
Vector Field Visualization:
Introduction

What is a Vector Field?

Its solution gives rise of a “flow”, which
consists of densely placed particle
trajectories (i.e. the red curve shown in
the example).

A vector-valued function that assigns a
vector (with direction and magnitude)
to any given point.

It typically can be expressed as an
ordinary differential equation, i.e.
ODE.

A simple 2D steady vector field

Why It is Important?

Applications in Engineering and Science

Automotive design
[Chen et al. TVCG07,TVCG08]

Weather study [Bhatia and Chen et al. TVCG11]

4Oil spill trajectories [Tao et al. EMI2010]
Aerodynamics around missiles [Kelly et al. Vis06]

Applications in Computer Graphics

5

Parameterization
[Ray et al. TOG2006]

Fluid simulation [Chenney SCA2004,
Cao&Chen 2013]

Painterly Rendering [Zhang et al. TOG2006]

Smoke simulation [Shi and Yu TOG2005]

Shape Deformation
[von Funck et al. 2006]

Texture Synthesis [Chen et al. TVCG11b]

Why is It Challenging?
• Need to effectively visualize both magnitude + direction, often

simultaneously

• Additional challenges:

– large data sets

– time-dependent data

magnitude only direction only

Classification of Visualization Techniques

• Direct method: overview of vector field, minimal computation, e.g. glyphs,
color mapping.

• Texture-based: covers domain with a convolved texture, e.g., Spot Noise,
LIC, LEA, ISA, IBFV(S).

• Geometric: a discrete object(s) whose geometry reflects (e.g. tangent to)
flow characteristics, e.g. integral curves.

• Feature-based: both automatic and interactive feature-based techniques,
e.g. flow topology, vortex core structure, coherent structure, LCS, etc.

Flow Data
Data sources:

• flow simulation:

• airplane- / ship- / car-design

• weather simulation (air-, sea-flows)

• medicine (blood flows, etc.)

• flow measurement:

• wind tunnels, water channels

• optical measurement techniques

• flow models (analytic):

• differential equation systems
(dynamic systems)

Source: simtk.org

Source: speedhunter.com

Source: zfm.ethz.ch

Analytic

Simulated

Measured

Flow Data
Simulation:

• flow: estimate (partial) differential equation systems (e.g. a physical model)

• set of samples (3/4-dims. of data), e.g., given on a curvilinear grid

• most important primitive: tetrahedron and hexahedron (cell)

• could be adaptive grids

Analytic:

• flow: analytic formula, differential equation systems dx/dt (dynamical
system)

• evaluated where-ever needed (e.g. making plots of flow in MatLab)

Measurement:

• vectors: taken from instruments, often estimated on a uniform grid

• optical methods + image recognition, e.g.: PIV (particle image velocimetry)

Notes on Computational Fluid Dynamics

• We often visualize Computational Fluid
Dynamics (CFD) simulation data

• CFD is the discipline of predicting flow
behavior, quantitatively

• data is (often) the result of a

simulation of flow through or

around an object of interest

some characteristics of CFD data:
• large, often gigabytes
• Unsteady, i.e. time-dependent
• unstructured, adaptive resolution grids
• Smooth field

Image source: Google images

Comparison with Reality

Experiment

Simulation

Really close but not exact

2D vs. 2.5D Surfaces vs. 3D

2D flow visualization
• 𝑅2 flows
• Planes, or flow layers (2D cross sections through 3D)

2.5D, i.e. surface flow visualization
• 3D flows around obstacles
• boundary flows on manifold surfaces (locally 2D)

3D flow visualization
• 𝑅3 flows
• simulations, 3D domains

2D/Surfaces/3D – Examples

2D

Surface

3D

Image source: Alpha solutions

Image source: www.intechopen.com

Steady vs. Time-dependent
Steady (time-independent) flows:

• flow itself constant over time

• v(x), e.g., laminar flows

• simpler case for visualization

• well understood behaviors and features

Time-dependent (unsteady) flows:

• flow itself changes over time

• v(x,t), e.g., combustion flow, turbulent flow,
wind field

• more complex cases

• no unified theory to characterize them yet!

Time-independent
(steady) Data

• Dataset sizes over years (old data):

Time-
dependent
(unsteady) Data

• Dataset sizes over time:

../../../../../../../../david.mpg
../../../../../../../../david.mpg

Experimental Flow Visualization

Typically, optical Methods.

Understanding this experimental methods will help us understand
why certain visualization approaches are adopted.

With Smoke or Dye

• Injection of dye, smoke,
particles

• Optical methods:

• transparent object with
complex distribution of light
refraction index

• Streaks, shadows

../../../../../../../../036-Movie.mov
../../../../../../../../036-Movie.mov

Large Scale Dying

Source: weathergraphics.com

Source: ishtarsgate.com

Direct Methods

Direct FlowVis with Arrows

Properties:

• direct FlowVis

• frequently used!

• normalized arrows
vs. velocity coding

• 2D: quite useful,
3D: often problematic

• often difficult to understand in
complex cases, mentally integrate
to reconstruct the flow

Image source: tms.org

Issues of Arrows in 3D

Common problems:

• Ambiguity

• Perspective shortening

• 1D objects generally difficult
to grasp in 3D

Remedy:

• 3D-Arrows

(are of some help)

23

http://cs.swan.ac.uk/~csbob/te
aching/csM07-vis/

Arrows in 3D – Examples

Compromise:
arrows only in layers

Geometric-based Methods:
Integral curves and surfaces

Direct vs. Geometric FlowVis

Direct flow visualization:

• overview of current state of flow

• visualization with vectors popular

• arrows, icons, glyph techniques

Geometric flow visualization:

• use of intermediate objects,
e.g., after vector field integration over time

• visualization of development over time

• streamlines, stream surfaces

• analogous to indirect (vs. direct) volume visualization

Streamlines – Theory
Correlations:

• flow data v: derivative information

• dx/dt = v(x);
spatial points xRn, Time tR, flow vectors vRn

• streamline s: integration over time, also called
trajectory, solution, curve

• s(t) = s0 + 0ut v(s(u)) du;
seed point s0, integration variable u

• Property:
• uniqueness

• difficulty: result s also in the integral 
analytical solution usually impossible.

Streamlines – Practice
Basic approach:

• theory: s(t) = s0 + 0ut v(s(u)) du

• practice: numerical integration

• idea:
(very) locally, the solution is (approx.) linear

• Euler integration:
follow the current flow vector v(si) from the current streamline point si

for a very small time (dt) and therefore distance

Euler integration: si+1 = si + v(si) · dt,

integration of small steps (dt very small)

Euler Integration – Example

2D model data:

vx = dx/dt = -y

vy = dy/dt = x/2

Sample arrows:

True
solution:
ellipses.

0 1 2 3 4

0

1

2

Euler Integration – Example

Seed point s0 = (0 | -1)T;
current flow vector v(s0) = (1 |0)T;
dt = ½

vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

New point s1 = s0 + v(s0)·dt = (1/2 | -1)T;
current flow vector v(s1) = (1 |1/4)T;

vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

New point s2 = s1 + v(s1)·dt = (1 | -7/8)T;
current flow vector v(s2) = (7/8 |1/2)T;

vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

s3 = (23/16 | -5/8)T  (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T  (0.63 |0.72)T;

vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2

Euler Integration – Example

s4 = (7/4 | -17/64)T  (1.75 | -0.27)T;
v(s4) = (17/64 |7/8)T  (0.27 |0.88)T;

0 1 2 3 4

0

1

2

Euler Integration – Example

s9  (0.20 |1.69)T;
v(s9)  (-1.69 |0.10)T;

0 1 2 3 4

0

1

2

Euler Integration – Example

s14  (-3.22 | -0.10)T;
v(s14)  (0.10 | -1.61)T;

0 1 2 3 4

0

1

2

Euler Integration – Example
s19  (0.75 | -3.02)T; v(s19) (3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4

0

1

2

Euler Integration – Example

dt smaller (1/4): more steps, more exact.
s36  (0.04 | -1.74)T; v(s36)  (1.74 |0.02)T;

36 steps

0 1 2 3 4

0

1

2

Comparison Euler, Step Sizes
Euler
quality is
proportional
to dt

Euler Example – Error Table

dt #steps error

1/2 19 ~200%

1/4 36 ~75%

1/10 89 ~25%

1/100 889 ~2%

1/1000 8889 ~0.2%



RK-2 – A Quick Round

RK-2: even with dt = 1 (9 steps)
better
than Euler
with dt = 1/8
(72 steps)

RK-4 vs. Euler, RK-2

Even better: fourth order RK:

• four vectors a, b, c, d

• one step is a convex combination:

si+1 = si + (a + 2·b + 2·c + d)/6

• vectors:

a = dt·v(si) … original vector

b = dt·v(si+a/2) … RK-2 vector

c = dt·v(si+b/2) … use RK-2 …

d = dt·v(si+c) … and again

Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here
approx.
like
RK-2

Integration, Conclusions

Summary:

• analytic determination of streamlines usually not possible

• hence: numerical integration

• various methods available
(Euler, Runge-Kutta, etc.)

• Euler: simple, imprecise, esp. with small dt

• RK: more accurate in higher orders

• furthermore: adaptive methods, implicit methods, etc.

Streamline Placement

in 2D

Problem: Choice of Seed Points

Streamline placement:

• If regular grid used: very irregular result

Overview of Algorithm

Idea: streamlines should not lie too close to one another

Approach:

• choose a seed point with distance dsep from an already
existing streamline

• forward- and backward-integration until distance dtest is
reached (or …).

• two parameters:

• dsep … start distance

• dtest… minimum distance

Algorithm – Pseudo-Code
• Compute initial streamline, put it into a queue

• current streamline = initial streamline

• WHILE not finished DO:

TRY: get new seed point which is dsep away from current streamline

IF successful THEN

compute new streamline AND put to queue

ELSE IF no more streamline in queue THEN

exit loop

ELSE next streamline in queue becomes current streamline

Streamline Termination

When to stop streamline integration:
• when distance to neighboring streamline ≤ dtest

• when streamline leaves flow domain

• when streamline runs into fixed point (v = 0)

• when streamline gets too near to itself (loop)

• after a certain amount of maximal steps

New Streamlines

Different Streamline Densities

Variations of dsep relative to image width:

6% 3% 1.5%

dsep vs. dtest

dtest = 0.9 · dsep dtest = 0.5 · dsep

Tapering and Glyphs

Thickness in
relation to
distance

Directional
glyphs:

Literature

For more information, please see:

• B. Jobard & W. Lefer: “Creating Evenly-Spaced Streamlines of
Arbitrary Density” in Proceedings of 8th Eurographics
Workshop on Visualization in Scientific Computing, April
1997, pp. 45-55

• Data Visualization: Principles and Practice, Chapter 6: Vector
Visualization by A. Telea, AK Peters 2008

Acknowledgment

Thanks for the materials

• Prof. Robert S. Laramee, Swansea University,
UK

1
http://cs.swan.ac.uk/~csbob/te
aching/csM07-vis/

Arrows vs. Streamlines vs. Textures

Streamlines: selective

Arrows: simple

Textures:
2D-filling

Provide full spatial coverage

Vector Field Visualization:
Texture-based Method

A BRIEF OVERVIEW

Overview — Texture-Based Methods

 Spot Noise
 One of the first texture-based techniques (Van Wijk, Siggraph1991).

 Basic idea: distribute a set of intensity function, or spot, over the domain, that is wrapped
by the flow over a small step.
 Pro: mimic the smear effect of oil; encode magnitude; can be applied for both steady and
unsteady flow.
 Con: tricky to implement; low quality; computationally expensive.

[De Leeuw and Van Liere]

Overview — Texture-Based Methods

 Line Integral Convolution (LIC)
 One of the most popular techniques (Brian Cabral & Leith Leedom, SIGGRAPH93).

 Basic idea: Low-pass filters white noise along pixel-centered symmetrically bi-directional
streamlines to exploit spatial correlation in the flow direction.
 Pro: High-quality image with fine features; easy implementation; and many variants.
 Con: Computationally expensive; limited to steady flow visualization.

pixel-based

Overview — Texture-Based Methods

 Unsteady Flow LIC (UFLIC)

 The first texture-based unsteady flow visualization method (by Han-Wei Shen
and David Kao, IEEE Visualization 97 & IEEE TVCG 98).

 Basic idea: Time-accurately scatters particle values of successively fed-forward textures along
pathlines over several time steps to convey the footprint / contribution that a particle leaves at
downstream locations as the flow runs forward.
 Pro: High temporal coherence & high spatial coherence & hardware-independent.
 Con: Low computational performance due to multi-step ( 100) pathline integration.

Overview — Texture-Based Methods

 Hardware-Accelerated Texture Advection (HATA)
 The first hardware-based texture synthesis technique for unsteady flow vis

(by Bruno Jobard and et al, IEEE Visualization 00).

 Basic idea: Exploits indirect pixel-texture addressing for fast flow advection, & additive /
subtractive texture blending for fast texture convolution in an efficient pipeline.
 Pro: Near-interactive frame rates based on special-purpose graphics cards; for both
steady and unsteady flow; good temporal coherence .
 Con: poor spatial coherence (very noisy).

(Bruno Jobard, Gordon Erlebacher, and M. Yousuff Hussaini)

exponential kernel

Overview — Texture-Based Methods

 Image-Based Flow Visualization (IBFV)
 One of the most versatile and the easiest-to-implement hardware-based methods
(by Jarke J. van Wijk, SIGGRAPH02).
 Basic idea: Designs a sequence of temporally-spatially low-pass filtered noise textures
and cyclically blends them with an iteratively advected (using forward single-step pathline
integration) image (which is initially a BLACK rectangle).
 Pro: Interactive frame rates and easy simulation of many visualization techniques; good
temporal coherence .
 Con: insufficient spatial coherence (noisy or blurred).

Overview — Texture-Based Methods

 Lagrangian-Eulerian Advection (LEA)
 A fast hardware-independent unsteady flow visualization method (by Bruno

Jobard and et al, IEEE TVCG 02).

 Basic idea: Employs backward single-step pathline integration to search the previous
frame for the contributing particle (Eulerian) which scatters the texture value to the target
pixel of the current frame (Lagrangian) & blends successive textures.
 Pro: Interactive frame rates and supportive of arbitrarily-shaped field domains; good
temporal coherence .
 Con: insufficient spatial coherence (obscure direction).

(Bruno Jobard, Gordon Erlebacher, and M. Yousuff Hussaini)

Overview — Texture-Based Methods

 Unsteady Flow Advection-Convolution (UFAC)

 A separably temporal-spatial texture synthesis method for unsteady flow fields
(by Daniel Weiskopf and et al, IEEE Visualization 03).

 Basic idea: Establishes temporal coherence by property advection along pathlines while
building spatial correlation by texture convolution along streamlines.

With explicit, direct, and separate control over temporal coherence and spatial
coherence to balance visualization speed and quality.

 Pro: Interactive rates on graphics cards with fragment (e.g., pixel shader) support.
 Con: Temporal-spatial inconsistency — either flickering animation or noisy image.

Good frames in a flickering animationNoisy images with (left) / without (right) velocity masking

(Daniel Weiskopf, Gordon Erlebacher, and Thomas Ertl)

Overview — Texture-Based Methods

 Unsteady Flow Visualization Methods

Method Temporal coherence Spatial coherence Performance Graphics cards

UFLIC high high low not required

HATA good poor (very noisy) near-interactive rates special-purpose

IBFV good insufficient (noisy / blurred) interactive rates general-purpose

LEA good insufficient (obscure direction) interactive not required

UFAC trade-off between noisy image & flickering animation interactive special-purpose

 Steady Flow Visualization Methods

Method Noise design Implementation Image quality Feature missing Extensions Performance

Spot Noise tricky tedious low yes few low

LIC easy easy high no many low

Recent Advances

Robert S. Laramee, Helwig Hauser, Helmut Doleisch, Benjamin Vrolijk, Frits H. Post, and Daniel
Weiskopf, The state of the art in flow visualization: dense and texture-Based techniques. in
Computer Graphics Forum (CGF), Vol. 23, No. 2, 2004, pages 203-221.

Guo-Shi Li, Xavier Tricoche, Daniel Weiskopf, and Charles Hansen. Flow Charts: Visualization of
vector fields on arbitrary surface. IEEE Transactions on Visualization and Computer Graphics,
14(5), pp. 1067-1080.

Jin Huang, Wenjie Pei, Chunfeng Wen, Guoning Chen, Wei Chen, and Hujun Bao. Output-
coherent image-space LIC for surface flow visualization. IEEE Pacific Visualization Symposium
2012.

Victor Matvienko, Jens Krüger. Dense flow visualization uisng wave interference. IEEE Pacific
Visualization Symposium 2012.

Jin Huang, Zherong Pan, Guoning Chen, Wei Chen, and Hujun Bao. Image-Space Texture-Based
Output-Coherent Surface Flow Visualization, IEEE Transactions on Visualization and Computer
Graphics, Vol. 19 (9): pp. 1476-1487, 2013.

SOME DETAILS

white noise (fine sand)flow field (wind) LIC image (pattern)

Line Integral Convolution — LIC

Line Integral Convolution (LIC) was presented by Brian Cabral and Casey
Leedom (ACM SIGGRAPH93). (cited by 1204 till 2014)

 Basic Idea
 LIC convolves white noise using a low-pass filter along pixel-centered

symmetrically bi-directional streamlines to exploit spatial correlation in the
flow direction — anisotropic low-pass filtering along flow lines.

 LIC synthesizes an image that provides a global dense representation of the
flow, analogous to the resulting pattern of wind-blown sand.


convolution

(blow)

white noise  the texture is freely warped / driven by the flow without any intrinsic resistance

a point in the flow field,
the counterpart of a

pixel in the output LIC
image

d(()) / d  = (())

(+) = () + 
 + (())d

the correlated pixels
along the streamline

index the input noise
for the texture values

compute the target
pixel value in the LIC
image by convolution

 Pipeline

Line Integral Convolution — LIC

Zhanping Liu @ MSU / HPC / VAIL

(())
( + d)

()

d

Top-left: gray-scale LIC Top-right: color-mapped LIC
Bottom-left: contrasted LIC Bottom-right: high-pass filtered LIC

Zh
an

p
in

g
Li

u
 @

 M
SU

 /
 H

P
C

 /
 V

A
IL

 Animation successively shifting the phase of a periodic convolution kernel
such as Hanning filter (“Motion Without Movement”, CG´91)

Line Integral Convolution — LIC

Zhanping Liu @ MSU / HPC / VAIL

Line Integral Convolution — LIC Variants

fill the lattice

with template

jitter these

regular points

 A ramp filter offers orientation cue by intensity tapering.

 Sparse noise offers enough space for intensity-tapering.

White points of some size are placed at the lattice and then slightly jittered.

the design of sparse noise

 OLIC (Oriented LIC)

 A LIC image shows the flow direction while failing to
show the orientation (clockwise or counter-clockwise ?).

 R. Wegenkittl and et al. (Computer Animation 97).

Zhanping Liu @ MSU / HPC / VAIL

Sparse noise Ramp convolution kernel OLIC (flow orientation in a LIC image)

Line Integral Convolution — LIC Variants

Zhanping Liu @ MSU / HPC / VAIL

 Enhanced LIC

 Enhances the appearance of streamlines — neither noisy nor blurred.
 Iteratively (iteration times >= 2) takes an output LIC image as the input to

the next LIC cycle prior to final high-pass filtering (e.g., Laplacian filter).

 A. Okada and D. L. Kao (IS & T / SPIE Electronics Imaging 97).

Line Integral Convolution — LIC Variants

Zhanping Liu @ MSU / HPC / VAIL

A quite fancy LIC image results from using sparse noise in enhanced LIC.

Line Integral Convolution — LIC Variants

Zhanping Liu @ MSU / HPC / VAIL

Details — Texture-Based Methods

 Image-Based Flow Visualization (IBFV)

A variety of visualization techniques such as particles, arrow plots, streamlines, timelines,
spot noise, LIC, and flow topology can be easily simulated by tuning IBFV parameters

Demo program Zhanping Liu @ MSU / HPC / VAIL

TEXTURE-BASED VISUALIZATION
FOR SURFACE FLOW

 Parametric surface LIC — on well-defined surfaces
 On a parameterized CFD surface (model).
 On a parameterized stream surface extracted by Advancing Front from 3D flows.
Maps vectors from physical space to parametric space by nonlinear transform.
 Generates a 2D LIC texture in parametric space.
Maps the 2D LIC texture back onto the curved surface (physical space).

 Compensates texture distortions from non-isometric physical-parametric space
mapping by using carefully-designed input noise and adaptive kernel length.

 Surface LIC
 Dense visualization of flows on curved surfaces

(Lisa Forssell et al., IEEE TVCG 95)

Line Integral Convolution — LIC Variants

 Triangulated surface LIC — on arbitrarily complex surfaces
 On extracted iso-surfaces or other implicit surfaces through a volume flow.
 Adopts fast and robust streamline integration directly on a triangular domain.
 Obviates non-isometric space mapping to avoid texture distortions.
 Uses solid noise (usually by a procedural noise function).

 Obtains the value of each texel (texture element) sampled in a triangle via LIC.
 Efficiently packs numerous triangular-textures into a few rectangular-texture

blocks stored in memory for fast texture retrieval at low memory cost.
 Maps each triangular texture onto the target triangle in rendering.

(Detlev Stalling, ZIB, Germany)

compute each texel value

Line Integral Convolution — LIC Variants

ISA vs. IBFVS

ISA
IBFVS

[Laramee et al. TVCG03]

Coherent Texture on Surfaces

[Huang et al. TVCG13]

Address the inconsistency of flow
image when the view point is changed.

TEXTURE-BASED VISUALIZATION
FOR 3D FLOW

 Volume LIC
 Victoria Interrante and Chester Grosch (IEEE Visualization 97).

 A straightforward extension of LIC to 3D flow fields.
 Low-pass filters volumetric noise along 3D streamlines.
 Uses volume rendering to display resulting 3D LIC textures.
 Very time-consuming to generate 3D LIC textures.
 Texture values offer no useful guidance for transfer function design due to lack

of intrinsic physical info that can be exploited to distinguish components.
 Very challenging to clearly show flow directions and interior structures through

a dense texture volume.

Line Integral Convolution — LIC Variants

Sparse noise + Hybrid Hanning-Ramp kernel (Zhanping Liu and et al., Journal of Image and Graphics 2001)

Unsteady Flow LIC — VAUFLIC

Image generated by using a texture-based transfer function

3D IBFV

[Telea and van Wijk Vis03]

Acknowledgment

• Thanks for the materials from

– Dr. Zhanping Liu, Kentucky State University

– Dr. Robert Laramee, Swansea University, UK

	Vis_Lec10
	Vis_Lec11

