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Feature extraction

» feature extraction: (more general) transform the original X & RY
to z € R¥ (k<d).

Example transformations:

Linear transformations: Principal component analysis (PCA),
Linear Discriminant Analysis (LDA), Factor Analysis (FA).
Some metric learning methods are similar to linear
transformations.

Nonlinear transformations: Self-Organizing Map (SOM),
Multidimensional scaling (MDS), manifold embedding methods.

Often based on assuming the data lies on a low-dimensional
manifold.

» Today's lecture: linear transformations and kernel-based
nonlinear transformations



Principal Component Analysis 1

Definitions:

PCA finds a low-dimensional linear subspace such that when x is
projected there information loss (here dened as variance) is
minimized.

Finds directions of maximal variance.

Equivalent to finding eigenvalues and eigenvectors of the
covariance matrix.

Can also be derived probabilistically (see Tipping, Bishop (1999)
Mixtures of Probabilistic Principal Component Analyzers. Neural
Computation 11: 443-482).
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Figure 6.1: Principal components analysis centers the sample and
then rotates the axes to line up with the directions of highest
variance. If the variance on zZ is too small, it can be ignored and we

have dimensionality reduction from two to one. From: E. Alpaydin.
2004. Introduction to Machine Learning. Copyright The MIT Press.
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Solution:

More formally: data x = {x'}M, xt € RY
Center data: yt = x! — m,where m =5 x'/N
Compute the covariance matrix S = Ztny/N

Diagonalize S using Spectral Decomposition: C'SC = D
where

« Cis an orthogonal (rotation) matrix satisfying
ccT = cT¢ = 1 (identity matrix), and

« D is a diagonal matrix whose diagonal
elements are the eigenvalues ), > . > )\;,>0

i:th column of C is the i:th eigenvector.

Project data vectors y'to principal components 2t — CT t
(equivalently yt = Cz! )-
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Observation: covariance matrix

of fztgnt =1 is a diagonal matrix
D whose diagonal elements

are the variances.

ZZZT/N = ZCTnyC/N
t t

Figure 6.1: Principal components
- - - analysis centers the sample and
Cc Z yy /N | C=C SC=D, then rotates the axes to line up with
: the directions of highest variance. If
the variance on z, is too small, it

can be ignored and we have

where the dlago_nal elements dimensionality reduction from two
of D are the variances p. — 52 to one. From: E. Alpaydin. 2004.
1 zi Introduction to Machine Learning.

. . Copyright The MIT Press.
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Principal Component Analysis 5

* Idea: in the PC space (z space), k first principal components
explain the data well enough, where k < d.

* "Well enough” means here that the reconstruction error is small
enough. More formally:

«  Project the data vectors y'into R* using 2t = W7 y?, where
W < R9xkis a matrix containing the first k columns of C.
("W = C(:,1:Kk)").

«  5tis arepresentation of y'in k dimensions.
* Project 5t back to y'space:
§'=Wz' = Ww 'y’
« The average reconstruction error can be shown to be

1 d
S ST 3Pt
t

i=k+1



Principal Component Analysis 6

Result: PCA is a linear projection of data from R9 into R¥such
that the average reconstruction error £ = E [Hy - 9“2} is
minimized.

Proportion of Variance (PoV) Explained: PoV = Zf.‘zl A/ 27:1 A

« Some rules of thumb to find a good k: PoV ~ 0.9 or PoV
curve has an "elbow”.

Dimension reduction: it may be sufficient to use 2!instead of %!>
train a classifier etc.

Visualization: plotting the data to 2fusing k = 2 (first thing to do
with new data).

Data compression: instead of storing the full data vectors ytit may
be sufficient to store only 2t and then reconstruct the original
data using 9f — W2!, if necessary.

* For example, DCT (an approximate of PCA) in JPEG.



Principal Component Analysis 7

Matlab implementation:

* Learning: (suppose samples are columns of X)
function [W,m] = pca learning (X, k)
m = mean (X, 2);
[W,~] = eigs(cov(X'"), k);

* Use: (suppose x_new is a column vector)
Z = W' * bsxfun (@minus, X, m);

z new = W' * (x new - m);
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Probabilistic formulation
* Probabilistic model (generative model of the observed data):

p(xt | 25, W, m, 0?) = N(Wzt +m, o?l)
«  Prior for the hidden variables: p(zt) = N(O0,I)

B
-8




Principal Component Analysis 8

Probabilistic formulation

» Probabilistic model (generative model of the observed data):
p(xt | zt, W, m, 02) = N(Wzt + m,o?l)

«  Prior for the hidden variables: p(z!) = N(0,1)

* Hidden variables can be marginalized out:

p(xt | W.m. o) = [ plx’ | 2/, W.m. %) p(z')dz"
= N(m,WW ' + 52

Benefits of using the probabilistic formulation:

* a probabilistic way to handle the tailing eigenvalues

* various priors can be applied to W and m

» standard algorithms for probabilistic models (e.g. EM)
» provides connection to other probabilistic models



PCA: Toy Example

Same example used previously for feature selection
(forward/backward selection)

Toy data set consists of 100 10-dimensional vectors from two
classes (1 and 0)

First two dimensions x.' and x,': drawn from Gaussian with unit
variance and mean of 1 or -1 for the classes 1 and 0 respectively.

Remaining eight dimensions: drawn from Gaussian with zero
mean and unit variance, that is, they contain no information of the
class.

Optimal classifier: if X, *x, is positive the class is 1, otherwise the
class is O.

Use nearest mean classifier.

Split data in random into training set of 30+30 items and
validation set of 20+20 items



PCA: Toy Example cont.

PCA done to the previous 10-dimensional toy example.
The first column of C shows the special role of x and x.;:
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PCA: Toy Example cont.
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TOY1.pc < predict(TOY1.pca) - 0 2

eqgscplot(TOY1.pe[,1:2],type="n",

xlab="first principal component",

ylab="second principal component™)
text(T0Y1.pc[,1:2],1labels=as.character(TOY1[, "Class"]))

first principal component




PCA: OptDigits Example

* The OptDigits data set contains 5620 instances of digitized
handwritten digits in range 0-9.

* Each digitis a R%4 vector: 8 x 8 = 64 pixels, 16 grayscales.

961



PCA: OptDigits Example cont.

(a) Scree graph for Optdigits
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PCA: OptDigits Example cont.

Optdigits after PCA
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Lecture notes for E Alpaydin 2004 Introduction to Machine Learning, copyright The MIT Press (v1.1)



PCA: Discussion

* PCA can be used as a preprocessing step for decorrelation
(notice that the principal components z‘i are uncorrelated)

. If different components i of the observations, xti, are scaled
differently, PCA will concentrate on the largest ones

» Solution: rescale each component i to unit variance before
applying PCA

» Probabilistic PCA can be
» used in case of missing values
* extended in many ways



Linear Discriminant Analysis 1

PCA is an unsupervised method (class information is not usually
used).

Linear Discriminant Analysis (LDA) is a supervised method for
dimensionality reduction in classication problems.

As PCA, LDA can be accomplished with standard matrix algebra
(eigenvalue decompositions etc.). This makes it relatively simple
and useful.

PCA is a good general purpose dimensionality reduction method,
LDA is a good alternative if we want to optimize the separability
of classes in a specic classication task, and are happy with a
dimensionality of less than the number of classes (k < K).



Linear Discriminant Analysis 2

Originally introduced for two-class problems, idea: transform the
data so that the classes (c4, ¢;) are separated as much as
possible

Within-class scatter matrix 37 =" > (x — %) (x — %)’
I XE¢;

- 1 B i ;
where x;, = o erc,- x and m; is the number of samples in ¢;
Between-class scatter matrix

< < = < =
Xp = (X1 — X2) (X1 —X2)

Optimize projection matrix ¢to maximize ratio of between-class
to within-class scatter:
A Optimized matrix ¢ given by
o'y, d : R
J(®) = | . | eigenvectors of IRDIN
|®T 3, |



Linear Discriminant Analysis 3

Multi-class case is similar:

Within-class scatter matrix ﬁjw = Z Z(x —x)x =%
i=1 Xec;

where x; = % <o, X and m; is the number of samples in ¢
1 1

Between-class scatter matrix

n
Sp=) miE-%& - %
i=1
Optimize projection matrix ¢pto maximize ratio of between-class
to within-class scatter:
e Optimized matrix ¢ given by solving
_ PR Ed the generalized eigenvalue problem

J(@) = = N .
1T 2, d| =, =1%,P



Linear Discriminant Analysis 4

The rank of the within-class scatter matrix is upper-bounded by
m-n, and the rank of the between-class scatter matrix is upper
bounded by n-1. ---> LDA cannot give more projection directions
than n-1 (number of classes - 1).

Classification in the low-dimensional space can be done e.g. by
finding the nearest class centroid of a new point

LDA projection maximizes mean-squared distance between
classes in the projected space, not the same as minimizing
classification error. Pairs of classes that are far apart dominate
the LDA criterion, and can leave overlap between the remaining
classes.



LDA: OptDigits Example

Optdigits after LDA
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Lecture notes for E Alpaydin 2004 Introduction to Machine Learning, copyright The MIT Press (v1.1)



Independent Component Analysis 1

* Imagine you are in a room with two people talking simultaneously
» Two microphones in different locations are recording the sound
» The microphones record the signals as time series of amplitudes,
x.(t) and x_(t)
* Each signal is a weighed average of the speech signals of the
speakers denoted by s (t) and s (t), so that
x1(t) = ans) +as:
x2(t) = axis1 + ans:
where a , a ,a_,a  are mixing parameters (depending e.g. on
distances from microphones to speakers)
- We want to estimate the original sources s (t) and s,(t) using only
the recordings x (t) and x,(t).

» Called the cocktail party problem.



Independent Component Analysis 2
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Figure 1: The original signals.
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Figure 2: The observed mixtures of the source signals in Fig. 1

All ICA related figures on these slides are from Hyvérinen and Oja, Independent Component Analysis:
Algorithms and Applications, Neural Networks 2000



Independent Component Analysis 3

» If we knew the mixing parameters we could solve the sources by
a linear matrix equation, but here the mixing parameters are
unknown.

« It turns out the source signals and mixing parameters can be
solved using assumptions about statistical properties of the
source signals. It is enough to assume the sources are
statistically independent.
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Figure 3: The estimates of the original source signals, estimated using only the observed signals in Fig. 2. The
original signals were very accurately estimated, up to multiplicative signs



Independent Component Analysis 4

» ICAwas originally proposed for applications similar to the cocktail
party problem, but is now used for a lot of applications, for
example analysis of EEG recordings measured from several
sensors attached to the scalp.

* |CA can be used for feature extraction. Does not have to be for
time series signals.



Independent Component Analysis 5

Basis functions
(components) found
by ICA from patches
of natural images.

Each block in an
actual image would
be a linear
combination of
these patches.

Figure 4: Basis fimctions in ICA of natural images. The input window size was 16 x 16 pixels. These basis
functions can be considered as the independent features of images.



Independent Component Analysis 6

Definition (generative model):

* Assume we observe n linear mixtures xu,...,X, of n independent
components
Xj=da;s|1+dpsy+ ... +ajsy,, forall j

» Each mixture x;and each independent component siis a random
variable, observed values are samples of the random variables

* Assume the mixtures and independent components are zero-
mean (can be achieved by substracting mean from observations)

 In vector notation: x = [X1,...,X,]", S = [S1,...,S«]", matrix A contains
the elements a;. Denote the jth column of A by a;. Then

n
X=ASs = 2 a;s;
i=1
* We want to estimate A, or equivalently an unmixing matrix W so
that ¢ — Wy Closely related to blind source separation.



Independent Component Analysis 7

Assumptions:

* To solve the ICA task we assume the underlying sources are
statistically independent.

* We also assume their distributions are nongaussian
* We do not assume we know the distributions

* We assume the mixing matrix is square ("as many microphones
as voices”)

Ambiguities:

» We cannot determine variances of the independent components
(ICs): any scaling of a source s; can be compensated in A.

* We cannot determine order of sources (any permutation matrix
applied to sources can be compensated in A)
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Assumptions:

* To solve the ICA task we assume the underlying sources are
statistically independent.

* We also assume their distributions are nongaussian
* We do not assume we know the distributions

* We assume the mixing matrix is square ("as many microphones
as voices”)

Ambiguities:

» We cannot determine variances of the independent components
(ICs): any scaling of a source s; can be compensated in A.

* We cannot determine order of sources (any permutation matrix
applied to sources can be compensated in A)



Independent Component Analysis 9

Simple example: How to measure inpendence?
Theory: y1,y2 are independent if

p1y2) = pi(y1)p2(y2)

Then, for expectations,

E{hi(y1)h2(y2)} = E{h1(31)}E{h2(12)}

Being uncorrelated is not

Original sources  Mixed with enough to be independent,
distributed in a A=[2 3; 2 1]. but independent implies uncorrelated.
square, indep. Mixtures are —> Search for ICs often constrained to

not indep. uncorrelated components.



Independent Component Analysis 10

*  Why independent components are assumed
to be nongaussian: if two variables are 11D
Gaussian with variance 1, any orthogonal
transform of the variables has the same
distribution as the original variables —

ICs could only be estimated up to an
orthogonal transform!

* Nongaussianity turns out to be a good criterion for independence:
central limit theorem--> a sum of indep. variables tends towards a
Gaussian distribution

* |dea of ICA: optimize an unmixing matrix W so that the unmixed
variables are as nongaussian as possible!

. i i — wl v~ —
To estimate just one component by ), — w'x = 3 iwix;
maximize nongaussianity of w/’x Wiulrespectio w

» Tofind more ICs, maximize again, constrain to be uncorrelated
with previous ICs



Independent Component Analysis 11

Measures of nongaussianity:
- Kurtosis kurt(y) = E{)*} —3(E{)*})?

simple to estimate, nice theoretical properties, e.g.
kurt(x1+xz2)=kurt(xs)+kurt(xz) for independent variables.
But can be sensitive to outliers — not robust.

* Negentropy J(y) = H(Ygaz,tss) - H(y)

where () = — [ f(y)log /(y)dy

and Ygauss IS @ baussian variaoie with the same mean and
covariance metrix as in y. Idea: Gaussian variables are known to
have the highest entropy of all variables with the same second-
order statistics. The smaller the entropy of y is compared to a
Gaussian variable, the more nongaussian y is.

Negentropy is invariant under invertible linear transformations.



Independent Component Analysis 12

)4
»  Approximation of negentropy: J(y) ~ Y kL[E{G;i(y)} —E{G;(v)}]?
i=1
where ki are positive constants, v is a zero-mean unit-variance

Gaussian variable, and G: are some nonquadratic functions, e.g.

1
Gi(u) = a—llogcoshalu, Ga(u) = —exp(—u?/2) 1<a <2

m
* Mutual information: /(y, y;,....y,) =Y H(yi) — H(y)
=

For unit-variance y;: I(y1,Y2, s Vn) = E_ ZJO/i) (C: constant)
i

Minimizing mutual information = maximizing negentropy (when
estimates constrained to be uncorrelated)

* Maximum likelihood: strongly related to minimization of mutual
information. But requires good estimation of densities, at least are
they "subgaussian” (kurtosis < 0) or "supergaussian” ( > 0)



Independent Component Analysis 13
Computation of ICs (fastICA algorithm):
* Function g for derivative of the nonquadratic function. For G, G,:
g1(u) = tanh(aiu), ga(u) = u exp(-u?/2)
* Preprocessing: substract mean from data; then whiten data to
have unit covariance matrix: set ¥ — ED!/2E!x where
E{xx!} = EDEis the eigenvalue decomposition of the
covariance matrix, D = diag(d;.....d,)and p-1/2 — diag(djl/{,,,’d;l/z)

» FastICA:
1. Choose an initial (e.g. random) weight vector w
2. Lt wh =E{xg(w'x)} - E{g'(w'x)}w
>l w—ww|
4. If not converged, go to 2.

e Further components: rerun fastICA, decorrelate from previous ICs after
. L T ;
each iteration: set w,. ;| =w,1 — 21]?:1 W W)W, then renormalize by

_ [T ’
Wpil =Wpi1/ Wr+1Wp+tl
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Once ICs have been found they can be used in dimensionality
reduction, e.g. by feature selection methods discussed previously.
(Or try ranking by nongaussianity (negentropy), etc.)

Some applications of ICA:

separating artifacts in Magnetoencephalography (MEG) data
finding hidden factors in financial data like stock portfolios or
cashflow data of stores

representing natural images

separating user's signal from interfering signals in
telecommunications



Kernel based methods

» The methods so far on the lecture all optimize linear
transformations of the form y=Wx.

* Resulting low-dimensional coordinates Wx are linear
combinations of the original coordinates.

* ltis possible to optimize such transformations after first
performing a fixed nonlinear mapping Xmapped = f(X), SO that
Y=WXnappea = WF(X).

« If fis simple to compute, then W can be learned as usual from
the computed f(x) values.

* Resulting low-dimensional coordinates Wf(x) are linear
combinations of the f(x) coordinates but are nonlinear
mappings of the original x.

* Problem: computational complexity increases as dimensionality of
f(x) increases.

* Kernel trick: it is often enough to be able to compute inner
products between f(x)"f(x'), without explicitly knowing f(x) or f(x')



Kernel PCA 1

* Denote the nonlinear feature transformation here by ¢
and the set of ¢transformed input samples by &(x;),...,d(x)

* The covariance matrix we need in PCA is then
¢
_ 1
C=y > B(x;)B(x;)"
j=1

« We must compute each eigenvalue A > 0 and eigenvector V for
the matrix satisfying \v = CV.

* It turns out the solutions V lie in the span of the data: they are
linear combinations of &(x1),...,®(x¢) . The eigenvalue
problem becomes \(®(x;) - V) = (&(x;) -CV) forall k =1,....¢,
where 4

V= Z a;P(x;) for some coefficients aq,...,ap

1=1

» The eigenvalue problem can be written in terms of the
coefficients!



Kernel PCA 2

* Inserting the equation for V in terms of the coefﬁments the
eigenvalue problem becomes (AKa = K’ where

K'is an ¢ x ¢inner-product (kernel) matrix: K;; := (&(x;) - $(x;))
« is a column vector with entries o, ..., ay

* To solve the eigenvalue problem, solve instead )\ = K«
for nonzero eigenvalues.

» Principal component projection directions are normalized to have
unit norm, (V*.V*) = 1. Inserting the definitions, that becomes
£

1= Y afak(@(x) - 8(x;)) = (0F - Kak) = My(ak - at)

ij=1
thus the sfquare root of A\ becomes the normalization factor for «
» To project a test point x onto t?e k:th eigenvector:

) =3 ak(@x) - 9(x)

=1
* None of the operations require the actual transformed features,
the inner products between them are enough!

k



Kernel PCA 3

* Many interesting kernels can be defined that satisfy the properties
of an inner product between some transformed features, but the
transformed features themselves would be expensive/impossible
to compute!

«  Polynomial kernel of order d: k(x,y) = (x - y)?
(corresponds to a transformation onto all products of d original
input values)

* Radial basis function: k(x,y) = exp (—|lx - y[?/(2 0?))
« Sigmoid kernel: k(x,y) = tanh(k(x-y) +O)

___\parameters of
—— the kernel

» After the kernels have been computed, computational complexity
depends on the size of the kernel matrix but not on the original
input dimensionality or the transformed input dimensionality



Kernel PCA 4

l inea}f PCA

kernel PCA
. R?

RrR2

k) = ()

Using a nonlinear kernel implicitly causes PCA to be done in a
high-dimensional space nonlinearly related to the original
features. Dotted lines = contours of constant principal
component feature value

All kernel PCA pictures from Bernhard Schélkopf, Alexander Smola, and Klaus-Robert Miller.
Kernel principal component analysis. Proceedings of ICANN'97, 1997.



Random Projections

Simple idea: Project using a random matrix W,
e.g. draw each element from a normal distribution

Mathematical proofs of some good properties
Very simple and computationally light method
Surprisingly impressive empirical results

This has gained popularity in ML research (Keywords: random
projections, compressed sensing, extreme learning machine,
random features)
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