown. We explore its mathematical
foundation, and conduct an experiment to compare AL with another
methods.

Talbot et al. [16] expand the experimental design of Cleveland
et al. [4] and show that banking to 45° is not necessarily the best
choice. Inspired by this result, Fink et al. [5] recently proposed
to select the aspect ratio for 2D scatter plots based on Delaunay
triangulation. They argue that a proper aspect ratio should result in
a Delaunay triangulation with aesthetic geometric properties. Our
work can serve as a complement to them, since we attempt to find
the mathematical foundations of AL.

3 LINE INTEGRAL: PARAMETERIZATION INDEPENDENCE

In this section, we introduce a line integral representation in order to
explain why these methods are parametrization invariant and extend
LOR and AS using this representation to achieve invariance.

3.1 Line Integral Representation

Given a scalar function f : D C R" — R, the line integral [17] along
acurve C C D is defined as:

[rds= [ reapieoar, ™
C a

where C is parameterized by the function r(¢) a <t < b whose
derivative is I/ (¢). As long as the function f is unchanged, the value
of this integral is the same for a specific function f, no matter how
the curve C is parameterized by the function r. In other words, the
integral of the scalar function over a curve C is independent of the
parametrization r of C. If we are able to formulate the aspect ratio
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Figure 2: The average absolute slopes generated by applying various aspect ratio selection methods to 1D uniformly sampled curves (a) and
2D non-uniformly sampled contours (b). AL, AWO and RV are similar for 1D and 2D data, while AS is similar with AL for 1D curves but performs

differently for 2D contours.

selection problem with a line integral representation, the selected
aspect ratio will be invariant to parameterization changes.

Since the arc length is inherently a variable of the line integral,
Equation 6 can be represented as follows:

mm Z \[||Ax,,aAy,-||

=%/Cds.

Here, the function f has a constant value (one for simplicity) in
the numerator. This integral representation provides an alternative,
intuitive interpretation of AL: finding the largest squared root of the
aspect ratio that produces the shortest arc length. This indicates that
the area-preserved constraint of AL is not necessary and thus we do
not have to simultaneously scale the x and y axes.

Similarly, AWO can be written as the following minimization:

(€
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where the integrands in the numerator and denominator are
|6(a(s))| and one, respectively. Here, the line orientation is rep-
resented as a function of the arc length. With that, we can show that
AL and AWO both can be represented as line integrals, which are
independent of parameterization as demonstrated in Figure 1(a,b).

3.2 Maximizing Weighted Local Curvature

The curvature of a curve C can be estimated by the change of slope
angles of the tangent line at a given point [11]. Since the angle
change is often described as the smallest acute angle between two
successive line segments along the arc length, the curvature k at p;
can be defined as:

Tiit+1
G = [ 2L

where r; ;1 is the orientation resolution between the i-th and i+
1-th line segments, ds is the distance between these point p; and

pj. Hence, the curvature-based line integral can be expressed as

follows:
do |6; — 6;11]
—\ds= | ————ds= 6; — 6 1]. 10
/c|ds‘s/c 7 sgl, il (10)

We call this method maximizing weighted local curvature (MLC).
Equations 4 and 10 show that they both sum up 7; ;11 but MLC us-
es the L1 norm while LOR uses the L2 norm. Moreover, the L1
norm allows us to represent the maximal orientation resolution as a
curvature-based line integral that is parameterization invariant. In
practice, we found that MLC is not able to find the same aspect
ratio for the same data under different parameterizations (see Fig-
ure 1(e)), since Equation 10 easily traps in local optima.

3.3 The relationship between AS and RV

AS banks the average absolute slope to 1 using the following Equa-
tion:

n
= — 11
T Xilm (v

where m; is the slope of the i-th line segment. Regarding the slope
m as a function of x on the closed interval [x1,x;], we aim at gener-
alizing AS to determine an optimal aspect ratio for continuous input
data.

Assuming the data points are equally spaced along x direction
with a step Ax, Equation 11 becomes:

_ nAx XX
C Yilm(x)Ax X Im(x)|Ax

where Ax = (xp —x1)/n. As n goes to infinity, we yield
%
X2 — X1 X2 — X1 Jy dx
= lim =5 =5 . (12)
n=ee B m(x)|Ax [ [m(x)ldx [ |M( )|dx



According to the Pythagoras’ theorem, we have (ds)? = (dx)* +
(dy)? and can derive that dx = cos(6(s))ds, which enables us to
rewrite Equation 12 as

_ Je7 |cos(6(s))|ds

= & Tsin(8(s)lds (13)
_ YilAxi]
CXilAvl (14)

Comparing with Equation 5, we see that Equation 14 has the same
formulation as the RV method [13], but is derived from differ-
ent background. The resultant vector is geometrically motivated
whereas Equation 13 is obtained by extending AS using line in-
tegral representation. This extension explains why RV is param-
eterization invariant. Since AS is derived from the 45° principle,
RV also banks the slope to one and thus it preserves the symmetry
like AL. Figure 1(c) demonstrates these advantages using a curve

y=1/x.
4 CONNECTION BETWEEN AL AND BANKING TO 45°

Although AL produces results similar to AWO for time series like
curves, Talbot et al. [15] have not given any perceptual reasons for
using AL. In this section we show that AL has a tendency to satisfy
the wanted property of banking to 45 degree by establishing the
mathematical connection between them.

4.1 Connection to 45° Principle

Considering a single line segment, Equation 6 becomes:

min /(Axi/Va + (vaw)?

>V2Axy;, 15)

where the equality holds when a = Ax;/Ay; and the resulting
line orientation is 45°. This indicates that AL banks the line
segment to 45° by enforcing that the triangle corresponding to
each line segment is an isosceles right triangle (see Figure 3).
Generalizing Equation 15 to multiple
line segments, different values for Ax;
and Ay; typically result in a different op-
timal a, so we cannot individually op- any
timize each line segment. To optimize
over all line segments, AL attempts to A
choose a in a way that summing Equa- Axha
tion 15 over n line segments reaches a
minimum. This method has a similar
spirit to AWO, which chooses a in a way
that the weighted mean is 45°.

For equally spaced data points, Ax; has a constant value. In this
case, Equation 6 can be written as:

Figure 3: An isosce-
les right triangle.
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where |m;| is the absolute slope of the i-th line segment. Since large
|m;| would create a large arc length, this optimization banks the line
segments with larger absolute slopes to 45° in a more aggressive
way.

(16)

4.2 The Bounds of AL's Average Absolute Slope

As discussed above, AL and AWO both attempt to select the as-
pect ratio such that most of the line segments are banked to 45°.
However, it is not obvious whether the aspect ratio produced by

Equation 16 really converges to 1. Now we show that AL has a
tendency to satisfy banking to 45° by computing the bounds of the
average absolute slopes generated by AL.

Assuming uniformly sampled data points, the derivative of E-
quation 16 with respect to a to zero yields:

— i - —, a7

which can be rewritten as

n

\m,-| 1)
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=t V(ami)*+

Since a|m;| is always non-negative, alm;|+ 1 and +/(a|m;|)2 +1
must be larger than 1. Putting them together as @;, we can derive
their bounds:

(18)

1§wi:M: 1+22a‘+1|§ 1+2a‘mi|:ﬁ_
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19)

We see that @; reaches the minimum of 1 when a|m;| is zero. On

the other side, @; reaches a maximum of v/2 when a|m;| is one.
Substituting @; into Equation 18, we get

™=

(almi| — 1) w; =0, (20)

i=1

where a is undefined if all |m;| are zeroes. If not all |m;| are zeroes,
a is defined as

Yo
T olmi] @D

Multiplying both sides of Equation 21 by ¥; |m;|/n we get

aY;|mi| Y0¥ |m
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(22)

where the left side is the average absolute slope.

Since ®; is a value between 1 and \ﬁ, the minimal value of E-
quation 22 can be obtained by setting all @; in the numerator and
denominator to 1 and v/2, respectively. Likewise, the maximal val-
ue can be obtained by setting all w; in the numerator and denom-
inator to v/2 and 1, respectively. Thus, the interval of the average
absolute slope is (v/2/2,v/2), which corresponds to (35.3°,56.7°).
Since the value of ®; cannot be different in the numerator and de-
nominator, the actual range is smaller.

Although the derivation of these bounds is based on uniformly
sampled data points, it is also applicable to non-uniformly sampled
data, because AL is independent of the parameterization. Figure 2
shows the average absolute slopes generated by applying various
methods to uniformly sampled 1D curves (Figure 2(a)) and non-
uniformly sampled 2D contours (Figure 2(b)). Since the average
absolute slopes generated by MS and MLC exceed the range, we
did not shown them. The average absolute slopes generated by al-
1 methods are within the bounds we derived, the range generated
with 2D contours is somewhat larger. From Figure 2(b), we find
that the aspect ratios selected by AL, AWO and RV generate al-
most the same average absolute slopes while AS produces different
results for non-uniformly sampled 2D contours because AS is not
parametrization invariant.



5 QUANTITATIVE EVALUATION
In this section, we mainly answer the following questions:

* Does AWO behave differently from AL for contour plots?

* Does MS always perform similarly to AL for contour plots?

Is there any method that has similar performance with AL but
is faster and more robust?

* Is there any counterexample where all previously methods
produce poor results?

To answer these questions, we implemented AL, AWO, AS, RV,
MS and MLC in C++. The optimizations involved in AL, AWO
and MLC are solved by the method-of-moving-asymptotes (MMA),
see [14] which is provided by the NLopt library [8] and converges
to a global optimum. Like Talbot et al. [15], we parameterize the
optimization search of AL with log(a), which converges faster than
directly searching for a.

We performed a comprehensive quantitative comparison be-
tween AL and the other five methods. Besides the data sets used by
Heer and Agrawala [6] and Talbot et al. [15], we downloaded a few
stock value data sets and 2D data sets from the UCI dataset [10].
In total we tested 27 1D curves and 26 2D contours, where the 2D
contour lines are generated with a grid-based kernel density estima-
tor [9] used by Talbot et al. [15]. All codes and tested data sets are
included in the supplemental material.

5.1 Overall Comparison

Figure 4(a) shows the negative logarithm of the relative aspect ratios
chosen by these methods. A selection of 1D curves and 2D contours
is shown in Figures 5 and 6. To quantitatively compare different
methods, we compute the averaged relative errors between AL and
other methods by using

N x. AL
error = log (% Yy XZTL/}LZ), (23)

i

where X refers to different methods, X; is the aspect ratio selected
by method X for the i-th curve, and N is the number of tested data
sets.

Figure 4(b) displays a scatterplot showing relative errors com-
puted from 1D curves and 2D contours. We see that AL and AWO
always perform very similar for 1D curves or 2D contours, while
MS is not quite similar with AL for some contours.

This observation is quite different from Talbot et al. [15], since
they found that AL behaves differently from AWO for 2D contours
but essentially is the same as MS. One of their arguments is that
AL and MS both bank a circle to a circle while AWO produces
an ellipse. In the following, we deeply explore this inconsistent
observation.

5.2 AL vs. AWO

In order to verify whether AWO banks a circle to an ellipse, we
generate a few ellipses with varying ratios of major to minor axis in
the range of 0.1-2 and then explore how this ratio influences the se-
lected aspect ratios. Figure 7 demonstrates that AWO and RV both
generate almost the same aspect ratios as AL and the selected as-
pect ratios are roughly the same as the input ratios. This implies that
AWO, RV and AL all bank ellipses to circles, let alone banking cir-
cles to circles. As discussed in Section 4, AWO and AL both bank
line segments to 45°. As for curves with symmetric shapes, sym-
metry preserved banking is the most parsimonious action. Thus, we
think these two methods both allow to preserve important symmet-
ric shapes. For asymmetric shapes (Figure 5 and Figure 6), these
two methods select almost the same aspect ratios.
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Figure 4: Comparison of aspect ratios generated by different meth-
ods. (a) The negative log relative aspect ratios for 1D curves and
2D contours; (b) The log of averaged relative errors between AL and
different methods, where the x and y axes show the relative errors
computed from 1D curves and 2D contours shown in (a), respective-
ly. AWO, RV and AL are very similar, while MLC performs poorly for
some data sets.

5.3 ALvs. MS

To learn whether MS behaves similarly to AL for 2D contour, we
first investigate why they are similar for some contours (see Fig-
ure 4). After looking at the sorted slopes of each contour, we find
almost all of them have the similar distribution as shown in Fig-
ure 9. We think the main reason is that the tested contours generated
by KDE are smooth and symmetric.

To further investigate this observa-
tion, we first synthesized a circular con-
tour which consists of 10 circles and
then discretized these contours with d-
ifferent number of edges: 10, 20 and
30. As demonstrated in Figure 8, MS
only performs similarly to AL when the
number of edges is 20, while it produces
larger aspect ratios in the other two cas-

Figure 9: The slope
distribution of KDE
generated contours.
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Figure 5: Selected 1D curves from Figure 4 show that AWO and RV
produce almost the same aspect ratios with AL. MS selects smaller
aspect ratios for most of data, while it produces overly taller aspect
ratios in some cases (/n(x) and 9-13). In contrast, MLC produces s-
lightly larger aspect ratios for most of data, whereas it selects smaller
ones for the gamma(2,16) and 9-13.

es. This indicates that MS is not always similar to AL, even though
Figure 8(b) and (c) have a similar distribution of the sorted slopes.

5.4 ALvs.RV

Since RV is the generalization of AS, it is inherent parameterization
invariant and symmetry preservation. Because of these characteris-
tics, the produced aspect ratios are quite close to the ones generated
by AL, see Figure 2. As discussed by Talbot et al. [15], RV is faster
than AL. Here we show RV is also more robust than AL.

Given a monotonically increasing curve between (0,0) and (1,1),
e.g. half of a parabola, AL will not always pick an aspect ratio of 1.
In contrast, RV will always pick such an aspect ratio for this curves
(this can be derived directly from Equation 14). Furthermore, AL
does not work in some cases, because the derivative of Equation 6
with respect to a is

and requires the denominator not to be zero. In other words, AL
cannot handle data with redundant items, whose Ax and Ay are ze-
ro, while RV is robust to any kinds of inputs, unless the line is a
horizontal line.

5.5 ALvs. MLC
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Figure 6: Selected 2D contours from Figure 4 generated by different
aspect ratio selection methods. As in the case of 1D curves, AWO,
RV and AL are almost the same. MS is similar to AL, but it selects
slightly taller aspect ratio for ecoli. MLC produces smaller aspect
ratios in some cases (iris and census) but selects larger ones for the
other data.
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Figure 7: Comparison of AL, AWO and RV with ellipses generated
by varying ratios of major to minor axis. (a) shows the relationship
between the ratios of major to minor axis and the selected aspect
ratios; (b)three ellipses with different ratios. The aspect ratios of all
methods are almost the same, ellipses are banked to circles.

The 45° principle attempts to choose an aspect ratio so that the
orientations of all line segments are centered at 45°. In some cas-
es, however, the selected aspect ratios might result in unpleasing
images. Figure 10 shows an example, where AL, AWO, and RV
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Figure 8: Comparison of the aspect ratios generated by MS, AWO,
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behaves the same as AL when the number of edge is 20, while its
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and 30. In contrast, AL, AWO and RV always are very similar.
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Figure 10: Banking a curve (a) where most of slope values (see (f))

are very small. AL (b), AWO (c), and RV (d) produce overly tall aspect
ratios, while MLC (e) preserves the original shape.

produce overly taller aspect ratios. Instead, the aspect ratio gener-
ated by MLC preserves the original shape (see Figure 10(d)). To
understand the reason for this, we investigated the difference be-
tween this curve and other tested curves and found that the slope
values are quite small (see Figure 10(e)). To bank line segments to
45 degree, the aspect ratio selected by AL, AWO and RV has to be
large.

However, it does not mean that the results shown in Fig-
ure 10(b,c,d) are useless. Compared to Figure 10(e), dominant fea-
tures such as the one large peak or two consecutive small peaks and
one valley, are more salient in Figure 10(b,c,d). This can help users
to quickly see large scale trends but for investigating details they
need to look at Figure 10(e). Thus, a combining these two methods
can provide a proper two-scale exploration method.

6 DiscussioN AND FUTURE WORK

In this paper, we investigated the mathematical foundations of AL.
By introducing a line integral representation, we unveiled its param-
eterization invariance and extend previous methods to also achieve
this invariance. Through establishing the mathematical connection
between AL and the principle of banking to 45°, we proved the
bounds of its generated average absolute slopes. Our evaluation
demonstrates that AL, AWO and RV always perform very similarly.
Due to the robustness and low time complexity of RV we believe
that this method should become the default aspect ratio selection
method.

However, the mathematical foundation of AL has not been fully
understood. First, we have not strictly proven that AL really banks
line segments to 45°. Second, the inequalities among the aspect ra-
tios selected by AL, AWO and RV have not been explained yet. For
most data sets they occur in the order AWO>RV>AL, while the
order is AL>RV>AWO for a few algebraic curves such as log(x).
Last but not the least, the relationship between AL and orientation
resolution has not been explored. Whereas Talbot et al. [15] showed

that AL can be derived from orientation resolution, the aspect ratios
generated by AL and MLC are quite different.

The quantitative comparison demonstrates that AL, AWO and
RV perform similarly, yet the perceptual reasons behind them are
different. AWO is derived from the goal of banking to 45°, while
RV is related to curvature-based visual perception. Nonetheless,
there is no perceptual foundation for AL, although Talbot et al. [15]
suggested some hypotheses. Investigating the visual cues to under-
stand the perceptual reason of AL is a part of our ongoing work.
Well-designed perceptual human evaluation will likely be neces-
sary to learn whether the perceptual reasons behind three methods
are equivalent.

Substantial future work remains to be done for fully understand-
ing the mathematical and perceptual foundations of AL. Under-
standing the equivalence between banking to 45° and maximizing
orientation resolution for multiple line segments may provide in-
sights about the mathematical foundations. Extending AL and RV
to select proper aspect ratios for line graphs that involve multiple
time series [7] and 2D scatterplots [5] may provide more insights
into their perceptual foundations.
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