
MTTS1

Dimensionality Reduction
and Visualization

Spring 2014
Jaakko Peltonen

Lecture 3: Linear feature extraction

Feature extraction
● feature extraction: (more general) transform the original

to (k < d).

Example transformations:
Linear transformations: Principal component analysis (PCA),
Linear Discriminant Analysis (LDA), Factor Analysis (FA).
Some metric learning methods are similar to linear
transformations.

Nonlinear transformations: Self-Organizing Map (SOM),
Multidimensional scaling (MDS), manifold embedding methods.

Often based on assuming the data lies on a low-dimensional
manifold.

● Today's lecture: linear transformations and kernel-based
nonlinear transformations

Principal Component Analysis 1
Definitions:
● PCA finds a low-dimensional linear subspace such that when x is

projected there information loss (here dened as variance) is
minimized.

● Finds directions of maximal variance.
● Equivalent to finding eigenvalues and eigenvectors of the

covariance matrix.
● Can also be derived probabilistically (see Tipping, Bishop (1999)

Mixtures of Probabilistic Principal Component Analyzers. Neural
Computation 11: 443-482).

Principal Component Analysis 2

Figure 6.1: Principal components analysis centers the sample and
then rotates the axes to line up with the directions of highest
variance. If the variance on z

2
 is too small, it can be ignored and we

have dimensionality reduction from two to one. From: E. Alpaydın.
2004. Introduction to Machine Learning. Copyright The MIT Press.

Principal Component Analysis 3
Solution:

● More formally: data

● Center data: , where

● Compute the covariance matrix

● Diagonalize S using Spectral Decomposition:
where

● C is an orthogonal (rotation) matrix satisfying
 (identity matrix), and

● D is a diagonal matrix whose diagonal
elements are the eigenvalues

● i:th column of C is the i:th eigenvector.

● Project data vectors yt
 to principal components

(equivalently).

Principal Component Analysis 4
● Observation: covariance matrix

of fztgNt =1 is a diagonal matrix
D whose diagonal elements
are the variances.

where the diagonal elements
of D are the variances

● Eigenvalues variances

Figure 6.1: Principal components
analysis centers the sample and
then rotates the axes to line up with
the directions of highest variance. If
the variance on z

2
 is too small, it

can be ignored and we have
dimensionality reduction from two
to one. From: E. Alpaydın. 2004.
Introduction to Machine Learning.
Copyright The MIT Press.

Principal Component Analysis 5
● Idea: in the PC space (z space), k first principal components

explain the data well enough, where k < d.

● ”Well enough” means here that the reconstruction error is small
enough. More formally:

● Project the data vectors yt
 into using , where

 is a matrix containing the first k columns of C.
(”W = C(:,1:k)”).

● is a representation of yt
 in k dimensions.

● Project back to yt
 space:

● The average reconstruction error can be shown to be

Principal Component Analysis 6
● Result: PCA is a linear projection of data from into such

that the average reconstruction error is
minimized.

● Proportion of Variance (PoV) Explained:

● Some rules of thumb to find a good k: , or PoV
curve has an ”elbow”.

● Dimension reduction: it may be sufficient to use instead of to
train a classifier etc.

● Visualization: plotting the data to using k = 2 (first thing to do
with new data).

● Data compression: instead of storing the full data vectors yt it may
be sufficient to store only and then reconstruct the original
data using , if necessary.

● For example, DCT (an approximate of PCA) in JPEG.

Principal Component Analysis 7
Matlab implementation:

● Learning: (suppose samples are columns of X)

function [W,m] = pca_learning(X,k)

m = mean(X,2);

[W,~] = eigs(cov(X'), k);

● Use: (suppose x_new is a column vector)

Z = W' * bsxfun(@minus, X, m);

z_new = W' * (x_new - m);

Principal Component Analysis 7
Probabilistic formulation

● Probabilistic model (generative model of the observed data):

● Prior for the hidden variables:

Principal Component Analysis 8
Probabilistic formulation

● Probabilistic model (generative model of the observed data):

● Prior for the hidden variables:

● Hidden variables can be marginalized out:

Benefits of using the probabilistic formulation:
● a probabilistic way to handle the tailing eigenvalues
● various priors can be applied to W and m
● standard algorithms for probabilistic models (e.g. EM)
● provides connection to other probabilistic models

PCA: Toy Example
● Same example used previously for feature selection

(forward/backward selection)

● Toy data set consists of 100 10-dimensional vectors from two
classes (1 and 0)

● First two dimensions x
1

t and x
2

t: drawn from Gaussian with unit

variance and mean of 1 or -1 for the classes 1 and 0 respectively.

● Remaining eight dimensions: drawn from Gaussian with zero
mean and unit variance, that is, they contain no information of the
class.

● Optimal classifier: if x
1
+x

2
 is positive the class is 1, otherwise the

class is 0.

● Use nearest mean classifier.

● Split data in random into training set of 30+30 items and
validation set of 20+20 items

PCA: Toy Example cont.
● PCA done to the previous 10-dimensional toy example.
● The first column of C shows the special role of x

1
 and x

2
:

PCA: Toy Example cont.

PCA: OptDigits Example
● The OptDigits data set contains 5620 instances of digitized

handwritten digits in range 0-9.

● Each digit is a vector: 8 x 8 = 64 pixels, 16 grayscales.

PCA: OptDigits Example cont.

Lecture notes for E Alpaydin 2004 Introduction to Machine Learning, copyright The MIT Press (v1.1)

PCA: OptDigits Example cont.

Lecture notes for E Alpaydin 2004 Introduction to Machine Learning, copyright The MIT Press (v1.1)

PCA: Discussion
● PCA can be used as a preprocessing step for decorrelation

(notice that the principal components zt

i
 are uncorrelated)

● If different components i of the observations, xt

i
, are scaled

differently, PCA will concentrate on the largest ones

● Solution: rescale each component i to unit variance before
applying PCA

● Probabilistic PCA can be

● used in case of missing values

● extended in many ways

Linear Discriminant Analysis 1
● PCA is an unsupervised method (class information is not usually

used).

● Linear Discriminant Analysis (LDA) is a supervised method for
dimensionality reduction in classication problems.

● As PCA, LDA can be accomplished with standard matrix algebra
(eigenvalue decompositions etc.). This makes it relatively simple
and useful.

● PCA is a good general purpose dimensionality reduction method,
LDA is a good alternative if we want to optimize the separability
of classes in a specic classication task, and are happy with a
dimensionality of less than the number of classes (k < K).

Linear Discriminant Analysis 2
● Originally introduced for two-class problems, idea: transform the

data so that the classes (c1, c2) are separated as much as
possible

● Within-class scatter matrix

where and m i is the number of samples in ci

● Between-class scatter matrix

● Optimize projection matrix to maximize ratio of between-class
to within-class scatter:

 Optimized matrix given by
 eigenvectors of

Linear Discriminant Analysis 3
● Multi-class case is similar:

● Within-class scatter matrix

where and m i is the number of samples in ci

● Between-class scatter matrix

● Optimize projection matrix to maximize ratio of between-class
to within-class scatter:

 Optimized matrix given by solving
 the generalized eigenvalue problem

Linear Discriminant Analysis 4
● The rank of the within-class scatter matrix is upper-bounded by

m-n, and the rank of the between-class scatter matrix is upper
bounded by n-1. ---> LDA cannot give more projection directions
than n-1 (number of classes - 1).

● Classification in the low-dimensional space can be done e.g. by
finding the nearest class centroid of a new point

● LDA projection maximizes mean-squared distance between
classes in the projected space, not the same as minimizing
classification error. Pairs of classes that are far apart dominate
the LDA criterion, and can leave overlap between the remaining
classes.

LDA: OptDigits Example

Lecture notes for E Alpaydin 2004 Introduction to Machine Learning, copyright The MIT Press (v1.1)

Independent Component Analysis 1
● Imagine you are in a room with two people talking simultaneously

● Two microphones in different locations are recording the sound

● The microphones record the signals as time series of amplitudes,
x

1
(t) and x

2
(t)

● Each signal is a weighed average of the speech signals of the
speakers denoted by s

1
(t) and s

2
(t), so that

where a

11
, a

12
, a

21
, a

22
 are mixing parameters (depending e.g. on

distances from microphones to speakers)

● We want to estimate the original sources s
1
(t) and s

2
(t) using only

the recordings x
1
(t) and x

2
(t).

● Called the cocktail party problem.

Independent Component Analysis 2

All ICA related figures on these slides are from Hyvärinen and Oja, Independent Component Analysis:
Algorithms and Applications, Neural Networks 2000

Independent Component Analysis 3
● If we knew the mixing parameters we could solve the sources by

a linear matrix equation, but here the mixing parameters are
unknown.

● It turns out the source signals and mixing parameters can be
solved using assumptions about statistical properties of the
source signals. It is enough to assume the sources are
statistically independent.

Independent Component Analysis 4
● ICA was originally proposed for applications similar to the cocktail

party problem, but is now used for a lot of applications, for
example analysis of EEG recordings measured from several
sensors attached to the scalp.

● ICA can be used for feature extraction. Does not have to be for
time series signals.

Independent Component Analysis 5
Basis functions
(components) found
by ICA from patches
of natural images.

Each block in an
actual image would
be a linear
combination of
these patches.

Independent Component Analysis 6
Definition (generative model):

● Assume we observe n linear mixtures x1,...,xn of n independent
components

● Each mixture xj and each independent component sk is a random
variable, observed values are samples of the random variables

● Assume the mixtures and independent components are zero-
mean (can be achieved by substracting mean from observations)

● In vector notation: x = [x1,...,xn]T, s = [s1,...,sk]T, matrix A contains
the elements aij . Denote the jth column of A by aj. Then

● We want to estimate A, or equivalently an unmixing matrix W so
that . Closely related to blind source separation.

Independent Component Analysis 7
Assumptions:

● To solve the ICA task we assume the underlying sources are
statistically independent.

● We also assume their distributions are nongaussian

● We do not assume we know the distributions

● We assume the mixing matrix is square (”as many microphones
as voices”)

Ambiguities:

● We cannot determine variances of the independent components
(ICs): any scaling of a source sj can be compensated in A.

● We cannot determine order of sources (any permutation matrix
applied to sources can be compensated in A)

Independent Component Analysis 8
Assumptions:

● To solve the ICA task we assume the underlying sources are
statistically independent.

● We also assume their distributions are nongaussian

● We do not assume we know the distributions

● We assume the mixing matrix is square (”as many microphones
as voices”)

Ambiguities:

● We cannot determine variances of the independent components
(ICs): any scaling of a source sj can be compensated in A.

● We cannot determine order of sources (any permutation matrix
applied to sources can be compensated in A)

Independent Component Analysis 9
Simple example: How to measure inpendence?

Theory: y1,y2 are independent if
p(y1,y2) = p1(y1)p2(y2)

Then, for expectations,
E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)}

Being uncorrelated is not
Original sources Mixed with enough to be independent,
distributed in a A=[2 3; 2 1]. but independent implies uncorrelated.
square, indep. Mixtures are –-> Search for ICs often constrained to

 not indep. uncorrelated components.

Independent Component Analysis 10
● Why independent components are assumed

to be nongaussian: if two variables are IID
Gaussian with variance 1, any orthogonal
transform of the variables has the same
distribution as the original variables →
ICs could only be estimated up to an
orthogonal transform!

● Nongaussianity turns out to be a good criterion for independence:
central limit theorem--> a sum of indep. variables tends towards a
Gaussian distribution

● Idea of ICA: optimize an unmixing matrix W so that the unmixed
variables are as nongaussian as possible!

● To estimate just one component by ,
maximize nongaussianity of with respect to w

● To find more ICs, maximize again, constrain to be uncorrelated
with previous ICs

Independent Component Analysis 11
Measures of nongaussianity:

● Kurtosis

simple to estimate, nice theoretical properties, e.g.
kurt(x1+x2)=kurt(x1)+kurt(x2) for independent variables.
But can be sensitive to outliers – not robust.

● Negentropy

where (f : prob. density function)

and ygauss is a Gaussian variable with the same mean and
covariance metrix as in y. Idea: Gaussian variables are known to
have the highest entropy of all variables with the same second-
order statistics. The smaller the entropy of y is compared to a
Gaussian variable, the more nongaussian y is.

Negentropy is invariant under invertible linear transformations.

Independent Component Analysis 12
● Approximation of negentropy:

where ki are positive constants, v is a zero-mean unit-variance
Gaussian variable, and Gi are some nonquadratic functions, e.g.

● Mutual information:

For unit-variance yi: (C: constant)

Minimizing mutual information = maximizing negentropy (when
estimates constrained to be uncorrelated)

● Maximum likelihood: strongly related to minimization of mutual
information. But requires good estimation of densities, at least are
they ”subgaussian” (kurtosis < 0) or ”supergaussian” (> 0)

Independent Component Analysis 13
Computation of ICs (fastICA algorithm):
● Function g for derivative of the nonquadratic function. For G1, G2:

g1(u) = tanh(a1u), g2(u) = u exp(−u2/2)
● Preprocessing: substract mean from data; then whiten data to

have unit covariance matrix: set where
 is the eigenvalue decomposition of the
covariance matrix, , and

● FastICA:

1. Choose an initial (e.g. random) weight vector w

2. Let

3. Let

4. If not converged, go to 2.

● Further components: rerun fastICA, decorrelate from previous ICs after
each iteration: set then renormalize by

Independent Component Analysis 14
● Once ICs have been found they can be used in dimensionality

reduction, e.g. by feature selection methods discussed previously.
(Or try ranking by nongaussianity (negentropy), etc.)

Some applications of ICA:
● separating artifacts in Magnetoencephalography (MEG) data
● finding hidden factors in financial data like stock portfolios or

cashflow data of stores
● representing natural images
● separating user's signal from interfering signals in

telecommunications

Kernel based methods

● The methods so far on the lecture all optimize linear
transformations of the form y=Wx.
● Resulting low-dimensional coordinates Wx are linear

combinations of the original coordinates.
● It is possible to optimize such transformations after first

performing a fixed nonlinear mapping xmapped = f(x), so that
y=Wxmapped = Wf(x).
● If f is simple to compute, then W can be learned as usual from

the computed f(x) values.
● Resulting low-dimensional coordinates Wf(x) are linear

combinations of the f(x) coordinates but are nonlinear
mappings of the original x.

● Problem: computational complexity increases as dimensionality of
f(x) increases.

● Kernel trick: it is often enough to be able to compute inner
products between f(x)Tf(x'), without explicitly knowing f(x) or f(x')

Kernel PCA 1

● Denote the nonlinear feature transformation here by
and the set of l transformed input samples by

● The covariance matrix we need in PCA is then

● We must compute each eigenvalue and eigenvector V for
the matrix satisfying .

● It turns out the solutions V lie in the span of the data: they are
linear combinations of . The eigenvalue
problem becomes
where

for some coefficients

● The eigenvalue problem can be written in terms of the
coefficients!

Kernel PCA 2

● Inserting the equation for V in terms of the coefficients, the
eigenvalue problem becomes where
K is an l x l inner-product (kernel) matrix:

 is a column vector with entries

● To solve the eigenvalue problem, solve instead
for nonzero eigenvalues.

● Principal component projection directions are normalized to have
unit norm, . Inserting the definitions, that becomes

thus the square root of becomes the normalization factor for
● To project a test point x onto the k:th eigenvector:

● None of the operations require the actual transformed features,
the inner products between them are enough!

Kernel PCA 3

● Many interesting kernels can be defined that satisfy the properties
of an inner product between some transformed features, but the
transformed features themselves would be expensive/impossible
to compute!

● Polynomial kernel of order d:
(corresponds to a transformation onto all products of d original
input values)

● Radial basis function:
● Sigmoid kernel:

● After the kernels have been computed, computational complexity
depends on the size of the kernel matrix but not on the original
input dimensionality or the transformed input dimensionality

parameters of
the kernel

Kernel PCA 4

Using a nonlinear kernel implicitly causes PCA to be done in a
high-dimensional space nonlinearly related to the original
features. Dotted lines = contours of constant principal
component feature value

All kernel PCA pictures from Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Kernel principal component analysis. Proceedings of ICANN'97, 1997.

Random Projections
● Simple idea: Project using a random matrix W,

e.g. draw each element from a normal distribution

● Mathematical proofs of some good properties

● Very simple and computationally light method

● Surprisingly impressive empirical results

● This has gained popularity in ML research (Keywords: random
projections, compressed sensing, extreme learning machine,
random features)

References
● Hervé Abdi and Lynne J. Williams. Principal Component Analysis. Wiley

Interdisciplinary Reviews: Computational Statistics, 2, 433-459, 2010
https://www.utdallas.edu/~herve/abdi-awPCA2010.pdf

● Aapo Hyvärinen and Erkki Oja. Independent Component Analysis:
Algorithms and Applications. Neural Networks, 13(4-5):411-430, 2000
http://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf

● Tao Li, Shenghuo Zhu, and Mitsunori Ogihara. Using discriminant analysis
for multi-class classification: an experimental investigation. Knowl Inf Syst,
10(4): 453–472, 2006.
https://users.cs.fiu.edu/~taoli/pub/kais-discriminant.pdf

● Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel
principal component analysis. Proceedings of ICANN'97, 1997.
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.31.3580&rep=rep1&type=pdf

● Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, and
Klaus-Robert Müller. Fisher discriminant analysis with kernels. Proceedings
of NNSP'99, 1999.
http://luthuli.cs.uiuc.edu/~daf/courses/learning/Kernelpapers/00788121.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

