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Dimension reduction

Dimension reduction methods

® What to do if... | have to analyze multidimensional data???

® Solution: Dimensionality Reduction from |7 dimensions to |D, 2D or 3D

® Problem: How to project the nodes faithfully into low-dimensional space (1 D-3D)!?

Original 3D data

2D projection by Curvilinear
Component Analysis



Visualization of a data set
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doctoral thesis

(2002), page 38.



Dimension reduction

Dimension reduction methods

® Matlab+Excel example!



PCA

Principal component analysis (PCA) .

® PCA is stable, there are no additional parameters, and it
is guaranteed always to converge to the same optima.

® Hence, PCA is usually the first dimension reduction
method to try (if it doesn’t work, then try something
more fancy)



X2

25

PCA

Principal component analysis (PCA)

Covariance matrix (after subtracting mean from data)

e 999.00 979.34
T C=X" X =1 97984 999.00
L Eigenvector matrix (projection to principal components)
v | 07071 —0.7071 °
| 0.7071  0.7071
*w‘/ Eigenvalues (variance along principal components)
e e e e [AMAg] = 19788 19.2 ]

Proportion of

variance explained

AN

Reconstruction

>0 var[(X

= | 0.9904 |

- X))

error E = y

6

= | 0.0096 |
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Iwo clusters

® The PCA fails to separate the clusters (you don’t see
cluster structure from the |D visualization, lower right)
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PCA

FIRST PRINCIPAL COMPONENT (P1)




PCA

Nonlinear data

The first principal component is given by the red line.The green line on the right gives
the “correct” non-linear dimension (which PCA is of course unable to find).
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Manifolds

Manifolds

o | eft, PCA mapping would
not find the “correct” ID
manifold, shown in green,
because they try to
preserve global features.

e Often, preserving local
features, like
trustworthiness, continuity
or conformity - or manifold
structure - IS more
important than global
properties.




Nonlinear dimensionality reduction and

Manifold Learning



Topology, Spaces and Manifolds

* If variables depend on each other their joint distribution, the
support of their joint dist. does not span the whole space
— induce some structure in distribution (geometrical locus,
object in space)

* Topology (mathematics) studies properties of objects that are
preserved through deformations, twisting and stretches
Tearing forbidden, guaranteeing that the intrinsic structure or
connectivity is not altered (circle topol. equivalent to ellipse)

* Tearing may still be interesting operation (unfolding the earth)

* Objects with same topological properties are called
homeomorphic



Topology, Spaces and Manifolds

A topological space is a set for which a topology is specified

For a set ) a topology T is defined as a collection of subsets of
with the following properties:

*trivially g € TandyY € T
* whenever 2 sets are in T, so is their intersection
* whenever 2 or more sets are in T, so Is their union

Definition holds for Cartesian space RY as for graphs (example:
topology in R (set of real numbers) is union of all open intervals)



Topology, Spaces and Manifolds

More generally: topological space can be defined using
neighborhoods (Ns) and Haussdorf’'s axioms (1919)

€ -neighborhood for y € RY or infinitesimal open set often defined
as open-Ball B.(y) — a set of points inside a d-dim. hollow

sphere of radius €>0 centered ony



Topology, Spaces and Manifolds

More generally: topological space can be defined using
neighborhoods (Ns) and Haussdorf’'s axioms (1919)

* each point y corresponds at least one neighborhood Z/{(y)
containing y

" if {(y)and V(y) samey, then W(y) C U(y) N V(y) exists
" ifz U(y) then V(2) of Z exists such that V(z) C U(y)
* for 2 distinct points 2 disjoint Ns of these points exist

e -neighborhood for y € RY or infinitesimal open set often defined
as open-Ball B.(y) — a set of points inside a d-dim. hollow
sphere of radius €>0 centered ony



Topology, Spaces and Manifolds

* Within this framework a topological manifold M is a
topological space that is locally Euclidean
(any object that is nearly flat on small scales)

* Manifold can be compact, non-compact, connected or
disconnected

* Embedding: representation of topological object (manifold,
graph,etc.) in cartesian space (usually R¢ ) preserving
topological properties

* Smooth manifold is called a differentiable manifold

* For example: hollow d-dimensional hypersphereisa (d - 1)
manifold



Topology, Spaces and Manifolds

* Whitney (1930) showed that any P-manifold can be

embedded in R2F+1
* Aline can be embedded in R
* Acircle is a compact 1-manifold, can be embedded in R?

* Trefoil (knotted circle) reaches the bound — R3
* In practice the manifold is nothing more than the underlying
support of a data distribution known only through finite

samples
* 2 Problems appear:

(1) Dimen. reduction works with sparse and limited data

(2) assuming manifold takes into account the support of data

distr. but not other properties such as its density
— problematic for latent variable finding (the model of

data density is of prime importance)

* Manifold does not account for noise (points may lie nearby)
— DR re-embeds a manifold, noisy data is projected onto it



Intrinsic Dimension

* The intrinsic dimension(ality) of a random vector y equals the

topological dimension of the support ) of the distribution of y
* Given a topological space )/, the covering of a subset S is a

collection C of open subsets whose union contains S

I || Asubset S of topological space ) has topo-
T |\ logical dimension Dy, (Lebesgue covering dimen-
f 7'. [/ sion) If every covering C of S has a refine-

S ~ ment C"in which every point of S belongs
/ " 2oem 10 @ maximum of Dy,,+7 open balls

3 overlap

* Topological dimension is difficult to estimate with a finite set
of points and for some objects behave weird (Hilbert curve) the

topological dimension just seems wrong (Sierpinski triangle)
— use other definitions of the intrinsic dimension like fractal
dimension or definitions based on DR methods



Hilbert Curve

1D object that evolves iteratively and progressively fills a square




Intrinsic Dimension
Fractal Dimensions most popular examples

* Box-Counting dimension (Capacity dimension)
Determine the hypercube that circumscribes all data points,
decompose it into a grid of smaller hypercubes with edge
length, determine N() (number of hypercubes) that are
occupied by one or several data points, P o 'of’rogiﬁ) compute
Limite — 0O gives dcap

* Correlation dimension (Grassberger and Procaccia)
similar interpretation as capacity dimension, but local: look at

number of neighboring points closer than certain threshold

Local methods:

* decompose the space into local patches

* carry out PCA on each space window assuming the manifold
IS approximately linear on that scale

* dimension of the manifold is obtained as average estimate of

the local PCAs (weighted by number of points in corresponding window)



Intrinsic Dimension

Sketches for box counting (left) and local PCA (right) intrinsic
dimension estimation

Q 5 150k
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Outlook

* (un-)supervised Dimensionality reduction and visualization
* Generalized framework for dimensionality reduction
* Quality assessment



Nonlinear dimensionality
reduction methods



Introduction

- Represent high-dimensional data by low-dimensional
counterparts preserving as much information as possible

- |ll-posed problem: which data is relevant to the user?
(dependent on the specific data domain and situation at hand)

- Huge variety of methods proposed with different properties



Dimension reduction

Dimension reduction methods

® There are several methods, with different optimization goals and complexities

® We will go through some of them (most not in any detail, last ones not at all):

Principal component analysis (PCA) - “simple” linear method that tries to
preserve global distances

Multidimensional scaling (MDS) - tries to preserve global distances

Sammon’s projection - a variation of the MDS, pays more attention to short
distances

Curvilinear component analysis (CCA) - MDS-like method that tries to preserve
distances in small neighborhoods

Self-organizing map (SOM) - a flexible and scalable method that tries a surface
that passes through all data points (originally developed at HUT)

24



Different methods, different properties

Spectral techniques: the rely on the spectrum of the
neighborhood graph of the data, preserving important
properties of it.

- Example methods: Locally Linear Embedding (LLE), Isomap,
Laplacian Eigenmaps

- usually uniqgue algebraic solution of the objective
- In order to make the cost functions unimodal and to make

algebraic solution of objective possible, the methods are
based on very simple affinity functions



Different methods, different properties

Non-parametric methods: they usually do not find a general
mapping function from a high-dimensional space to a lower-
dimensional space, instead they find a mapping a finite data

set

- They can use more complicated affinities between data
points, but it comes with higher computational costs

Additional modeling/optimization and computational effort
must be done for out-of-sample extension (for mapping new
data points that were not int he training set)



Different methods, different properties

Explicit mapping functions: some methods explicitly learn
(infer) a (non-)linear mapping function

- linear functions: Principal Component Analysis, Linear
Discriminant Analysis

- nonlinear functions: autoencoder networks, locally linear
coordination



Different methods, different properties

Supervised techniques: use "ground truth” information

provided by a teacher (oracle) to learn the mapping or
mapping function

- Linear Discriminant Analysis, Partial Least Squares
regression, adaptive metrics

 non-linear extensions by kernels



Dimensionality Reduction Setting

Assume we have
- a high-dimensional data space X’
- a data set from the dataspace: x’ ¢ RN /=1...n

We want to find
- an output space (embedding space) &
- low-dimensional representatives ¢’ ¢ RM
for the data set in the embedding space

General aim of dimensionality reduction: find a mapping

o f:RY 5 RY o
such that the interesting properties ot the data distribution in X’
are preserved as well as possible also in £



MDS

Multidimensional scaling (MDS)

® Multidimensional scaling (MDS) is a dimension reduction
method that tries to preserve a measure of similarity

(or dissimilarity or distance) between pairs of data
points

® MDS has roots in the field of psychology (one
consequence: lots of conventional notation)

® MDS can be used as

- an exploratory visualization technique to find the
structure of the data; and

- a tool to test hypothesis.

30



MDS

Color similarities

® Psychological test in 1950’s: how is the similarity of colors
perceived?

® Pairs of 14 colors were rated by 3| people. Ratings were
averaged.

= N -l

qml434 445 465 472 490 504 537 555 584 600 610 628 651 674
-434 — 14 17 .38 .22 -.73 -1.07 -1.21 -.62 -.06 .42 .38 .28 .26
445! 86 - 25 .11 -.05 -.75 -1.09 -.68 -.35 -.04 .44 .65 .55 .53
465| 42 50 - .08 -.32 -.57 -.47 -.06 .00 -.32 .17 .12 .91 .82
a72| 42 44 81 - 12 -36 -26 .15 .00 -.11 .00 .33 .23 1.03
a00| 18 22 47 54 --07 .08 .48 .40 .00 .22 .17 .07 .00
c04| 08 09 17 25 61 - .31 .28 .45 68 .01 .00 .00 -.15
.53? 07 .07 .10 .10 .31 .62 ~ .13 .35 .09 .31 .00 .00 -.T5
ses| 04 07 08 .09 26 .45 .73 - -05 .17 -.09 -.22 -.32 -.34
54| 02 .02 02 02 07 .14 .22 .33 - -05-.01-06-16 -.18
gool o7 04 01 .01 02 .08 .14 .19 .58 - .21 .07 -.39 -.40
610 09 07 02 00 02 02 .05 .04 .37 .74 - -08-13 -.11
gog| 12 11 .01 .01 .01 .02 .02 .03 .27 .50 .76 — -.03 -.16
651! 13 13 05 .02 .02 .02 .02 .02 .20 .41 .62 .85 - -.11

-5?4 16 14 03 04 00 0L .0 .02 .23 28 .55 .68 .76 —

Similarities of colors with different wavelengths (lower half, Ekman 1954) and residuals of 1D MDS representation (upper half) [B 4.1].
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MDS

Color similarities

® The |4 colors where then projected by MDS (trying to
preserve similarities) into 2D and 3D representations. The
2D representation shows that the red-violet (wavelength
434 nm) is perceived quite similar to blue-violet
(wavelength 674 nm)

434
% 445

Ordinal MDS representations for color proximities in 2D and 3D [B 4.1, 4.3]

32



MDS
Multidimensional scaling (MDS)*

® More formally,an MDS algorithm is given the original
distances pj; (called proximities) between data points i and j

® MDS algorithm then tries to find a low-dimensional (usually
2-3D) representation X for the points (X is just used to
denote the Euclidean coordinates of the projected data
points)

® More formally, MDS tries to find representation X that
minimizes the error function (called stress, by convention)

or =Y (fpiy) — dij(X))*

1<J

where dj(X) is the Euclidean distance between the data
points i and j in representation X;and f is a function that

defines the MDS model (next slide).
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MDS

Multidimensional scaling (MDS)

or =Y (f(pij) — dij (X))’

i<j

® The choice of f defines the MDS model. For example:

f(pi)=pij - absolute MDS (linear model, = PCA)
f(pi)=b piji- ratio MDS (linear model)
f(pij)=a+b pijj - interval MDS (linear model)
f(pij)=a+b log pj - useful in psychology

f(pi) is any monotonically increasing function (ordinal or

nonmetric MDS) - this would be the most important special
case of MDS

® The parameters of f (like a and b above) are optimized at the
same time as the representation X (the details of the
optimization algorithms is outside the scope of this course)

® [t is conventional to denote the “transformed proximities”, or
“approximate distances”, by d-hats, d,; = f(p;;).
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MDS

Shepard diagram

® There are two classical visualizations of MDS: Shepard diagram
(shows the goodness of fit) and Scree plot (shows optimal

dimensionality of the data)

® Shepard diagram shows the distances dj (white circles) and
disparities f(pj) (filled circles) as a function of proximities pj

distances / disparities
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2D MDS

proximities

1D MDS
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Shepard diagrams of
2D and 1D MDS
projections of the

color data.



MDS

Performance of MDS

® MDS is tries to preserve the large distances at the expense of small ones, hence, it can
“collapse” some small distances on the expense of preserving large distances

® A projection is trustworthy (precision) if k closest neighbors of a sample on the projection
are also close by in the original space.A projection preserves the original neighborhoods
(recall) if all k closest neighbors of a sample in the original space are also close by in the

0.95F

0.9

0.851

0.75¢

0.7¢

0.651

0.6

0.55

k
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— Sammon
— NMDS
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’Prec,s,on HC, linear order
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5 10 15 20 25 30 35 40 45

5C

0.95r
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— SOM
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k
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Precision and recall as a function of the neighborhood size k for a yeast

36

data set. Non-metric (ordinal) MDS (NMDS) is shown in blue. Larger
precision and recall is better.

Figures are from Kaski,
Nikkila, Oja,Venna,
Toronen, Castrén,
Trustworthiness and
metrics in visualizing

similarity of gene
expression, BMC
Bioinformatics 2003,
4:48.



MDS

Performance of MDS

® Relatively better recall, worse precision

37



MDS

Performance of MDS

® MDS algorithms typically have running times of the
order O(N?), where N is the number of data items.

® This is not very good: N=1/,000 data items are ok, but
N=1,000,000 is getting very slow.
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MDS

Performance of MDS

® Some solutions: use landmark points (i.e., use MDS only
on a subset of data points and place the remaining
points according to those, use MDS on cluster

centroids etc.), use some other algorithm or
modification of MDS.

® MDS is not guaranteed to find the global optimum of
the stress (cost) function, nor it is guaranteed to
converge to the same solution at each run (many of the

MDS algorithms are quite good and reliable, though)
39



Classical Metric Multidimensional Scaling

First major steps by Young and Householder (1938):
Classical metric MDS is defined as linear generative model
x = W& with ) ¢ RVM and wTw =1y,
where the observed data X and the latent variables are assumed
to be centered.

Pairwise affinities given by scalar products S;; = <xi7 xj>

Gram matrix: S = [S;i]1</ j<n =X'X = (W=Z)"(WZ=)

== W W= == =
Find solution by eigenvalue decomposition of Gram matrix S:
S=UANUT = (A'2uTT(AY2uT)
5 = = Iy ,AY2UT eigenvalues sorted in descending order




Classical Metric MDS and PCA

- PCA needs data coordinates X, not needed in metric MDS
- PCA decomposes covariance, which is proportional to XX'

Cxx X XX = VApcaV' =5 Zpcr =1y, VX

- metric MDS decomposes Gram matrix

S=X"X=UANmpsU' = Zyps = lMXn/\ll\/{[%S u'

- |t is easy to show that

=PCA = =MDS /
T 1/2 T
To do so, replace X by its singular value decomposition

X=VXUu'



Example Data
swiss roll: 1000 three-dimensional samples

95—

g0t

-10 5



MDS

Pairwise Euclidean distances:

chary(X,x) = (dy(x'.x),...,dy(x",x))
charg(XZ, (x,£)) = (ds(€4.€),...,ds(€.€))

error = stress (least squared error (LSE))
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Some MDS Variants

Nonmetric MDS (Shepard 1962) and (Kruskal 1964) focuses
on rank information ranks of closenesses between points
instead of the specific interpoint distances:
- Proximities can be transformed to distances by
F(O(x', %)) ~ dy(x', x/) with a monotonic transformation f

-+ Optimization done by minimizing

1 o L
EnMDS = \/3 Z wij(dx (X', %) — de(&'. &)
]

AS W,'jd;g(xi. Xj)

where the normalizing constant is a = Z,J



Sammon Mapping

i — dii (X ’
ar:Z(p (X))

MDS
i<j Pij

® |t is considered a non-linear approach as the projection

cannot be represented as a linear combination of the original
variables as possible in techniques such as principal

component analysis.

45


http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Gradient_descent

MDS

w

Sammon Mapping

o =3 (pij — dij(X))°

i<j Pig

® The minimization can be performed either by gradient
descent. The number of iterations need to be experimentally
determined and convergent solutions are not always
guaranteed. Many implementations prefer to use the first
Principal Components as a starting configuration.

46


http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Gradient_descent

MDS
Sammon Mapping

ij—din :
Orzz(p (X))

i<j Pig

® The Sammon mapping increases the importance of small
distances and decreases the importance of large distances
— nonlinear mapping

47


http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Gradient_descent

Summary

How to project items into lower dimension when
pairwise distance/similarity is known

MDS, PCA try to preserve large distances

No algorithm can generally preserve faithfully all
features of the original data

Next: SOM and CCA
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More literature on dimension
reduction

Additional reading on PCA: any book on matrix algebra
Additional reading on MDS:

- Borg, Kroenen, Modern multidimensional scaling: theory and applications.
Springer 1997.

- Buja, Swayne, Littman, Dean, XGvis: interactive data visualization with
multidimensional scaling, 1998. (XGVis and GGobi are open source
visualization tools that include MDS; MDS is also available, e.g., in SAS
toolkit and GNU R [e.g., cmdscale and isoMDS in package MASS])

NIPS 2005 tutorial by Saul, Spectral methods for dimensionality reduction,
http://www.nips.cc/Conferences/2005/Tutorials/

Jarkko Venna 2007, Academic Dissertation
Lee & Verleysen, 2007. Nonlinear dimensionality reduction. Springer.

Contents (today and Thursday):

|. Dimension reduction methods: overview
2. Principal component analysis (PCA)

3. Multidimensional scaling (MDS)
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