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Fig. 1. Flow maps: Migration from Colorado, migration from Norway and Latvia, whisky exports from Scotland.

Abstract—Flow maps are thematic maps that visualize the movement of objects, such as people or goods, between geographic
regions. One or more sources are connected to several targets by lines whose thickness corresponds to the amount of flow between
a source and a target. Good flow maps reduce visual clutter by merging (bundling) lines smoothly and by avoiding self-intersections.
Most flow maps are still drawn by hand and only few automated methods exist. Some of the known algorithms do not support edge-
bundling and those that do, cannot guarantee crossing-free flows. We present a new algorithmic method that uses edge-bundling and
computes crossing-free flows of high visual quality. Our method is based on so-called spiral trees, a novel type of Steiner tree which
uses logarithmic spirals. Spiral trees naturally induce a clustering on the targets and smoothly bundle lines. Our flows can also avoid
obstacles, such as map features, region outlines, or even the targets. We demonstrate our approach with extensive experiments.

Index Terms—Flow maps, Automated Cartography, Spiral Trees.

1 INTRODUCTION

Flow maps are thematic maps that visualize the movement of objects,
such as people or goods, between geographic regions [6, 20]. So called
distributive flow maps are used to depict quantitative data, for exam-
ple, the amount of wine exported by France or the magnitude of migra-
tion between countries. One or more sources are connected to several
targets by lines whose thickness corresponds to the amount of flow
between a source and a target.

A (distributive) flow map typically consists of one or more flow
trees which are drawn atop a base map. A flow tree is a single-source
flow, that is, it connects a single source (the root) to several targets
(the leaves). The widths of the flow lines of a flow tree are scaled
proportionally (linearly) to the values they represent. When a flow
line (trunk) separates into several smaller lines (branches) the width
of the branches should add up to the width of the trunk [6]. Flow
trees sometimes follow the actual routes of the movement they depict.
When this is not possible or not desirable they still give an overall
impression of the distribution pattern and show trends.

The first flow map was created by Henry Drury Harness in 1837.
Shortly after, Charles Joseph Minard began to create flow maps de-
picting mostly economic topics. His sophisticated designs were in-
strumental in popularizing flow maps. Despite their long history and
popularity most flow maps today are still drawn by hand and few au-
tomated methods exist. We discuss these in Section 2.

Quality criteria. Good flow maps share some common properties.
They reduce visual clutter by bundling lines as smoothly and fre-
quently as possible. They also strive to avoid crossings between lines.
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Specifically, every flow tree is plane, that is, crossing free. A good flow
tree avoids its own nodes, that is, all branches have a minimum length
so that their widths can be interpreted. In addition, the main branches
of a flow tree grow as straight and smooth as possible, to make it easy
to follow them. When a flow map consists of several flow trees then
the crossings between different trees should be minimized [6]. Thin
branches should be drawn atop thick ones while avoiding a “weaving”
effect. Furthermore, flow maps often try to avoid covering important
map features with flow trees to aid recognizability.

Flow maps that depict trade often route edges along actual shipping
routes. In that case a moderate distortion of the underlying geography
is admissible. In contrast, flow maps that depict abstract data or data
which is not linked to specific routes, such as migration or internet
traffic, do not distort the geography of the underlying map [20].

Results and organization. We present an automated approach to gen-
erate high-quality flow maps. Specifically, we describe an algorithm
that bundles edges and produces crossing free flow trees that have a
natural and smooth appearance. The flow trees generated by our algo-
rithm are able to avoid their own nodes, as well as user specified ob-
stacles. We do not distort the underlying geographic base map, since
such a distortion may be confusing [20]. Our algorithm can merge in-
ternal nodes that are too close and so create vertices of degree higher
than three. This alleviates clutter in congested areas. Our flow trees
use a unique topology on a given set of input points and therefore lend
themselves to animations of changing data sets over time.

Our method is based on so-called spiral trees [3], a novel type of
Steiner tree [12] which use logarithmic spirals. A (geometric) Steiner
tree for a set P of points in the plane is a graph of minimum length
that connects all points in P either directly or via additional so-called
Steiner points. It can be shown that such a graph is always a crossing-
free tree. Steiner trees naturally cluster the input points, but they have
angles of 120◦ at every internal node and hence are quite far removed
from the smooth appearance of hand-drawn flow maps. The edges of
spiral trees, on the other hand, obey a certain restriction on the angle
they form with the root. As a consequence, spiral trees do not only in-
duce a natural clustering on the leaves but also smoothly bundle lines.



Fig. 2. Maps illustrating migration from California 1995–2000. Top: flow maps, Tobler [1, 22] (arrows of varying width), Phan et al. [16] (edge-
bundeling with crossings), and our output. Bottom: subgraphs of the bundled complete migration graph, Cui et al. [5] and Holten & van Wijk [11].

We describe an algorithm that thickens and smoothes a given spiral
tree while avoiding obstacles. Our algorithm minimizes a set of cost
functions that capture the quality criteria for flow trees.

The remainder of the paper is organized as follows. Section 2 dis-
cusses related work and visually compares our flow maps to those pro-
duced by other automated methods. Section 3 gives a brief introduc-
tion to spiral trees. Section 4 presents our algorithm to compute flow
trees. Since our flow trees are based on spiral trees and hence use log-
arithmic spirals for their edges, we define a novel type of spline, the
spiral spline, to draw them effectively. Spiral splines are in essence cu-
bic Hermite splines where we use logarithmic spirals to compute the
tangents. Section 5 shows and discusses results of our algorithm, also
in comparison with previous work. Section 6 discusses various exten-
sions to our automatic method: flow maps that support user specified
clusters on the leaves of the tree, flow maps that contain more than
one flow tree, and flow maps that route edges via waypoints or along
shipping routes. Section 7 gives some technical details about our im-
plementation. In Section 8 we close with a discussion of our work.

2 RELATED WORK

Since their introduction in the mid-1800s, flow maps have been a
widely used type of thematic map [17]. Textbooks on thematic car-
tography provide design rules for flow maps [6, 20]. The first known
systems for the automated creation of flow maps were developed in the
1980s [1, 8, 22]. These systems do not merge flow lines and hence the
resulting maps suffer from visual clutter (see Fig. 2, top-left). In 2005
Phan et al. [16] presented an algorithm, based on hierarchical cluster-
ing of the leaves, which creates single-source flow maps with bundled
edges (see Fig. 2, top-middle). This algorithm uses an iterative ad-hoc
method to route edges and hence is often unable to avoid crossings. A
second effect of this method is that flows are often routed along coun-
terintuitive routes. The quality of the maps can be improved by moving
the leaves, which, however, is considered to be confusing for users ac-
cording to cartography textbooks [20]. In contrast our method merges
flow lines and avoids unnecessary crossings (see Fig. 2, top-right).

Flow maps are effective if the number of origin-destination pairs is
linear in the number of origins and destinations. This is the scenario on
which we focus in this paper. If flows between all origins and all desti-
nations need to be shown then the number of origin-destination pairs is
quadratic. There are some recent papers that therefore explore alterna-
tive ways to visualize flows, by using multi-view displays [9], anima-
tions over time [2], or mapping techniques close to treemaps [23]. By
interpreting origins and destinations as nodes and flows as (weighted)

edges, techniques from graph and network visualization can be used
to visualize flows. Cox et al. [4] and Munzner et al. [15] use 3D maps
to visualize network structure. Their methods, however, do not use
edge-bundling. In contrast, Holten [10], Cui et al. [5], and Holten &
van Wijk [11] present methods to visually bundle edges in complete
and dense graphs. Subgraphs of their bundled representations can be
interpreted as flow maps (see Fig. 2, bottom). These subgraphs, how-
ever, are not necessarily crossing-free, or even trees, and do not merge
as quickly and smoothly as hand-drawn flow maps.

Duncan et al. [7] describe a model for drawing with fat edges. In
principle we could use their method to thicken spiral trees, but the re-
sulting flow trees are not smooth, do not obey angle restrictions, and
do not emphasize the main branches of the tree. Finally, Krozel et
al. [13] study algorithms for turn-constrained routing with thick edges
in the context of air traffic control. Their paths need to avoid obsta-
cles (bad weather systems) and arrive at a single target (the airport).
The union of consecutive paths bears some similarity with flow maps,
although it is not necessarily crossing-free or a tree.

3 SPIRAL TREES

In this section we give a brief introduction to spiral trees, for additional
details please see our companion paper [3]. As mentioned above, spi-
ral trees are a novel type of Steiner tree. To create trees with the
smoothly merging lines of hand-drawn flow maps, we impose a re-
striction on the angle the edges form with the root. Specifically, we
use a restricting angle α < π/2 to control the direction of the arcs of
a geometric directed Steiner tree T . Consider a point p on an edge e
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Fig. 3. The angle restriction.

from a leaf to the root r (see
Fig. 3). Let γ be the angle be-
tween the vector from p to the
root r and the tangent vector of
e at p. We require that γ ≤ α
for all points p on T . We refer to
a directed Steiner tree that obeys
this angle restriction as directed

angle-restricted Steiner tree. Here and in the remainder of the paper it
is convenient to conceptually direct trees from the leaves to the root.

The edges of an optimal (that is, shortest) directed angle-restricted
Steiner tree T consist of straight line segments and parts of logarithmic
spirals. For −π/2 < β < π/2 the β-spiral through a point p can be
described by the following parametric equation in polar coordinates,
where p = (R,φ): R(t) = Re−t and φ(t) = φ + tan(β)t. We call
β the angle of (a segment of) a β-spiral. A spiral tree with restricting



Fig. 4. Starting with a thin spiral tree (left), we thicken and further subdivide the edges (middle), and finally minimize the cost function (right, drawn
without internal nodes). The trees consist of a root node (square), leaf nodes (red), join nodes (white), and subdivision nodes (black).

angle α is a directed angle-restricted Steiner tree whose edges consist
only of segments of α-spirals and (−α)-spirals. To compute flow trees
we use α = 25◦, or α = 35◦ in the presence of large obstacles.

In [3] we prove that it is NP-hard to compute optimal spiral trees.
We also present a 2-approximation algorithm. This algorithm can be
extended to avoid obstacles, although we then cannot guarantee the
approximation factor anymore. The resulting spiral trees, however,
are of high visual quality (see Fig. 4 left). We use obstacles to cover
all leaves and so force the tree to avoid its own nodes.

4 COMPUTING FLOW TREES

In this section we describe our algorithm to compute a single flow tree
T . Our input is a point r, the root of T , and n points l1, . . . , ln, the
leaves of T . For every leaf li we are also given a weight ti which
denotes the amount of flow from the root to leaf li. The weight ti de-
termines the thickness of the flow tree at leaf li. We assume that these
weights have already been scaled appropriately, using linear scaling as
advocated by cartographers [6]. To simplify the discussion we further
assume that the root r is located at the origin.

A good flow tree is crossing-free and merges edges smoothly and
frequently; it avoids flows through its leaves; its main branches grow
as straight and smooth as possible. There is a tradeoff between the
smoothness and frequency of merges, but spiral trees allow these prop-
erties to be balanced through the choice of restricting angle. We there-
fore first use our approximation algorithm [3] to compute a spiral tree
S on the root and the leaves. The spiral tree S is crossing-free and
avoids its leaves by the use of obstacles. However, it is by definition
thin and does not have a smooth appearance when avoiding leaves or
obstacles. Below we describe how to thicken and smooth S to cre-
ate the flow tree T (see Fig. 4). During this process we preserve the
topology of S, that is, T has the same leaf order and internal structure
as S and passes obstacles on the same side. After thickening S we
smooth and generally improve the resulting tree T by minimizing the
weighted sum F (T ) of a carefully chosen set of cost functions that
smoothen the tree (FS(T )) and straighten main branches (Fstr(T )),
while still avoiding obstacles and leaves (Fobs(T )) and approximately
maintaining the angles (FAR(T ) and FB(T )). Our algorithm can be
summarized as follows:

(P = points,W = weights)
Algorithm FLOWTREE(P,W, α)
1. S ← COMPUTESPIRALTREE(P, α) (See [3])
2. T ← Subdivide and thicken S usingW
3. Minimize F (T ) (see Section 4.2 and 4.3)

The remainder of this section is structured as follows. In Section 4.1
we explain the structure of our trees and discuss the different types of
nodes. In Section 4.2 we describe our cost functions and in Section 4.3
we explain how to minimize the resulting global cost function. Finally,
in Section 4.4 we discuss the spiral splines which we use to draw the
finalized tree.

4.1 Tree structure
Spiral trees and flow trees are both directed trees, with the root as the
source. As mentioned above, it is convenient for our computations
to conceptually direct these trees from the leaves towards the root.
When drawing the final flow trees we of course reverse the direction
again. Each node of our trees (except for the root) has exactly one
outgoing edge to its parent. Similarly, all nodes which are not leaves
have incoming edges from their children. Our trees have four different
types of nodes (see also Fig. 4):

root node: the root, the only node without parent.

leaf node: the leaves, the only nodes without children.

join node: nodes where edges merge. All join nodes have one parent
and at least two children.

subdivision node: nodes that subdivide edges, used to avoid obsta-
cles. These nodes have one parent and one child.

The thick flow tree T generally needs more subdivision nodes to avoid
obstacles than its thin counterpart S. Hence, before minimizing our
cost functions, we further subdivide T until the length of every edge is
below a specified threshold (see Section 4.3 for details). Because the
edges of T are thick, the children of a join node ν should not connect
directly with ν, but with special dummy nodes at a slightly offset posi-

Fig. 5. Dummy nodes.

tions (see the black nodes in Fig. 5). We
compute these dummy nodes for every
child of a join node. They act as the
true endpoints of the edges between a join
node and its children.

As stated in Section 3, the edges of
spiral trees, and hence also of flow trees,
consist of (segments of) β-spirals: log-
arithmic spirals with angle β. An edge
e = (p, q) between a node p and its parent

q is the β-spiral segment between p and q, such that the absolute value
of β is minimal. This uniquely defines e.

4.2 Cost functions
In this section we describe a set of cost functions, which we believe
capture the properties of high-quality flow trees. These cost functions
are defined on the nodes and edges of the flow tree T . We combine
the separate functions to one global cost function F (T ), which we
optimize by moving the join and subdivision nodes. The positions of
the root and the leaves have to remain fixed.
Obstacle cost. We distinguish two types of obstacles: polygon ob-
stacles and leaf nodes. We use polygon obstacles to model important
map features that need to be avoided by the flow tree. We include leaf
nodes as obstacles to ensure that the flow tree avoids these nodes and
hence all branches are visible. The thin spiral tree S avoids all obsta-
cles. The obstacle cost ensures that also the thick flow tree T does not
overlap with the obstacles. It is also often aesthetically more pleasing
if the thick edges are clearly separated from the obstacles. Therefore



we add a buffer around every obstacle (see Fig. 6). The choice of a
proper buffer size B strongly depends on the map. Although we can
easily compute a reasonable value for B, this value can be changed
interactively.

We now describe the obstacle cost for a single node p. Consider
any obstacle Ω and let q be the point on the obstacle closest to p. For
leaf nodes, q is simply the position of the leaf. Let D be the distance
between p and q. Further, let t be half the thickness of the flow map
at p. If Ω is a leaf node, t also includes the thickness (weight) of this
leaf. The obstacle cost for the node p and the obstacle Ω is as follows:

Fobs(p,Ω) =


t

BD
(B
2

+ t) + D
Bt

(B
2
− t), if D < t;

(1− D−t
B

)2, if t ≤ D ≤ t+B;
0, otherwise.

The obstacle Ω and the flow tree at p overlap whenD < t. When there
is no overlap, but p still falls within the buffer of Ω, the cost simply
increases quadratically as D decreases. When D = t, the cost equals
one. When D < t, the cost increases asymptotically to infinity as D
approaches zero. This ensures that the flow tree does not “jump” over
obstacles and hence maintains the same topology as the spiral tree S.
The formula for D < t ensures that Fobs is C1-continuous.

There is one special case: let Ω be a leaf node and consider the
chain of subdivision nodes until the first encountered join node (see
Fig. 6). We define the obstacle cost for these subdivision nodes with
respect to Ω to be zero. The join node is handled as usual.

Fig. 6. Optimizing subdivision nodes. Buffers are dashed.

The obstacle cost for the tree T is simply the sum of the costs for all
combinations of subdivision and join nodes of T and obstacles.
Smoothing cost. The main purpose of the subdivision nodes is to
make the flow tree appear smooth. Hence we define a smoothing cost
for subdivision nodes. Let p be a subdivision node and let β1 and β2
be the angles of the edges incident on p. Then the smoothing cost for
p is defined as:

FS = (β1 − β2)2

Note that if FS = 0 for a certain subdivision node, both incident edges
follow the same spiral, which gives a smooth appearance. The smooth-
ing cost for the tree T is again simply the sum of all smoothing costs
of all subdivision nodes of T .
Angle restriction cost. For the appearance of the flow tree it is im-
portant that the angle restriction, established by the spiral tree S, is
maintained at least approximately at join nodes. To that end, we de-
fine an angle restriction cost for join nodes. Let p be a join node, and
let β1 and β2 (β1 > β2) be the angles of the edges to the children of
p. Then the angle restriction cost is defined as:

FAR = log(secβ1) + log(secβ2)

The choice of the function sec(β) is directly related to the properties of
spiral trees (see [3]). Since the function sec(β) grows very rapidly, we
use the logarithm to be able to combine it more easily with the other
cost functions. Nonetheless, the cost grows to infinity as the angles
approach π/2. This ensures that the distance to the root monotonically
decreases along the edges of a flow tree.

2α

β1=α β2 =−α

Fig. 7. Optimal join node.

Balancing cost. The angle restriction
cost does not involve the specific an-
gle α that is used to compute the spiral
tree. We would like the cost of a flow
tree to be minimal when β1 = α and
β2 = −α (see Fig. 7). Therefore we
add the following balancing cost:

FB = 2 tan2(α) log(csc((β1−β2)/2))

One can prove that, with this definition, the minimal cost is obtained
by the tree in Fig. 7.
Straightening cost. The angle restriction and balancing costs cover
only the edges from a join node to its children. We need a separate
cost for the edge from a join node to its parent. Let β be the angle of
this edge. A reasonable value for β would appear to be (β1 + β2)/2.
However, if a thick edge merges with a thin edge, then it is visually
more pleasing if β equals the angle of the thick edge (see Fig. 8). This
allows us to easily follow the main branches of the flow tree. Let β∗

be the optimal angle for β, then the straightening cost is:

Fstr = (β − β∗)2

We need to determine a good value for β∗. We describe this computa-
tion for an arbitrary number of children. Let β1, . . . , βn be the angles
of the edges to the children and let t1, . . . , tn be the corresponding
thicknesses with t∗ as maximum. We say that an edge is relevant if
ti ≥ ct∗. (We use c = 0.5 for our maps.) The optimal angle β∗ is:

β∗ = (
∑

i|ti≥ct∗

tiβi)/(
∑

i|ti≥ct∗

ti)

Global cost function. The global cost function is now simply a linear
combination of the different costs defined above:

F (T ) = cobsFobs(T ) + cSFS(T ) + cAR(FAR(T ) + FB(T ))
+cstrFstr(T )

The constants are all positive and can be tuned to achieve a suitable
tradeoff between the different costs. Specifically, we use cobs = 2.0,
cS = cstr = 0.4, and cAR = 0.077. In principle, these parameters
could also be set differently for different parts of the tree, thus allowing
a user to optimize the tree locally. However, local parameters would
be difficult to integrate into an intuitive user interface.

4.3 Minimizing the global cost function
Our goal is now to smoothen and straighten the thick flow tree T by
minimizing the global cost function F (T ). The value of F (T ) is com-
pletely determined by the positions of the nodes of T . Since the root
and the leaves of T have to remain fixed, we minimize F (T ) by mov-
ing the subdivision and the join nodes. For the subdivision nodes we
fix the distance to the root, that is, subdivision nodes can only rotate
around the root. Join nodes are allowed to move freely.

To minimize the global cost function, we use the method of steepest
descent. Let Ti be the tree after i iterations (with T0 = T ). Consecu-
tive iterations are computed as follows:

Ti+1 = Ti − ε∇F (Ti)

Fig. 8. Straightening join nodes.



Fig. 9. Flow map illustrating migration from Texas 1995–2000 after computing the spiral tree (left), subdividing and thickening the edges (middle),
and finally minimizing the cost function (right).

We ensure that F (Ti+1) < F (Ti) and choose ε adaptively. We do
need to guarantee that the topology of Ti+1 is the same as that of
T (i). For every edge e of T and every point p, either a leaf node or
an obstacle vertex, we need to ensure that e stays on the same side of
p. Using a binary search, we can compute the value of ε for which e
crosses p. Let the minimum of all these values be ε∗: the smallest step
size that results in a different topology. We bound ε by ε∗/2.

The method of steepest descent computes a local minimum, which
is sufficient in our case. Since we fix the topology of the flow tree, we
expect every local minimum to be of good quality. This is confirmed
by our experiments. The method of steepest descent has certain well-
known drawbacks, such as zigzagging and slow convergence. In the
future we will extend our implementation to use the non-linear conju-
gate gradient method, which should alleviate some of these issues.

Subdividing and merging. As mentioned in Section 4.1, before min-
imizing F (T ) we add subdivision nodes to T until the length of every
edge is below a specified threshold. However, T might not need the
same number of subdivision nodes everywhere. So initially we use
a fairly sparse subdivision, but we allow adaptive subdivision during
optimization. We often need additional subdivision nodes around ob-
stacles. If a point on an edge e of T moves too close to an obstacle, we
subdivide e. Subdividing an edge can increase the cost of the resulting
tree. However, we also ensure that not too many nodes are added to T ,
by subdividing an edge only if its length is above a certain threshold.
In this way we ensure that the optimization still converges.

Fig. 10. Merging join nodes. De-
tail of Fig. 2 (top-right).

Next to adding nodes, it is also
possible that two nodes merge. A
node merges with its parent as soon
as the length of the corresponding
edge falls below a certain thresh-
old. Two subdivision nodes never
merge, as they have a fixed distance
to the root. A join node can merge
with a subdivision node, in essence
removing the subdivision node. It
is also possible that two join nodes
merge (see Fig. 10), the resulting
join node has more than two chil-

dren. It is straightforward to extend the cost functions to join nodes
with an arbitrary number of children. The straightening cost is already
defined for an arbitrary number of children and for the angle restriction
cost and the balancing cost we simply use the two outermost children.

4.4 Drawing flow maps

Here we explain how to draw the optimized flow tree. We depict the
root node by a square of size proportional to the total flow. The leaf
nodes are indicated by proportional or graduated circles whose size is
proportional to the value of the line ending there. These circles are
not essential to our maps and can for instance be replaced by (classed)
symbols of different shapes. We do not label our nodes, but use bound-
ary information instead, since cartographers consider this to be more
useful for interpreting pattern information [20].

To draw the edges, we introduce a novel type of spline, the spiral
spline. Recall that the edges are segments of β-spirals. We could use

Catmull-Rom splines, but we prefer a method that more accurately
draws β-spirals. Spiral splines are in essence cubic Hermite splines.
Hermite splines require a tangent at every point. The tangents of points
on a spiral should match the tangents of the spiral. Hence, we use
logarithmic spirals to compute these tangents for our spiral splines.
Consider a subdivision node p and let β1 and β2 be the angles of the
edges incident on p. The direction of the tangent vector at p is simply
the tangent of the β-spiral at p, where β = (β1 + β2)/2. The length
of the tangent vector is ‖p2‖ − ‖p1‖, where p2 is the child of p and
p1 is the parent of p. For a target or join node p, the angle β is simply
the angle of the edge from p to its parent. Using the spiral splines, the
resulting trees appear very smooth.

5 EXPERIMENTAL EVALUATION

In this section we discuss the results of our algorithm, also in com-
parison with previous work. We first demonstrate our algorithm by an
example and evaluate the influence of the various parameters. All of
the results in this section were obtained automatically using our algo-
rithm from Section 4 without user interaction. Only the drop shadows
were manually added in a post-processing step. In Section 6 we show
further results with additional user-specified input. In Fig. 9 we give
an overview of our algorithm using, as an example, migration from
Texas. The spiral tree has a nice structure but is not smooth at internal
nodes. Thickening shows another issue, namely that main branches
deviate around the leaf nodes. Both issues are resolved in the final
flow tree, while keeping the structure of the spiral tree. In Fig. 11 we
show results of our algorithm using different parameters. From left
to right we varied our most important parameter, the restricting angle
α. We use α = 15◦ (left), α = 25◦ (middle), and α = 35◦ (right).
Lower values for α result in “straighter” flow trees, but can also cause
some weaving. Higher values for α often result in a better tree struc-
ture, but these flow trees require sharper turns. The top figures use,
besides α, our standard parameters. In the bottom figures we show the
effects of some of the parameters. In the left figure we increased the
buffer size B by a factor of 1.5. This makes the nodes better visible,
but does require longer detours. In the middle figure we set cS = 0.
Although the flow tree is still drawn smoothly due to the splines, it
does not appear smooth anymore. In the right figure we set cstr = 0.
We think the straightening results in a visually more pleasing flow tree.
The remaining parameters cobs and cAR must be larger than zero for
the algorithm to work properly but otherwise their values seem to have
little influence on the result.

The weights of the leaves also influence the layout of the flow map.
The following two maps in Fig. 12 show the same data set, namely
migration from Norway, at two different points in time. Both maps are
based on the same spiral tree, that is, they have the same tree topology.
This makes it easy to compare the flows. Differences between the
maps cannot only be detected by comparing the widths of flow lines,
but are also emphasized by the straightening of main branches. This
for instance emphasizes the large flow to Poland in 2009.

Next, we visually compare our results to those of Phan et al. [16]. In
Fig. 13 the map by Phan et al. contains many crossings, the grouping
of nodes is somewhat unnatural, and the edges are often routed in a
counter-intuitive manner (see also the maps in Fig. 2, Fig. 14, and
Fig. 15). Consider for example North Dakota, which is not grouped



Fig. 11. Various results of our algorithm. We use α = 15◦ (left), α = 25◦ (middle), and α = 35◦ (right). The top figures use standard parameters.
For the bottom figures, we increased buffer size B by a factor of 1.5 (left), set cS = 0 (middle), and set cstr = 0 (right).

Fig. 12. Migration from Norway in 1996–2000 (left) and 2009 (right).

with South Dakota but instead crosses the branch to South Dakota.
Another example is North Carolina, which is reached with a branch
that grows from the south via Florida and below Texas. In contrast, our
map is crossing-free, smoothly bundles lines, and the main branches of
the tree are easy to follow. Our algorithm automatically creates nodes
of higher degree which helps to de-clutter the busy East coast.

6 EXTENSIONS

We next present various extensions to our automatic method, in par-
ticular, user-specified clusters, routing around obstacles, the overlay of
flow trees, and waypoints. While in Fig. 13 the naturally looking clus-
tering is simply induced by the spiral tree, we can also accommodate
user-specified clusters.

Fig. 14 and Fig. 15 show CO2 emissions. Fig. 15 was produced by
Moran and his co-workers [14, 19] using the algorithm by Phan et al.
The original data is not available anymore, so our corresponding map
in Fig. 14 is based on Moran’s most recent data.1 In Fig. 15 the many
crossings in Europe are very noticeable. The cluttering in that map is
to some extent due to a large flow from Asia that was routed through
Europe. This can be avoided by appropriate clustering. In Fig. 14 we
clustered the leaves according to the United Nations geoscheme. This
scheme clusters by region (continent). To emphasize the two largest
individual flows (US and China) we clustered these on subregion level,
i.e., as Northern America and Eastern Asia. In Europe we used sub-
regions as clusters, but placed Ireland, Iceland, Spain, and Portugal
outside of the clusters to allow other flows to pass. In comparison it
is noticeable that the map in Fig. 15 shows nearly no variation in the
width of the flow lines, although the data indicates huge flows from
the US. This might be an artifact of logarithmic scaling or the upper
bounds on flow width imposed by Phan et al. In contrast, our algo-
rithm is able to accommodate linearly scaled flows, even for such a

1D. D. Moran, personal communication, 2011.

Fig. 13. Two flow maps illustrating migration from Colorado 1995–2000. Phan et al. [16] (left), and the output of our algorithm (right).



Fig. 14. Flow of embodied CO2 to the United Kingdom. Embodied CO2 refers to the entire amount of CO2 emitted for the production and
transportation of goods to consumers. The map shows the CO2 flows into the United Kingdom from each of its trading partners. CO2 emissions
from transportation are shown as originating from the country that provides the transportation fuel. The embodied CO2 flows in this map have been
calculated using the Eora MRIO Model being built at the University of Sydney.

Fig. 15. Total ecological footprint of imports to the UK [19] created using
the algorithm by Phan et al. [16].

large map where values differ substantially. Zooming in on Europe it
is apparent that our maps work well on different scales. The merging
of flows in general bears the risk of implying a clustering that might
not have a meaning as such. User-specified clusters have the signifi-
cant advantage of introducing meaningful merges.

Note that Fig. 15 does not route along shipping routes and does not
try to avoid crossing landmasses. Our algorithm is able to do so, as il-
lustrated in Fig. 16 and Fig. 19. The map in Fig. 16 (top) is computed
without avoiding landmasses, in Fig. 16 (bottom) we added (parts of)
the island boundaries as obstacles to the input. Both figures show
clearly that the major part of exports from Sulsel is directed towards
Sumatra and Java. However, the flows in the top map cover nearly
the complete eastern coastline of Sumatra and cross various smaller
islands, whereas the lower map gently curves through the Strait of
Malacca and around the islands. The difference between the two maps
is somewhat subtle, since both were created with the same algorithm,
but the avoidance of landmasses increases the legibility of the map.

Flow maps can also contain more than one flow tree. In Fig. 17
we again compare our map against a map produced by Phan et al.

Fig. 16. Exports from the province Sulsel on Sulawesi to all other
provinces of Indonesia in 1990. Without avoiding landmasses (top) and
avoiding landmasses (bottom).

Their paper uses data from the U.S. census bureau, which would imply
that this map depicts the top 10 states that migrate to California and
New York 1995–2000. Unfortunately, the states that they show, do
not correspond to this data. Our map shows the correct data set. Both
maps were created by overlaying two single source flow trees. Our
current system does not support the simultaneous creation of more
than one flow tree, but we simulated the process by adding parts of the



Fig. 17. Two flow maps illustrating the top 10 states that migrate to
California and New York 1995–2000. Phan et al. [16] (top), and the
output of our algorithm (bottom).

first tree (green) as obstacles to the input of the second (blue). The
result is already satisfactory, however, a branching point of the blue
tree coincides with a branch of the green tree. The green tree, being
the first to be computed, did not know about this branching point and
hence could not avoid it. How to integrate the creation of several flow
trees is a challenging open question. Another issue is that our flow
maps do not indicate the direction of the flow. Additional experiments

Fig. 18. Migration from Norway and Latvia in 2009.

with symbolism, for example, arrows at leaves or along major flow
lines, or using squares for destinations and circles for origins, might
lead to an effective method to indicate flow direction.

The data set depicted in Fig. 17 is particularly challenging and
somewhat atypical for flow maps that contain several flow trees. The
main axis California–New York is contained in both trees and bound
to conflict. In Fig. 18 we show the overlay of two flow trees for a more
typical data set, namely migration from Norway and from Latvia. Here
we used the same approach, namely using parts of the red tree as obsta-
cle for the blue tree, to much greater success. The map clearly shows
the importance of neighboring countries for migration, but also high-
lights the UK as a popular destination. One issue remains though. To
be able to use parts of the first flow tree as obstacles for the second
flow tree, we manually moved the leaf locations for regions that oc-
cur in both flow trees (France, Germany, UK, Sweden). This can be
confusing, especially if the two locations are separated by a flow line.

Fig. 19. Top 50 whisky exports from Scotland in 2009 by volume.



Our final map in Fig. 19 shows the top 50 countries to which Scot-
land exported whisky in 2009. Much of the whiskey exported in 2009
from Scotland was transported by deep-sea container ships, much of
the whiskey exported to Europe (with France as main importer) was
transported across the Channel at Dover. We therefore route flows
in this map along shipping routes, by using landmasses as obstacles.
Shipping routes typically use shortest paths, which integrates well with
the optimization criteria for our flow trees. However, shipping routes
might need to deviate in direction substantially from the direct con-
nection between a source and a destination, for example, if they have
to pass through an important passage. In these situations we cannot
directly enforce the angle restriction for all nodes. We handle this is-
sue by introducing waypoints: intermediate destinations, which them-
selves serve as the root of a subsidiary flow tree (waypoints are indi-
cated as squares in Fig. 19). For shipping routes we have a canoni-
cal set of potential waypoints corresponding to strategic maritime pas-
sages [18]. For the map in Fig. 19 we used four waypoints correspond-
ing to the Panama Canal, the Strait of Malacca, the Strait of Bab el-
Mandab and Gibraltar. The aggregation effect of the flow map shows
the size of the Latin American and the Caribbean market, a fact that
would have been difficult to deduce from the raw data. Furthermore,
it emphasizes the importance of the Suez Canal for European trade.
Note that the waypoints are shown only to illustrate the composition
of the tree and would not be part of the final map. Flow maps by de-
sign bear the risk of misinterpretation. This risk is particularly high
when flows approximately follow trade routes. We have no exact data
for the trade routes but even with this data a flow tree would deviate
from it. Our map, for instance, is not meant to indicate that whisky to
Italy is transported via Germany.

7 IMPLEMENTATION

We created a proof-of-concept implementation of our flow map algo-
rithm in Java. Our program can compute a spiral tree from a given
point set, also including obstacles. Next to that, our program contains
features that allow interactive editing of spiral trees. We have also im-
plemented the cost function minimization, as described in Section 4.
Finally, our program supports export of flow trees in vector format.
Our current implementation does not support multiple flow trees or
waypoints (see Section 5). Such flow maps were created by manually
overlaying single flow trees created by the program. Figures in this
paper with single flow trees were fully automatically created using our
program, except for some minor editing (drop shadows, clipping, etc.).
Our program computes an optimal flow tree for most maps in less than
a minute on a system with a Pentium D 3 GHz processor (dual-core)
and 1 GB of RAM. World maps require a couple of minutes.

Our data stems from various sources which we summarize
in the following: Tobler [1], Moran (personal communication),
Stelder [21], the Indonesian central planning bureau BAPPE-
NAS (www.regroningen.nl/irios tables.shtml), Statis-
tics Norway (www.ssb.no), Central Statistical Bureau of Latvia
(www.csb.gov.lv), and the Scotch Whisky Association in Ed-
inburgh, statistical report 2009 (www.scotch-whisky.org.uk).
All URLs were accessed on 2011-04-19.

8 CONCLUSION

In this paper we introduced an algorithm that produces flow trees of
high visual quality. Our flow trees are based on spiral trees, a novel
type of Steiner tree. As a consequence, our flow trees are crossing-free,
merge smoothly, and naturally cluster. The main branches of our flow
trees grow as straight and smooth as possible, for an overall organic
impression that makes it easy to interpret the maps. Furthermore, our
trees allow for high-degree internal nodes, can avoid obstacles as well
as their own leaves, and do not need to distort the base map.

An interesting and challenging direction for future work is the in-
tegrated creation of several flow trees while minimizing crossings be-
tween branches of different trees. In those cases where crossings are
unavoidable, we prefer crossings among lesser branches of the trees.
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