Graph Visualization

What is a Graph?

Relationships between concepts

Information
Visualisation

|

Network Visualisation

|

Network

Mathematics and Graph
Theory

|

Graph Drawing

|

Graph

. o |] e

......

I T A
A

1 — v e Sl

Nz

- G ,“l : o i 4 o .M:I,‘. 5 e
https:// www.fraetalus.co m/steve/stuff/ipmap/7- —
== N] N

g _
~

Graph Analytics

Visualization and statistics are the two basic toolkits one can use
on graphs

Complex questions are asked when studying graphs

Easy
« Min, max, average, quartiles ::} Excel can do this! ’ Y:
‘ -y

* Exact queries, search

Harder

« Patterns, trends, correlations
* Changes over time, context
- Anomalies, data errors > Visualization can do this!

* Geographical representation

What is a Graph

Graphs, denoted as ¢ = (V, E), are structures
formed by a set of vertices, V (also called
nodes) and a set of edges, EF = {v, w}, that
are connections between pairs of vertices.

Magwene et al. Genome
Biology 2004 5:R100

Graphs are everywhere

-
)

e

Co-expression Network

«

Chemical Compound

Protein Structure

Basic Concepts

— The order of the graph G, n = |V|
— The size of the graph G, m = |E]|

— A graph is planar if it can be drawn in a plane
without any of the edges crossing

Max-Flow = 21

Image source: http://people.seas.harvard.edu/~joshlee/ 2 3

Image source:
http://www.sagemath.org/doc/thematic_tutorials/linear_progra
mming.html/

fay

N

aaaaaa

Basic Concepts

— The degree of a node, deg(v), is the number of
edges that connect to the node

— A graph of density 1 is called complete

— The density of the graph G,

Basic Concepts (Il)

— Apathfromvtouinagraph G = (V,E) is a sequence of
edges in E starting at vertex vy = v and ending at vertex
Vg+1 = U.

— The path is simple if no vertex is repeated

Basic Concepts (Il)

— The length of the path is the number of edges on it

— The distance between two nodes is the shortest path
connecting them.

— A graph is connected if there exist paths between all pairs of
vertices; otherwise, it is disconnected.

— The minimum number of edges that would need to be removed
from G in order to make the graph disconnected is the edge-
connectivity of the graph.

Basic Concepts (lll)

— A cycle is a simple path that begins and ends at the same
vertex.

— A graph that contains on cycle is acyclic and is also called

forest.

— A connected forest is called a tree.

Basic Concepts (V)

— A subgraph G, = (S,Eg) of G = (V,E) is
composed of a set of vertices S € V and a set of
edges E; € E. G is then a supergraph of G.

Basic Concepts (V)

— A connected acyclic subgraph that includes all
vertices in VV is called a spanning tree of G.

e A spanning tree has exactly n — 1 edges

 |f the edges have weights, the spanning tree with
smallest total weights is called the minimum spanning
tree (there may exist several of them)

http://www.i-cherubini.it/mauro/blog/2006/04/06/minimum-spanning-tree-of-
urban-tapestries-messages/

Challenges

Graph layout
Scale
Navigation

Problem: Bowl of spaghetti!

Graph Layout Styles
e Straight line

N
* Orthogonal L ‘o_t

Graph Drawing Aesthetics

Aesthetics are the graphic properties

layout algorithm try to optimise.

* Crossings: B

— Minimization of the total crossing &
number

* Area

— Minimization of drawing area

— Only meaningful to some layout.
Example, grid drawing with integer

coordinates
* Aspect ratio
— The ratio of the long and short edge °

length of its covering rectangle

— Ideal case is to obtain any aspect
ratio in a given range (so the drawing

can fit into differently shaped screen

Graph Drawing Aesthetics

e Edge length (several variations):
— minimization of the sum of the edge length;
— minimization of the maximum edge length;

— minimization of the variance of the edge length;
— only meaningful to some layout algorithm.
 Bends (several variations):
— minimization of the total number of bends;
— minimization of maximum number of bends on an edge;

— minimization of the variance of the number of bends on the edge:

— trivially satisfied by straight-line drawing.

Graph Drawing Aesthetics

Angular resolution:

— maximization of the smallest angle;

— especially relevant for straight-line drawing.
Symmetry:

— display the symmetries of the graph in drawing

— reflective and rotational symmetry
Orthogonality:

— how well the edges are parallel to the axes, and
how well the nodes match to a grid;

Upward flow:
— for directed graph only,

— how well edges are pointing to a specified
direction (usually upward);

Basic Graph Layout Techniques

Force-direct layout |

Adjacent matrix
Arc-diagram
Circular layout

Force-Direct Layout of Graph

e We already know:

— The most common graphical representation of a network is a
node-link diagram, where each node is shown as a point, circle,
polygon, or some other small graphical object, and each edge is
shown as a line segment or curve connecting two nodes.

 Force-Direct Layout idea:

— We imagine the nodes as physical particles that are initialized
with random positions, but are gradually displaced under the
effect of various forces, until they arrive at a final position. The
forces are defined by the chosen algorithm, and typically seek to
position adjacent nodes near each other, but not too near.

Force-Direct Layout of Graph

e Specifically, imagine that we simulate two forces: a repulsive force
between all pairs of nodes, and a spring force between all pairs of
adjacent nodes.

 Letd be the current distance between two nodes, and define the
repulsive force between them to be

Fr = Kr /d?

(a definition inspired by inverse-square laws such as Coulomb’s law), where
Kr is some constant.

* If the nodes are adjacent, let the spring force between them be
Fs = Ks(d — L)

(inspired by Hooke’s law), where Ks is the spring constant and L is the rest
length of the spring (i.e., the length “preferred” by the edge, ignoring the
repulsive force)

Force-Direct Layout of Graph

* Implementation

— To implement this force-directed layout, assume that
the nodes are stored in an array nodes|[], where
each element of the array contains a position X, vy
and the net force force x, force_ y acting on the
node.

— The forces are simulated in a loop that computes the
net forces at each time step and updates the positions
of the nodes, hopefully until the layout converges to
some good distributed positions.

Force-Direct Layout of Graph

1L=...//spring rest length

2 K_r=...// repulsive force constant
3 K_s=...// spring constant

4 delta_t=... // time step

5

6 N = nodes.length

7

8 // initialize net forces
9fori=0to N-1

10 nodesli].force_x=0

11 nodesli].force_y=0

12

13 // repulsion between all pairs
14 for il =0to N-2

15 nodel = nodes][il]

16 fori2=il+1toN-1

17 node2 = nodesJi2]

18 dx = node2.x - nodel.x
19 dy = node2.y - nodel.y
20 ifdx!=0ordy!=0

21 distanceSquared = dx *dx + dy*dy
22 distance = sqrt(distanceSquared)
23 force = K_r / distanceSquared

24 fx = force * dx / distance

25 fy = force * dy / distance

26 nodel.force_x = nodel.force_x - fx
27 nodel.force_y = nodel.force_y - fy
28 node2.force_x = node2.force_x + fx
29 node2.force_y = node2.force_y + fy
30

31 // spring force between adjacent pairs
32 foril=0to N-1

33 nodel = nodes[il]

34 forj=0to nodel.neighbors.length-1
35 i2 = nodel.neighbors]j]

36 node2 = nodesJ[i2]

37 ifil<i2

38 dx = node2.x - nodel.x

39 dy = node2.y - nodel.y

40 ifdx!=0ordy!=0

41 distance = sqrt(dx*dx + dy*dy)

42 force = K_s*(distance- L)

43 fx = force*dx / distance

44 fy = force*dy / distance

45 nodel.force_x = nodel.force_x + fx
46 nodel.force_y = nodel.force_y + fy
47 node2.force_x = node2.force_x - fx
48 node2.force_y = node2.force_y - fy
49

50 // update positions

51fori=0toN-1

52 node = nodesJi]

53 dx=delta_t*node.force_x

54 dy=delta_t*node.force_y

55 displacementSquared = dx*dx + dy*dy

56 if (displacementSquared > MAX_DISPLACEMENT_SQUARED)

57 s = sqrt(MAX_DISPLACEMENT_SQUARED / displacementSquared)
58 dx = dx *s
59 dy = dy*s

60 node.x = node.x + dx
61 node.y = node.y + dy

Force- Dlrect Layout of Graph

(1 L=...// spring rest length

2 K_r = ... // repulsive force constant
3 K_s=...// spring constant

4 delta_t=... // time step

5

6 N = nodes.length
\\7 y,
/ 8// initialize net forces)
9fori=0to N-1

10 nodesli].force_x=0

_ 11 nodes]i].force_y =0)
12

3 // repulsion between all pairs \
14 foril =0to N-2

15 nodel = nodes][il]

16 fori2=il+1toN-1

17 node2 = nodesJi2]

18 dx = node2.x - nodel.x
19 dy = node2.y - nodel.y
20 ifdx!=0ordy!=0

21 distanceSquared = dx *dx + dy*dy
22 distance = sqrt(distanceSquared)
23 force = K_r / distanceSquared

24 fx = force * dx / distance

25 fy = force * dy / distance

26 nodel.force_x = nodel.force_x - fx
27 nodel.force_y = nodel.force_y - fy

33
34
35
36
37
38
39
40
41
42
43
44
45
46

28 node2.force_x = node2.force_x + fx
\72-2 node2.force_y = node2.force_y + fy

32 foril=0to N-1

1 // spring force between adjacent pairs \

nodel = nodesJil]
for j =0 to nodel.neighbors.length-1
i2 = nodel.neighbors]j]
node2 = nodesJ[i2]
ifil<i2
dx = node2.x - nodel.x
dy = node2.y - nodel.y
ifdx!=0ordy!=0
distance = sqrt(dx*dx + dy*dy)
force = K_s*(distance-L)
fx = force*dx / distance
fy = force*dy / distance
nodel.force_x = nodel.force_x + fx
nodel.force_y = nodel.force_y + fy

47 node2.force_x = node2.force_x - fx
\Q node2.force_y = node2.force_y - fy /
49
@) // update positions \
51fori=0toN-1
52 node = nodesJi]
53 dx=delta_t*node.force_x
54 dy=delta_t*node.force_y
55 displacementSquared = dx*dx + dy*dy
56 if (displacementSquared > MAX_DISPLACEMENT_SQUARED)
57 s = sqrt(MAX_DISPLACEMENT_SQUARED / displacementSquared)
58 dx = dx *s
59 dy = dy*s
60 node.x = node.x + dx
Ql node.y = node.y + dy)

Force-Directed Layout

* Nodes are modeled as physical bodies that are
connected through springs (edges)

— Pseudo code

— Example

e High running time

— The typical force-directed algorithms are in
general considered to have a running time
equivalent to O(n3) , where n is the number of
nodes of the input graph.

Force-Direct Layout of Graph

Force-directed node-link diagrams of a 43-node, 80-edge network.
Left: a low spring constant makes the edges more flexible.
Right: a high spring constant makes them more stiff

Vertex Issues

Shape
Color
Size
Location
Label

Edge Issues

Color
Size

Label
Form

Polyline, straight line, orthogonal, grid,
curved, planar, upward/downward, ...

Force-Direct Layout of Graph

e Limitations and Improvements

— Difficult to choose a proper delta_t :If the time step delta_t
(used at lines 53, 54) is too small, many iterations will be
needed to converge. On the other hand, if the time step is
too large, or if the net forces generated are too large, the
positions of nodes may oscillate and never converge. Line
56 imposes a limit on such movement.

— As a minor optimization, line 56 compares squares (i.e.,
displacementSquared>MAX_DISPLACEMENT_SQUARED
rather than displacement >MAX_DISPLACEMENT), to avoid
the cost of computing a square root (unless the if
succeeds)

Force-Direct Layout of Graph

e Limitations and Improvements

— The GEM[16] algorithm speeds up convergence by
decreasing a “temperature” parameter as the layout
progresses, allowing nodes to move larger distances earlier
in the process, and then constraining their movements
progressively toward the end.

Force-Direct Layout of Graph
e Limitations and Improvements

— A minor improvement to the above pseudocode
would be to detect if the distance between two nodes
is zero (by adding an else clause to the if statement at
line 20), and in that case to generate a small force
between the two nodes in some random direction, to
push them apart. Without this, if the two nodes
happen to have the same neighbors, they may remain
forever “stuck” to each other.

Force-Direct Layout of Graph

e Limitations and Improvements

— There are infinitely many pairs of (K7, Ks) values
that cause the layout to converge to the same
final “shape” (i.e., the same angles between
edges, differing only in edge lengths). A simpler
user interface would allow the user to change a
single parameter corresponding to a kind of ratio
of the strength of the two forces. The final shape
of the layout will depend on both K /Ks and L.

Force-Direct Layout of Graph

e |nthe pseudocode above, the computation of repulsive
forces is a bottleneck, since it requires O(N?) time, where
N is the number of nodes.

* Possible solution:

— We could eliminate the repulsive force, and instead simulate
springs of length L between all adjacent nodes, as well as
springs of length 2L between all nodes that are two edges
apart, and possibly springs of length 3L between nodes that are
three edges apart, etc., up to some limit. The extra springs
would help to spread apart the network, as did the original
repulsive forces. As long as the number of edges is not too high,

and there aren’t too many springs, the computation time may
be much less than O(N?) .

Force-Direct Layout of Graph

Limitations and Improvements

As can be seen in the left example, the

‘ multiple crossings of edges can make it unclear
2N when certain edges pass close to a node or are
¥z connected to a node. Also, in such layouts
o< where the nodes are rather closely packed,
P there isn’t much room left to display labels or
A\ P 5
@AY ; other information associated with each node
, b Aﬂ‘iﬂ@h\,\g." /3
L |'i-‘.‘-"{ 7
L2 s Y,
N\ T/ NEERER A /N .
\JLF \'i‘%"‘“\" A/ This leads to the next layout method
L NN
=0

Force-directed node-link diagram of a
random 50-node, 200-edge graph.

What’s the Problem?

It looks nice but is it domg. anythmg useful?

e® . '. .D‘:. ...

Typical complait R

Caused by forcé=< s '.
¢ : 'f': o :

old, but still popﬁl.‘a: e

... ...‘..: @ " ;. .:’/.;::”O o o © ®
Connected node’s attr-agi; thet repel -
W /e

Yeast interaction network in Gephi

38

The problem of visualizing
large graphs

Some major issues in the visualization of large graphs:

* Readability: optimization of aesthetic criteria
e Scalability: fast computation
* Visual complexity: interaction tools that allow users to

limit the amount of information displayed on the screen
— overview of the graph
— details on demand
— user’s mental map preservation

Brainstorming Exercise 1

e How could we scale graph layouts to more
than a few hundred nodes?

— Possible strategy: use 3D
e Why or why not?

Basic Graph Layout Techniques

e Force-direct layout
[- Adjacent matrix]
e Arc-diagram

e Circular layout

Adjacent Matrix Representations

An adjacent matrix contains one row and one column for each node of a
network.

— Given two nodes i and j, the entry located at (i, j) and (j, i) in the matrix
contain information about the edge(s) between the two nodes.

— Typically, each cell contains a boolean value indicating if an edge exists
between the two nodes.

— If the graph is undirected, the matrix is symmetric.

Pros:

— Visualizing a network as a matrix has the advantage of eliminating all edge
crossings, since the edges correspond to non-overlapping entries.

Cons:

— The ordering of rows and columns greatly influences how easy it is to interpret
the matrix.

— Difficult to follow a path in the graph.
— Limited by screen resolution.

An Example

Adjacency matrix visualizations of a 43-node, 80-edge network. Left: with a random
ordering of rows and columns.

An Example

,.f;.
/ -

m;\?wf‘

I I TRl
LR e

] L] L] 05
am 34
am 3z

’f?“@?\

L]
{7
ha

SATAY

DWW D R MWD DR N WD R R LW W WA NDRDSRRORMMMNMGWLSO DN
ww

Adjacency matrix visualizations of a 43-node, 80-edge network. Left: with a random
ordering of rows and columns. Right: after barycenter ordering and adding arc
diagrams. The multiple arc diagrams are redundant, but reduce the distance of eye
movements from the inside of the matrix to the nearest arcs.

An Example

] L] L] 05
am 34
am 3z

AN

I I TRl
LR e

o

z:\

]
A

n

[]
N
SATAY

L]

n

n

n

ww

Interestingly, by bringing nodes “closer” to their neighbors with the barycenter heuristic,
this pushes the edges (filled-in matrix cells) closer to the diagonal of the matrix, making
certain patterns appear in the positions of the cells.

Adjacent Matrix Representations

Certain subgraphs (subsets of nodes and edges in the graph) correspond to easy-to-

recognize patterns in the adjacency matrix, given an appropriate ordering of rows
and columns.

cliques — T
,/ , /""/- \ ----:-\'\\‘\
/,f'f‘Elll.I. o7
/7 Keets
() 38 é IIIEI::I
37 /4& = I:l
20 36 |f% "::::
/("l [N]
..f/ N =
I ‘\Ic L
4
.\-.-.‘ I I(- L] - : L]
\ blcllque'§—1§: i
\\“-\.I , " : : - . "
\)CI;' .
f
clusters 4 "
.;' T
AN o
EE-E- AR R BN L -]

Patterns corresponding to interesting subgraphs appear along the diagonal of an
appropriately ordered adjacency matrix (say, via barycenter ordering)

Another Example

r‘i.r.-'ci:\fla -T' - "E‘-'-. b T -rl".-l‘ 'r1-.:|-F’. - | - . o | IR N I ‘
s h "1‘...3.. -"'Jullll-"' - e

L =
T : :‘r'}‘ "'!: .:I}_'_RI;: “:ill .:.h ‘:'IL::.- =Mei" % .'__-\.1.4 -I"'rl' .:n.."l 4 - 2 -‘ . St . . o .. W ta T 1 .
-I.II'I"II"'LJ- L 'f _l-l"I 'l.' . .h\I{...'.I-# :II. 1-_.,"_:?|'|-'., ’ x . ; 1 . B = L]
et ey, AR TR AR SR Bl s o g e W ' - .
i VT .'i.-.‘-"' i B ..'"}_.'-' -"'-'-'.'--'i "t = & .__. . a . ks
vt ALY T E R D T S % S T Gy . : y = . = .
A R L Y e o HENC Al e - -1 . &
mlied 2R ROTh A IR v gEIE R B D '- " :
"'- s m l'.l.h‘:‘F:.A'fJ‘ Jl'\}::..‘_f" -Jll] I- --'II "-w_llr-.-r " . = £ = - a = =]
. L] - -— - Ty & - .
.‘.IIFI ! -'ln. '-: > '-'."‘. .‘.‘:'-' ri'.r..- '::_"""H.-r 3) f'l'l,:h'. .l"': . i : " " -
f_a- Ry . n e = .?il-‘ I‘:I.(l:l"'| - [i i
o Tra S VR e Ve T s i o | - " By | o &,
- e B R LT B ke LAY L4 : . <.
:..hu' :: “a.."h- |_|:'l'£_ (I | = o :_. I:I_‘_"-h_l.] . "'.
1 ..|"‘I."{ ""-l_ I".‘f .ﬂfl,-"‘ . :‘-‘ _:--1 - L -I*l:‘.i. :I _.-.r.- g E F N - -é . ' P
- mef = = g v o Y mey 0 b o R - 8- i] = =
LR T o Sl e S TR Lo ' s g el &5 :
':1 j-.q; - :-'II.VG-I- I;I.l -l IJ"-=I"- .I'-I -.-__‘}.:I'l -t :L‘ ll--'t-_:lEL. = : . e -' '
.fi..'.vlf '-..z‘l'l].‘ J.-It‘ TR .ﬁ-_‘ "'. - ! b] !'.:.-'.__l‘ ;'.!l' ':] ['; - : - -_ ... b
*a o m el Ly iy W _ . -
..:'-"‘_‘I. _.I“-:!:llr: --I':l; Il‘f'. " -:,.‘n:‘ ;": ‘I'"'IL_-:.!-".,"- :"-..';.‘.;.‘ L.: . . . I‘ [)) - -

The adjacency matrix of a 210-vertex graph with 1505 edges composed of 17 dense
clusters. On the left, the vertices are ordered randomly and the graph structure can hardly
be observed. On the right, the vertex ordering is by cluster and the 17-cluster structure is
evident. Each black dot corresponds to an element of the adjacency matrix that has the
value one, the white areas correspond to elements with the value zero.

Matrix diagonalization in itself is an important application of clustering algorithms.

Other advantages:

Matrices have the added advantage of also being able to display information related
to each edge within the entries of the matrix. For example, if the edges are
weighted, this weight can be shown in the color of the entry.

Entries can also contain small graphics or glyphs, as in Brandes and Nick’s
“gestaltmatrix” where each entry contains a glyph showing the evolution of the
edge over time.

Limitations:

An important disadvantage of using adjacency matrices, however, is that the
space they require is O(N?) where N is the number of nodes.

Brainstorming Exercise 2

 Which graph analysis tasks are better
supported by the node-link view, and which
are better supported by the matrix view?

e How does the above answer change with
increasing size of the graph?

Graph Visualization Tools

e Sigma.js JavaScript library

 Gephi open source graph viz platform

e Many more!

Basic Graph Layout Techniques

e Force-direct layout
e Adjacent matrix
[- Arc-diagram]
e Circular layout

Arc Diagrams and Barycenter Ordering

* |tis sometimes useful to layout
the nodes of a network along a
straight line, in what might be
called linearization. With such
a layout, edges can be drawn as
circular arcs, yielding an arc
diagram.

e Itisimportant that the arcs in
the diagram all cover the same
angle, such as 180 degrees.
This way, an arc between nodes
n1l and n2 will extend outward
by a distance proportional to
the distance between nl and
n2, making it easier to
disambiguate the arcs.

Arc diagrams of a 43-node, 80-edge network

Arc Diagrams and Barycenter Ordering

To program a subroutine that draws an arc
covering angle 8 connecting points A = A

(x,y1) and B = (x,y,), we need to find the
center C of the arc. d
%
5 C
Image to the right shows a right triangle connecting
A, C and the midpoint between A and B. The length
of one side of the triangleisd = |y; — y,1/2, and 5

we also have tan (g) =d/e, hence C = (x +
e, T yz) where e = d/(tan (9))

An arc covering angle 0,
with center C

Arc Diagrams and Barycenter Ordering

Sorting the nodes:

We might order the nodes to reduce the total length of the arcs, making the topology
of the network easier to understand.

Left: with a random ordering
and 180-degree arcs.
Middle: after applying the
barycenter heuristic to order
the nodes.

Right: after changing the
angles of the arcs to 100
degrees.

i ‘4’!"'
KK/

|/

A= 28
NI
Xy '/" S0
\{ ,/ 22
38
O —— 37
N

Arc Diagrams and Barycenter Ordering

Sorting the nodes:

We might order the nodes to reduce the total length of the
arcs, making the topology of the network easier to
understand. There are many algorithms for computing such
an ordering. However, we will discuss an easy-to-

program technique called the barycenter heuristic.

The barycenter heuristic is an iterative technique where
we compute the average position (or “barycenter”) of the
neighbors of each node, and then sort the nodes by this
average position, and then repeat. Intuitively, this should
move nodes closer to their neighbors, making the arcs
shorter.

Arc Diagrams and Barycenter Ordering

An implementation of barycenter heuristic method:

we will assume that the nodes[] array is fixed, and use a second data structure,
called orderedNodes|[], to store the current ordering of nodes to use for the arc
diagram.

We will use the term index to refer to a node’s fixed location within nodes|[], and
position to refer to the node’s current location within orderedNodes|[]. Each
element of orderedNodes|[] will store an index and an average. For example, if
orderedNodes[3].1ndex == 7, then orderedNodes[3] corresponds to
nodes|[7], and nodes| 7] is to be displayed at position 3 in the arc diagram. To
find the index corresponding to a given position, we can simply perform a look-up in
orderedNodes|[]. To perform an inverse look-up, we define a function that
computes the position p of a node given its index 1:

function positionOfNode(1)
for p = 0 to N-1
1T orderedNodes[p]-index == 1
return p

Arc Diagrams and Barycenter Ordering

Given the positionOfNode(), we can implement the inner body of
the barycenter heuristic like the following:

// compute average position of neighbors
for 11 = 0 to N-1 function positionOfNode(i)
nodel = nodes[il] fmﬂ$=:8tﬂﬁ‘3 (01 ind]
-y = - 1 oraerediNodes -1ndaex == 1
pl = pOilthﬂOfNOde(ll) et p
sum = p

for J = 0 to nodel.neighbors.length-1
12 = nodel.neighbors|j]
node2 = nodes[i12]
p2 = positionOfNode(i12)
10 sum = sum + p2
11 orderedNodes[pl].average = sum/ (nodel.neighbors.length + 1)
12
13 // sort the array according to the values of average
14 sort(orderedNodes, comparator)

©Co~NOOOUOPA~WNE

Lines 1 through 14 would be inside a loop that iterates several times,
hopefully until convergence to a near-optimal ordering.

Arc Diagrams and Barycenter Ordering

In practice, rather than converging, the algorithm sometimes enters a cycle. Thus, a
limit on the number of iterations should be imposed, stopping the loop if the limit is
reached (one rule of thumb is to limit the number of iterations to kN, where N is the
number of nodes and k is a small positive constant). Simple ways to improve the
algorithm would be to (1) detect if it has converged to an ordering that does not
change with additional iterations, and in such a case stop the loop; (2) detect cycles,
and similarly stop the loop.

Line 14 of the pseudo-code sorts the contents of orderedNodes[]
according to a comparator defined by the calling code. Typical programming
environments provide an efficient O (NlogN) implementation of sort (such
as gsortin C).

Arc Diagrams and Barycenter Ordering

Other sorting of the nodes:

The nodes within an arc diagram might be sorted in other
ways. For example, if each node has an associated label,
and represents an object with a size, time-stamp, or other
attribute, the nodes in the arc diagram might be sorted
alphabetically, or by size, time, etc., helping the user to
analyze the network. Furthermore, every node has a
degree, as well as additional metrics that can be computed,
and any of these might be used to sort the nodes within
the linear ordering of an arc diagram.

Arc Diagrams and Barycenter Ordering

The linear arrangement of nodes in an arc diagram has many advantages.

As already mentioned, there is room to the right of each node for a long text label,
if desired. The space to the right of nodes can also be used to display small
graphics, such as line charts for each node, possibly to show a quantity associated
with the node that evolves with time.

Arc Diagrams and Barycenter Ordering

The linear arrangement of nodes in an arc diagram has many advantages.

As already mentioned, there is room to the right of each node for a long text label,
if desired. The space to the right of nodes can also be used to display small
graphics, such as line charts for each node, possibly to show a quantity associated
with the node that evolves with time.

Arc diagrams can also be incorporated as an axis within a larger graphic or
visualization

Arc Diagrams and Barycenter Ordering

Despite the advantages of arc diagrams, and the room available to draw labels beside
nodes, if there are too many edges that cross each other, it becomes difficult to read the
edges. We next introduce an alternative visualization technique that eliminates edge

crossings.

Basic Graph Layout Techniques

e Force-direct layout
e Adjacent matrix

e Arc-diagram

| Circular layout]

Circular Layouts

e Position nodes on the circumference of a circle, while
the edges are drawn as curves rather than straight
lines.

NN
050 N 080
% %9900~ o
2 0O Q | 'O PR
2 ANVNUALPS
o\ \'\A‘- AT SO
39 A NN 70 w884
O N X KVHEOAZ o v B Y S 2
) SN XA O ? eletele
¢ O\ ‘\"‘mw:’f’ 00 ERRC
33 G IS O & araney =
AN | >Ry 174 () 16 39 PR< .., B AR ?®
11 O 3R ﬁ»» ST P S RBRY, AR 20
SN W Jo; SRS <7< IS\
o AL LB =017 [PR/ o
I L (S SRS 0=)
. L4 AN Y o .Iﬂ_f_,,-rr-"' AN M- O6
7V ITRNRRRA K O 2g 13 () // \N VZrle
'3__6 / vy ' \‘} SR\ O N\ ‘.lb‘l 2
TN e i
& O o /| '1 \ ® O o é & .%5*‘.'?%%@"{. 2 ¢
Vo JO000H Y EEECEA N
o
CFouwR®

Circular Layouts

Again, the order chosen for the nodes greatly influences how clear the visualization
is. The barycenter heuristic can be applied again to this layout, with a slight
modification to account for the “wrap around” of the circular layout.

Circular Layouts

To correctly adapt the barycenter heuristic to this layout, consider how to compute
the “average position” of the neighbors of a node.

As an example, if one neighbor is positioned at an angle of 10 degrees, and
another is at an angle of 350 degrees, simply taking the numerical average yields

(10 + 350)/2 = 180 degrees, whereas the intuitively correct barycenter is at 0
degree (or 360 degrees).

So, to correctly compute the barycenter, we do not compute averages of angles.
Instead, we convert each node to a unit vector in the appropriate direction, add
these unit vectors together, and find the angle of the vector sum.

Define the function angle(p)=p*2*pi1/N giving the angle of a node at position p.
Then, the pseudo-code for the barycenter heuristic becomes

1 // compute average position of neighbors
2 for 11 = 0 to N-1

3 nodel = nodes[il]

4 pl = positionOfNode(il)

5* sum_x = cos(angle(pl))

6* sum_y = sin(angle(pl))

7 for J = 0 to nodel.neighbors.length-1
8 12 = nodel.neighbors|j]

9 node2 = nodes[i2]

10 p2 = positionOfNode(i12)

11* sum_Xx = sum X + cos(angle(p2))
12* sum_ y = sum_y + sin(angle(p2))
13* orderedNodes[pl].average

14* = angleOfVector(sum_x,sum_y)
15

16 // sort the array according to the values of average
17 sort(orderedNodes, comparator)

function angleOfVector(x, vy)

hypotenuse = sqrt(x*x + y*y)
theta = arcsin(y /7 hypotenuse)
iIT x<O0

theta = p1 - theta
// Now theta i1s In [-pi1/2,3*pi1/2]
iIT theta < O

theta = theta + 2*pi
// Now theta i1s i1In [O,2*pi]
return theta

Circular Layouts

Let C be the center of the circular layout.

To draw a curved arc between A and B on the
circumference, we draw a circular arc that is
tangent to the lines AC and BC. The center C’
of the arc can be found by finding the
intersection between a line through A that is
perpendicular to AC, and a line through B that
is perpendicular to BC.

More Examples

Thas length of .
BOJTHICT] REpIn
Ictal rumber ¢
BOOKEN By he
dhurwng e el
leck mark regre
wonds

e PR DIERENE
I SpCaKing
= o anoinar

Each shica nop
one debale, B
cleckwitg fror
Iz ihea liral el

ride at an
W PeNLE 10 AN

a5 spoken

Comparison of Layout Techniques

node-link | circular arc adjacency
diagram layout diagram matrix MatLink
Height of each node’s label | O(1/v/N) | O(x/N) | O(1/N) | O(ki/N) | O(kz/N)
(best) (worst)
Easy to perceive paths yes somewhat | somewhat no somewhat
Avoids edge crossings no no no yes yes
Avoids ambiguity from edges no yes yes yes yes
passing close to nodes
Can depict an ordering of nodes no yes yes yes yes
Can depict information | somewhat | somewhat | somewhat yes yes
about each edge
Node labels all have the same yes no yes yes yes

orientation, for easier reading

Arc diagrams

| N
FSs==isss=s==—==sr=c==sssoss:i=ssin HIPITEA) il _ it it Iii*I}i-"*j il s
[Wattenberg 02] [Heer 10] ' [Nagel 12]

[Dork 12] [Wattenberg 06] [Neumann 05]

r'(q-.. - -:% - i_i}h\ﬁ: i‘l
i g e

[Stefaner 12] [Steinweber 07] [Kerr 03]

