StoryFlow: Tracking the Evolution of Stories

Shixia Liu, Senior Member, IEEE, Yingcai Wu, Member, IEEE, Enxun Wei, Mengchen Liu, and Yang Liu

BiLBo" 5 PARTY weATHERTOP

\

\ —f—

- \ ISENGARD FLOODED.

e s oeep

pn— -

| o W—

BAK GATE cRowneD
PELENNOR FELDS

BATTLE/EVENT wizaros

RING DESTROVED

Fig. 1. A storyline visualization of the movie The Lord of the Rings. The yellow line indicates the path of the ring. The black layers are
the armies. For example, the one at the bottom is Sauron’s army bundled by the level of detail technique.

Abstract— Storyline visualizations, which are useful in many applications, aim to illustrate the dynamic relationships between entities
in a story. However, the growing complexity and scalability of stories pose great challenges for existing approaches. In this paper, we
propose an efficient optimization approach to generating an aesthetically appealing storyline visualization, which effectively handles
the hierarchical relationships between entities over time. The approach formulates the storyline layout as a novel hybrid optimization
approach that combines discrete and continuous optimization. The discrete method generates an initial layout through the ordering and
alignment of entities, and the continuous method optimizes the initial layout to produce the optimal one. The efficient approach makes
real-time interactions (e.g., bundling and straightening) possible, thus enabling users to better understand and track how the story
evolves. Experiments and case studies are conducted to demonstrate the effectiveness and usefulness of the optimization approach.

Index Terms—Storylines, story-telling visualization, user interactions, level-of-detail, optimization.

+

1 INTRODUCTION

A story refers to a recounting of a sequence of temporally and causally
related events [3]. Each story has a beginning, a middle, and an end.
It also involves one or more characters (or entities) who determine the
way the story will develop, as well as several settings/locations where
the story takes place and the entities interact with each other. We refer
to the interactions among the entities in different settings/locations as
entity relationships. Understanding how entity relationships evolve
from the beginning to the end in a story is very important in many
applications such as information exploration and understanding, inter-
personal communication and storytelling, and media analysis [9, 16].
For example, given a set of tweets related to the story of “the US presi-
dential election,” a social scientist might be very interested in the key
opinion leaders (entities) in each of the related topics and how their
impact on these topics (relationships) changes over time.

To help users better understand and analyze a complex story, story-
line visualizations have been developed to convey the temporal patterns
of entity relationships. Such a visualization was first introduced by
Munroe as a movie narrative chart [27]. It aims to illustrate the entity
relationships in the narratives of various movie epics. As shown in
Fig. 11(c), the characters are encoded by lines running from left to right.

o S. Liu, Y. Wu, and Y. Liu are with Microsoft Research Asia. Y. Wu is the
corresponding author. E-mail: {shliu, ycwu, yangliu} @ microsoft.com.

o E. Wei is with Shanghai Jiao Tong University. E-mail:
weienxun@ gmail.com.

o M. Liu is with Tsinghua University. E-mail: v-meli@microsoft.com. E. Wei
and M. Liu performed this work while at Microsoft Research Asia.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.

For information on obtaining reprints of this article, please send

e-mail to: tveg@computer.org.

Consequently, their relationships in different locations are mapped to
the distance between lines at each time frame. Lines are drawn adja-
cently when the corresponding characters are in the same location or
setting. The movie charts were drawn by hand. Subsequent research
has focused on automatically generating a storyline layout [29,42].

However, existing visualization techniques either produce an
aesthetically pleasing and legible storyline picture with much time [42]
or an interactive visualization with too many wiggly lines and too much
visual inconsistency [29]. Typically, the aesthetics and legibility are
measured by three metrics: line crossings, line wiggles, and space effi-
ciency [40]. Although these techniques have achieved a certain amount
of success in conveying the temporal dynamics of entity relationships
inside a story, they may not fully support real-world storytelling and
analysis tasks. First, the performance of the state-of-the-art storyline
layout fails to meet the requirements of real-time interactions. The
method proposed by Tanahashi et al. [42] may take hours to generate
a storyline with hundreds of entities and hundreds of time frames. Sec-
ond, the available approaches aim solely to generate a storyline layout
with flat relationships among entities, while in many real-world ap-
plications, settings/locations are naturally organized in a hierarchy [6].
Third, the existing visualizations are not designed to accommodate
more than hundreds of entity lines. They cannot provide legible results
when the number of entities is in the thousands or even hundreds.

We have designed a storyline visualization system, StoryFlow, to
generate an aesthetically pleasing and legible storyline visualization.
Compared with the state-of-the-art approach [42], it supports real-time
user interactions, hierarchical relationships among entities, and the
rendering of a large number of entity lines. The approach formulates
the difficult problem of creating an effective storyline layout as an
optimization problem, which is solved efficiently using a novel hybrid
optimization strategy with a judicious combination of discrete and
continuous optimization methods. The discrete method creates an initial
layout through ordering and aligning line entities, while the continuous



method optimizes the layout based on quadratic convex optimization.
The efficient algorithm enables a rich set of real-time user interactions,
including adding, removing, dragging, straightening, and bundling
line entities. In addition to being efficient, this approach provides a
flexible mechanism for adding grouping constraints (e.g., same location
or topic) at different time frames. Hierarchical relationships based
on the grouping constraints are also considered in our layout method
to visually convey the hierarchical interactions among the entities.
Furthermore, we leverage the hierarchical structure among entities
and level-of-detail (LOD) rendering technique to handle thousands of
entities in the storyline layout.
Specifically, our work makes the following contributions.
e An efficient hybrid optimization approach for creating story-
line layouts with the capability of progressive updates as well as
a flexible mechanism for adding grouping constraints.
e A hierarchy-aware storyline layout to visually illustrate the
hierarchical relationships among entities.
o A method for interactively and progressively rendering a
large number of storylines with adaptive levels of detail.

2 RELATED WORK
2.1 Temporal Event Visualization

Considerable research has been directed towards developing a time-
based visualization to illustrate event sequences over time. Researchers
have proposed many timeline visualizations such as LifeLines [31,32]
and its extension [44], PlanningLines [4], TimeLine [ 7], TIARA [23,24],
RankExplorer [37], EventRiver [25], and SIMILE [2] to facilitate un-
derstanding event sequences. Fails et al. [14] presented PatternFinder
to help users visually formulate powerful queries to find temporal
event patterns in multivariate datasets. LifeFlow [46] and Outflow [45]
merged multiple event sequences into a tree and a graph, respectively,
to provide an abstraction of the data and enable more scalable timeline
visualizations. Compared with LifeFlow, the graph-based Outflow en-
ables more effective comparison of alternative paths of events. However,
relationships between entities are not explicitly visualized in these ap-
proaches. In LifeLines [31], for example, a user can only link to related
entities mentally when they are highlighted [5, 19]. More recently, Xu
et al. [47] studied the problem of temporal topic competition over time.

Since the relationships between events are important for many analy-
sis tasks, various techniques have been presented to explicitly visualize
event relationships. tmViewer [22], one of the earliest visualizations to
emphasize the importance of relationships between entities, explicitly
connects related entities along the timeline using simple lines with
arrows (directed edges). Burch et al. [8] used a horizontally-oriented
tree layout to represent the hierarchical relationships of transaction
sequences along the timeline. SemaTime [19] aims to display different
types of entity relationships inside or across stacked timelines using
distinct types of directed edges. André et al. [5] presented Contin-
uum to facilitate visual exploration of relationships between events
across periods. Continuum uses taxonomic hierarchies, which can be
dynamically reordered, to navigate the event space. Recently, Stab et
al. [38] developed SemaTime to visualize time-dependent relationships
of entities using rectangles. Although using lines or rectangles can do
a good job of illustrating the relationships between a small number of
events, these methods often fail to show large numbers of relationships
due to visual clutter caused by line crossings.

2.2 Storytelling

Recently, there has been increased interest in leveraging interactive vi-
sualizations to convey stories by journalists, politicians, social activists,
and scientific researchers [15,18,26,35,36]. Here, we briefly review
the literature on time-based storytelling techniques.

Inspired by Munroe’s movie narrative charts [27], a new visual
metaphor called storyline has emerged recently to visualize the re-
lationships between entities over time. Compared to other timeline
visualizations, a storyline visualization represents an entity as a line
and encodes the relationships between the entities according to the dis-
tances between the associated lines over time. A variety of specialized
techniques based on the storyline visualization have been proposed

for different applications, such as tracing generational relationships
in genealogical data [20], tracking community evolution in dynamic
networks [34], and illustrating topic merging/splitting relationships and
their evolution in a text stream [11,21]. Substantial successes have been
achieved by the techniques in solving real-world problems. However,
these techniques are only applicable for certain applications, as the
visual representations used are significantly simplified in the storyline
by imposing more application-specific constraints such as the specific
ordering of the lines.

Recent research on storyline visualization has focused on developing
a generic visualization tool. PlotWeaver [30], an online editing tool,
allows users to interactively create a general storyline visualization,
but interactive editing without sufficient computational support is often
time-consuming. To solve this problem, Ogawa and Ma [29] derived a
set of heuristic rules for a good storyline layout and developed an auto-
matic algorithm based on the rules to create a storyline visualization for
tracking software evolution. However, the heuristic rules are relatively
simple and the algorithm cannot produce results that are as good as
those created by professional artists. Tanahashi and Ma [42] suggested a
more complete set of design principles and formulated the storyline lay-
out problem as an optimization approach based on a genetic algorithm.
The approach can successfully produce an aesthetically-appealing and
legible storyline layout that is comparable to those generated by profes-
sional artists. However, it takes considerable time to create a storyline
layout when the number of characters and time frames are in the hun-
dreds. As a result, no user interaction is supported. Compared with
Tanahashi’s and Ma’s work, our optimization-based method can pro-
duce a desired storyline visualization significantly faster. For a story
with hundreds of entities and hundreds of time frames, our method can
generate the layout in less than one second. With the efficient hybrid op-
timization approach, the system provides a set of rich interactions such
as aggregating lines and straightening a line, thus allowing for real-time
exploration of the dynamic relationships within a larger and complex
dataset. In addition, to the best of our knowledge, our approach is the
first to automatically generate a hierarchy-aware storyline layout, which
considers the hierarchical relationships among entities in the layout.

3 STORYFLOW OVERVIEW

To create a storyline layout with the capability of progressive updates
as well as a flexible mechanism for adding grouping constraints, we
have developed StoryFlow. Fig. 2 illustrates the system overview. It
contains a layout pipeline and provides a set of rich interactions. For
simplicity, we take the movie as an example to illustrate the basic idea
of our method. Our method can be easily applied to other datasets such
as a Twitter dataset as illustrated in Sec. 7.2.

The input is an XML file containing a session table and a location
tree. The session table stores the dynamic relationships between entities.
We call the interaction of multiple entities during two adjacent time
frames a session, which can be regarded as an event in a story. Each
element g; ; in the session table (also called a line segment or segment)
has a session ID that the entity i belongs to at time j. The location
tree describes the hierarchical structure of locations. Each tree node
represents a location and includes all the session IDs that occur at the
location. Thus, the location tree together with the table defines a set of
dynamic hierarchies (relationship trees) characterizing the hierarchical
relationships between entities at different time frames.

The layout pipeline consists of four steps: relationship tree
generation, session/line ordering, session/line alignment, and layout
compaction (Fig. 2(a)). In the first step, StoryFlow creates a set
of dynamic relationship trees for different time frames. Then the
relationship trees are used to order sessions and entity lines. Next, ses-
sions/lines between successive time frames are aligned to maximize the
number of straight lines in the layout. Finally, a quadratic optimization
algorithm is performed to obtain a compact storyline layout.

The efficient layout algorithm enables a rich set of user interactions
for real-time data exploration and analysis. The user interactions can be
classified into four categories (Fig. 2(b)): (1) adding/deleting entities,
sessions, or locations, which modifies the relationship trees; (2) drag-
ging the entities and sessions to a new position, which is a complement



(a)Layout Pipeline

Hierarchy Generation

Ordering

Adding&Deleting Dragging

Alignment Compaction

Straightening Bundling

(b)User Interactions

Fig. 2. System overview. StoryFlow contains a layout pipeline and provides a set of interactions. The layout pipeline starts by generating a
set of relationship trees, followed by session/line ordering, session/line alignment, and layout compaction. Different user interactions including
adding/deleting, dragging, straightening, and bundling are supported to facilitate data exploration.

to the ordering step; (3) straightening a line representing an entity,
which runs the alignment step; (4) bundling a group of sessions or
releasing them later, which is achieved by running the compaction step.

4 CONSIDERATIONS FOR STORYFLOW VISUALIZATION

Given a set of entities and their relationships in different locations
over time, StoryFlow aims to generate a legible storyline visualization
as well as support real-time exploration and analysis. To this end,
we formulate the StoryFlow layout into a computationally efficient
optimization problem. In this section, we introduce our considerations
for the optimization formulation.

4.1 Design Guidelines

The following design criteria are widely used when creating a storyline
visualization [20,29,42]:
¢ A line going from left to right along the horizontal timeline represents
the lifespan of an entity in a story.
¢ Multiple lines bundled together during a time period indicate that
the entities are interacting with each other. Line convergence (or
divergence) indicates that the interaction starts (or terminates).
Following the above criteria, early efforts [20, 29] have achieved a
certain amount of success in creating an effective storyline layout.
However, these layout methods do not model the contextual informa-
tion such as the locations of the story, which are important for people
to better understand the story. To emphasize the locations where impor-
tant events take place, Tanahashi and Ma [42] draw a closed contour
surrounding the event in the background. The enclosed areas are filled
with different colors to distinguish different locations. This strategy
can handle flat contextual information very well. However, in many
real-world applications, the contextual information, such as the location
hierarchy in a movie or the topic hierarchy in a document collection, is
often hierarchically structured [6]. Without considering the contextual
information hierarchy, the simple strategy may produce a misleading
layout. Fig. 3(b) demonstrates the problem where Florida is incorrectly
included in California. Moreover, the hierarchical structure is an intu-
itive and effective means to organize a huge amount of data. It allows
us to employ a level-of-detail rendering mechanism readily to handle
the scalability problem. Thus, the hierarchical contextual information
needs to be modeled in the storyline layout. Accordingly, we define
two more criteria to convey the spatial information properly.
< Contours filled by the same color represent the same location along
the timeline. A line inside a background area during a time period
indicates that the entity occurs in the location at that time.
¢ The inclusion relationships among the filled contours represent the
location hierarchy.

4.2 Optimization Metrics and Constraints

In our layout optimization, we use three optimization metrics suggested
by Tanahashi and Ma [42] to define the optimization goal.
e Line crossings: reduce line crossings that may lead to occlusion
and visual clutter.

o Line wiggles: boost the straightness and continuousness of the
lines and avoid visual discontinuities.

o Wiggle distance: in addition to reducing the wiggle number as
in [42], the wiggle distance is also minimized to obtain a compact
layout.

e White space: minimize the empty space that may cause an
unbalanced layout and a waste of screen space.

Furthermore, to satisfy the design criteria introduced in Section 4.1, we
define the following two hard constraints that a layout must satisfy:

e Line adjacency: if entities are interacting, their lines must be
placed adjacently. Otherwise, they must be separate.

e Hierarchical location: if the locations are hierarchically orga-
nized, the storyline layout must convey this with the inclusion
relationships among the related background contours.

4.3 Optimization Strategy

The major goal of our optimization is to minimize the following four
metrics: line crossing number, wiggle number, wiggle distance, and
white space. If we design a approach that simultaneously optimizes
all the metrics given the constraints, it typically requires exhaustive
exploration of a large search space. A natural solution is to use a
genetic algorithm as in [42], to find a nearly optimal layout. However, a
genetic algorithm has the drawbacks of poor local search and premature
convergence [43].

To overcome these drawbacks and reduce the prohibitively large
search space, we split the optimization into separate subproblems. Ac-
cording to the types of optimization metrics, we divide it into two parts:
discrete optimization to minimize the number of line crossings and wig-
gles (a good initial layout), and continuous optimization to minimize
the wiggle distance and white space (fine tune). Our goal is to optimize
the important metrics first. Then the subsequent optimization of the
less important metrics will not affect the important metrics. A previous
study has shown that reducing the line crossing number is the most
important metric, while minimizing the wiggle number and maximizing
symmetry are less important [33]. The experts (one film professor and
two sociologists in media and communication studies) who worked with
us on storyline visualization also confirmed this fact. Based on this
result, we further divide the optimization into three steps. The first two
steps aim to minimize the numbers of line crossings and wiggles, while
the last step focuses on optimizing the wiggle distance and white space.
o Step 1: reduce line crossings. The ordering of visual elements

directly impacts the line crossing number. In addition, the ordering

also needs to satisfy the hierarchy constraints. Thus this step aims to
determine an optimal ordering of line segments, sessions, and loca-
tions, to meet the constraints and minimize the line crossing number.

o Step 2: reduce the wiggle number. A better alignment of sessions
and entity lines over time helps to reduce the wiggle number. In this
step, we aim to align as many sessions and lines as possible between
adjacent time frames.

o Step 3: reduce the wiggle distance and white space. To generate

a compact and aesthetically pleasing storyline visualization with



California

Florida

[San Francisco| [Los Angeles|

California E1 California E1

E2 E2
M M
Florida San Francisco

E4 E3

San Francisco Florida "
S——

E3 E4

(b) (c)

Fig. 3. An example storyline layout with location information: (a) The
location tree; (b) A layout created by Tanahashi’s and Ma’s algorithm [42]
with an incorrect location hierarchy (Florida is included in California); (c)
A layout created by our method that ensures that the layout visualizes
the location hierarchy correctly.

Root! (a) Root (b)

Location A| [Location C] [Location B Location A| [Location B] [Location C|

Location A

Location A
E1 E1l
2 E2
Location B

Location C : : Location ID< Location C/xE3

v A L

Crossings between locations: (c)

wh

Location B

One possible location: p; =——2

Location A
[RootK  One possible location: p, 0

One possible location: p3 =——————>2

Best position

Fig. 4. An example of ordering with hierarchy constraints: (a) without
ordering; (b) with ordering; (c) the greedy method to order locations.

informative content, we further optimize two continuous metrics,
the wiggle distance and white space.

5 STORYFLOW LAYOUT

Fig. 2(a) illustrates the layout pipeline of StoryFlow. It starts by creating
a dynamic relationship tree for hierarchically organizing the visual
elements (e.g., lines), followed by three optimization algorithms for
creating an effective and aesthetically appealing layout.

5.1 Construction of the Relationship Tree

At each time, the hierarchical relationships among entities and sessions
should be consistent with those in the location tree. Fig. 3(a) shows a
tree depicting the hierarchical structure of multiple locations. A layout
result that unambiguously reveals the hierarchical relationship of the
locations is shown in Fig. 3(c). To achieve this, we generate a sequence
of relationship trees and use each of them to constrain the layout at
each time frame. The relationship tree at each time is generated by
leveraging the input location tree, as well as the locations, sessions, and
entities occurring at that time.

5.2 Ordering

To minimize the line crossing number while satisfying the hierarchy
constraints, we sort the entity lines vertically at each time frame. In
particular, we assume: at each time frame, if node A is on the left of
B at the same level of the relationship tree, then A will be placed above
B in the layout. With this assumption, the line ordering is formulated
to estimate the best ordering of nodes at each level of the relationship
tree to reduce line crossings. However, it is computationally complex
and time-consuming to produce such an ordering since it is an NP hard
problem [13]. To tackle this issue, we divide the ordering problems

Reference Frame Current Frame, Crossings : 6 (a) After Sorting Level 2, Crossings : 4

_
T
= )
:
LeEeI 2 Levlel 1 (b)

Reference Frame Current Frame, Crossings : 0 (c) After Sorting Level 1, Crossings : 0

Entity a Entity a Entity a
Entfty b Entity b Entity b

(Entity c}—{Entit Entit

Fig. 5. lllustration of the ordering method: (a) an initial order with six
crossings; (b) sorting the nodes level-by-level; (c) the final result without
any crossings.

into two parts: (1) sorting the location nodes; (2) ordering the session
and entity nodes within each location is computed.

We use a greedy algorithm to order the location nodes from bottom
to top, recursively. The basic idea is that for the nodes under the same
parent, we first place the node with the largest number of entities. The
remaining nodes should be placed in a position that introduces a min-
imum crossing number with the already placed location nodes. If there
is more than one position that introduces the same crossing number, we
select the top one. As shown in Fig. 4, there are three locations under the
root node. Nodes A and C are placed first, which provides three candi-
date positions py, p», and p3 for B. The algorithm places B at p;, which
results in the minimum crossing number among the three locations.

Next, we order the sessions and entities under each location node.
The problem is similar to minimizing edge crossings in a multi-level
directed acyclic graph (DAG) with a fixed ordering of some of the
non-leaf levels that correspond to the locations. Even if the graph
has two levels with a fixed ordering at one level, the problem is NP-
hard [13]. To solve the problem, we extend a well-established DAG
sweeping algorithm [17,39]. The algorithm starts by generating an
initial ordering of the first time frame, which satisfies the hierarchy
constraints. It then treats the ordering of the first frame as a reference
to calculate the ordering of the second one. This step is repeated until
the last frame is reached. Once the order of the last step is fixed, we
then treat it as the reference and sweep back. We iteratively improve
the ordering result by sweeping back and forth until the line crossing
number reaches a stable number or the maximum iteration number is
reached. In our implementation, the maximum iteration number is set
at 20. In each step of the sweep, we use the barycenter method [39]
to sort the tree nodes. The weight of an entity is set as its order at the
last time frame. The weight of a session node is then computed by
averaging the weights of the entities in it.

We then sort the tree nodes at each level according to their weights.
‘We use a bottom-up sorting scheme to order the nodes in the relationship
tree, except for the location nodes that were fixed in the previous step.
Compared with existing algorithms [17,39], our method explicitly
satisfies the hierarchy constraints imposed by the relationship trees
during the sweeping process. Fig. 5 shows an example of how the
sorting works. An initial ordering of two frames with six crossings is
shown in Fig. 5(a). First we sort the second level by swapping entities
¢, d and entities a, b because ¢ is above d and a is above b in the
reference frame. After this swapping, the crossing number is reduced
to 4. Then we sort the first level which contains two sessions. The
weight of session B is 3.5 and the weight of session A is 1.5. Thus,
B and A are swapped. The result is shown in Fig. 5(c), in which the
crossing number is zero.

As the number of locations is usually much smaller than that of
sessions and entities, the computation time is mainly determined by
sorting the sessions and entities. We can see that the algorithm is a
tree based sort with a time complexity of O(n;n,logn,) where n, is the
number of entities and n; is the number of time frames.



5.3 Alignment

To minimize the wiggle number, we try to align as many line segments
as possible (assign them the same y-coordinate). Mathematically, it can
be expressed as:
n—1
Ealign = max Z H(),
=1

(¢

where H (¢) is the number of straight line segments between 7 and # + 1.

The alignment consists of two major steps: session alignment and
line alignment within the matched session pair. Once the sessions
are aligned, the line alignment in the matched sessions is achieved by
simply moving the sessions to align the matched line segments. Thus
the alignment result is mainly determined by the session alignment. In
the alignment we can add enough white space between sessions so that
the alignment of two frames will not influence that of others. Based on
this observation, we can rewrite Eq. (1) as

n,—1

Ealign = Z max H(t). 2)
=1

Accordingly, the optimization problem is simplified to find a set of
local optima between adjacent time frames.

Let’s take the session as an example to illustrate the basic idea. Sup-
pose we have two adjacent time frames L and R. From top to bottom, L
has a sequence of sessions Sy = {l1,...,l, } and Rhas Sg = {r1,...,r,}.
sim(l;,r;) denotes the similarity between two sessions /; and r;:

) : 3

The first term straight(l;,r;) is the maximum number of straight
segments we can get from /; and r;. The second term measures how
similar their relative positions are in two frames. This term tends to
align the sessions with similar relative positions and thus produces a
more symmetric layout. Parameter ¢ balances the symmetry of lines
and the number of straight segments. In our examples, « is set at 0.1.

For any i and j, match(i,j) denotes the maximum sum of the
matched pairs between [y,...,J; and ry,...,r;. Finding a local opti-
mum H (¢) is equivalent to computing match(m,n). The problem can
be formulated as a weighted Longest-Common-Subsequence (LCS)
problem [10]. The basic idea of LCS is to find the longest common
subsequence in a set of sequences. In our case, two sequences are
considered. Here, a subsequence is a sequence derived from another
sequence, in which the elements appear in the same relative order as
the original one, but are not necessarily contiguous.

Let S} = {li; .-, li,} be asubsequence of Sy and S, = {r),,...,r;,}
be an equal-length subsequence of Sk. The session alignment is
formulated as:

P

im(l;,r;) = straight(l;,r;)+o- | 1—
sim(l;,r;) = straight (I, r;) + ( P

p
match(i, j) = max Z sim(li,rj,)
k=1

“

In our case, we use a similarity function to measure the two elements
instead of a boolean one. After solving the LCS, we get:

max{march(i—1,j— 1) +sim(l;,r}),
match(i—1,j), match(i,j—1)}, ifi>0and j>0;
0, ifi=0orj=0.

match(i, j) =

This recursive function can be efficiently solved by a dynamic program-
ming technique with time complexity O(ng). Thus, the computational
complexity of the alignment algorithm is O(n2n;).

Fig. 6 demonstrates one result generated by our algorithm. The
layout after ordering (Fig. 6(a)) is the input of our algorithm. We then
dynamically construct a table for match(i, j) (store the LCS sequence
for each step of the calculation) and trace back the path leading to the op-
timal alignment (Fig. 6(b)). As shown in Fig. 6(c), our method increases
the number of straight segments and achieves a more symmetric result.

IEI ‘-1
o~ g2 [Malo 1 2 3 T N——.

0 0 0 [¢] 0
* 1 0\1.1—>1,1 11 *
2 0 11 318 318

(a) (b) ()

Fig. 6. Line alignment example: (a) input; (b) the dynamic table (the red
line represents the best path, M;..; = match(i, j)); (c) alignment result.

5.4 Compaction

To generate a compact and symmetric storyline layout, the wiggle
distance and white space need to be minimized. Mathematically, we
formulate it as a linearly constrained quadratic programming problem.

ne n—1 Te T

min ) Y (ij—vij1)+B Y Y y7 )

55 i=1j=1

Subject to

Yir,j < Vin,js if Siy.j < Siji (5a)
Yij = Yij+ls if Sij > Sijr1s (50)
Yi,j = Yit1,j = din, if SID(S; j) = SID(Siv1,5);  (5¢)
Yijj = Yi+lj| 2 dout, i SID(S; ;) # SID(Sit1 ;). (5d)

Here S; ; is the line segment that represents entity i at time j, y; ;
denotes the y-coordinate of S; ;, and SID(S; ;) is the session ID of S; ;.
The first term aims to penalize the wiggle distance, and the second term
penalizes unnecessary white space. 3 is a parameter that balances these
two terms. In our example, § = 1. The constraints are illustrated below:
(5a) Line order constraint. If the line order of S;, ; is less than the line
order of Sj, j (we use S;; j < S, ; to denote this order relationship),
then segment S;, ; is placed above S, ;.

Line alignment constraint. We use the symbol “++” to indicate
that two segments are aligned.

Adjacency constraint (in the same session). The distance of two
adjacent line segments in the same session is defined as dip.
Typically, din = 3 X LineWidth. LineWidth is the width of the
line that represent an entity.

Adjacency constraint (not in the same session). The minimum
distance between two adjacent segments that are not in the same
session is doyt . Here dout > din. In most of our examples, doyt is
set as 9 x LineWidth. Note that the sign of y; ; — ;11 ; is known
due to (5a), so the absolute value operator can be removed.

This is a quadratic convex optimization with linear constraints whose
global optimum can be calculated in polynomial time [28]. In Sto-
ryFlow, we use the Mosek package [1] which implements the state-of-
art interior point method to solve this quadratic programming problem.

(5b)

(5¢0)

(5d)

6 INTERACTIVE EXPLORATION

To better aid users in understanding complex story evolution and per-
forming deep analysis, StoryFlow provides a set of user interactions.

Bundling. In many applications, it is quite common to have hundreds
and even thousands of entities. Due to limited screen real estate, only

FISCHER DREAM LAYER 2 FISCHER DREAM LAYER2  FAMES

A

N

(a) (b)

Fig. 7. Bundling operation (The layout is part of the Inception layout that
describes what happens in the second layer of Fischer’s Dream): (a)
bundling result; (b) layer AB is expanded. It can be clearly seen that
Eames and Saito first leave the team and rejoin the team later.



a subset of entities can be displayed. Without an overview, users may
find the displayed information inadequate for their tasks. To solve this
problem, we leverage the level-of-detail (LOD) rendering technique to
bundle the lines in the same session at each time. More precisely, we
set the distance between segments (d;;) in a session at 0 and run the
optimization algorithm again. In the aggregated layout, the layer color
of each session is a blend of all the entity colors in it, and the layer
width is proportional to the number of entities.

If the user is interested in one session layer and wants to examine
the details, s/he can double-click on it. The layer will be gradually
expanded and all the segments in it will be displayed. For example, in
Fig. 7, after layer AB is expanded, it can be clearly seen that Eames
and Saito first leave the team and rejoin the team later.
Adding/Deleting. Since different users may have different informa-
tion needs and preferences, StoryFlow allows users to delete unim-
portant entities and add entities (with necessary session information)
that are useful for their exploration and analysis. After the entities are
deleted/added, the relationship trees and storyline layout are changed
accordingly. One example is shown in Fig. 8.

Downtown

Downtown
\| Delete thi{ entity

- —
\_/—/

(a) (b)
Fig. 8. Deleting operation: (a) before deleting; (b) after deleting

Interactive Ordering. In StoryFlow, an ordering method is proposed
to automatically order locations, sessions, and lines. However, the opti-
mization method is less than perfect and users may have different needs.
We provide a backup schedule to allow users to interactively order the
visual elements. One interactive ordering example is shown in Fig. 9.

TATOOINE

JATOOINE

Drag to here

(a) (b)

Fig. 9. Interactive ordering: (a) before ordering; (b) after ordering.

Line straightening. In many applications, users are interested in
a specific entity. One simple way to help users study this entity is
to highlight the related entity line. However, if this line has several
wiggles, it is still difficult for users to follow it over time. To solve this
problem, StoryFlow provides an interaction that directly straightens a
line throughout its life span. Fig. 10 is an example of the straightening
interaction. We can see that the yellow line representing “Ma Bangde”
has a lot of wiggles in the original layout. After straightening the
yellow line, we can easily track his story, understanding how he leaves
one group of people and joins another.

7 EVALUATION

Based on the proposed layout method and interaction techniques, we
have developed StoryFlow. In StoryFlow, we leverage the line geom-
etry adjustment method proposed by Tanahashi and Ma [42] to relax
line segments and deemphasize unimportant segments. In this section,
we aim to evaluate the efficiency, effectiveness and usefulness of Sto-
ryFlow. First, we conducted a comparison experiment to demonstrate
the performance of our algorithm. Then we compared the layout results
derived from our method with those generated by the state-of-the-art
method. Next, to further illustrate the capability and usefulness of the

Downtown

After straightening

J

!
J

i

/ \

_/— Stra/ighten this\entity

|

(a) (b)
Fig. 10. Straightening: (a) before straightening; (b) after straightening.

StoryFlow system, we applied it to a dataset collected from Twitter. All
the experiments were conducted on a desktop PC with an Intel i7-2600
CPU (3.4 GHz) and 8 GB memory. The movie datasets used in our
experiments are available at [41].

7.1 Quantitative Analysis

To evaluate the performance of our layout method, we compared it with
the state-of-the-art method proposed by Tanahashi and Ma [42]. For
brevity, we denote their method as the TM method. We conducted the
experiment based on three movie datasets and a network dataset: Star
Wars, Inception, The Matrix, and the MID network dataset (from 1817
to 1947). In the experiments, the initial element ordering of the two
methods is the same, which is given by the input XML files. We com-
pared our method with the TM method in terms of time, the crossing
number, and the wiggle number. The results are shown in Table 1.

In our experiments, we used the open source code provided by
Tanahashi [41] to obtain their results. Since different replications of a
genetic algorithm may produce different solutions, the results produced
by the TM method were the average values of ten trials. The output of
our method was stable, so we only ran our program once for each data.

Tanahashi’s and Ma’s paper [42] provided the statistical data of Star
Wars, so we used the form of A(B) to represent the related data items in
Table 1. Here A is the average value of the ten trials and B is the data
from their paper. We failed to generate the storyline layout of the MID
data, so we used the results provided by Tanahashi. The experimental
results provided by the authors were run on a MacBook Pro with Intel
i7-620M CPU (2.66 GHz) and 4 GB memory.

Table 1. Quantitative comparison with the TM method.

Data Time (seconds) #Crossings #Wiggles
#Entity | #Frame | Ours | TM Ours | TM Ours | TM
StarWars | 14 50 0.16 | 129.79 | 48 93(51) | 82 13391)
Inception | 8 71 0.16 | 149.67 | 23 99 88 162
Matrix 14 42 0.16 | 17247 | 14 43 54 94
MID 79 523 0.60 | 10° 1267 | 1871 831 874

Table 2. Evaluation of StoryFlow on random input orders.

#Crossings #Wiggles
average | best | worst | average | best | worst
StarWars | 53 47 61 83 81 86
Inception | 27 23 31 86 84 88
Matrix 14 14 15 54 53 56
MID 1455 1321 | 1607 | 876 838 | 912

We first compared the time required by the two methods to generate
the four storyline layouts. As shown in Table 1, our method was over
hundreds of times faster than the TM method. The reason is that
the TM method is based on a genetic algorithm. One drawback of
genetic algorithms is their expensive computational cost. In particular,
computing the layout for each genome takes time complexity O(CI +
STI). Here, C is the number of lines, I is the number of sessions, S
is the number of slots, and 7 is the number of time frames. Thus the
whole process will cost n,n,0(CI + STI) where n,, is the number of
genomes in each generation and 7, is the number of iterations. On the
other hand, the time complexity of StoryFlow is O(n2T +T?3). The
first term comes from the alignment step and the second term comes
from the compaction step. Parameter S is set to 580 in the open source



T-REX
maLCOLM

ON cARS

GRANT
SATTLER

(a)

GENNARO KiDs

\

HAMMOND
MULDOON

MUST GO FASTER

ARNOLD
NEDRY

\

Escapes

LOCKED UP

RAPTOR3

KITCHEN, LOCKED UP
VISITOR CENTER

RAPTORT

RAPTORZ

MALCOLM

CLEVER GIRL

(b)

ATTACKON uk\

\

NEDRY EATEN

HAMMOND
MULDOON
ARNOLO

\

T

NEDRY
GENNARO

RAPTOR2
RAPTOR3

L | \ \ \ i
[ tockeour | / 7
[ 2\ s/
(c)
GALLMIMUS FREX
T-REX

J- URASS‘C mRK ATTACK ON CARS :
PRex Tk f\/\(—\_\m

Fig. 11. Comparison of the movie Jurassic Park: (a) layout by StoryFlow; (b) layout by the TM method; (c) hand-drawn illustration from XKCD.

YusuRr -ESCHER

@) —=

[ — _ COBB'S DREAM—_EAMES

ST T o —
s COBBS DRE \
OF " = =
D SAITO's DREAM ArADNE \ e
ARIADNE's DREAM

i

FISCHER's DREAM
FISCHER's DREAM LAYER 3 —

LIMBO

COBB'S DREAM

FISCHER's DREAM LAYER

7 .

st

(b) A

Inception

= L
/ AN ———\\
P S — s ) con
X N f.\. SR X N f\_ 0\ S
saro- ATHUR IADRES, !

Fig. 12. Comparison of the movie Inception on encoding hierarchical locations: (a) layout by StoryFlow, (b) layout by the TM method.

code of the TM method, which is comparable to 7 in most movies and
dramas. So the time cost of the TM method can be roughly estimated by
n pnr0(T3). np and n, are set to 200 and 550, respectively. Compared
with StoryFlow, n, and n, are the major reasons for the expensive
computational cost in the TM method.

Next, we compared the numbers of line crossings and wiggles. As
shown in Table 1, our method achieves better performance in reducing
line crossings and wiggles. This is because the genetic algorithm used
by the TM method has drawbacks such as premature convergence and
local optima [43]. Our method provides a good initial layout from
the ordering and alignment steps, so dynamic-programming-based
optimization can find a better local optima.

Initialization. To examine the influence of different input (with
different ordering) on the layout results generated by StoryFlow, we
conducted the following experiment. In each trial, we randomly ordered
the entities at the first time frame and then generated the storyline layout
using our optimization approach. Ten trials were conducted for each
dataset. We evaluated the layout quality in terms of line crossings and
wiggles. Under each metric, we compared the average value, best value,
and worst value. The results are shown in Table 2. We can see that the
layout quality is quite stable with different inputs, which implies the
effectiveness of our optimization approach.

7.2 Case Studies

In this section, we first use a movie example to illustrate the useful-
ness and capability of StoryFlow. Then we compare our layout results
with existing techniques, including the state-of-the-art method pro-
posed by Tanahashi and Ma [42] and the hand-drawn illustration from
XKCD [27]. Finally, a case study on Twitter data was conducted to
further illustrate the usefulness and extensibility of StoryFlow.

Fig. 1 illustrates the story evolution in the movie The Lord of the
Rings. The yellow line is the path of the ring, Frodo is the ring bearer
who most often carried the ring. He and Sam are together most of the
time. In this visualization, to reduce visual clutter, the armies encoded
by the black lines are bundled together. With the LOD-based bundling
technique, the marching routes of the armies are clearly conveyed. This
implies that our layout can handle large data using the LOD technique.

Fig. 11 shows the storyline visualizations of the movie Jurassic
Park, which were generated by our method, the TM method, and the
hand-drawn illustration from XKCD [27], respectively. Compared with
the TM method (b), our layout (a) is more symmetric and compact
with fewer line crossings, wiggles, and white space. Furthermore, its
overall shape is much closer to the hand-drawn illustration (c). The
total number of line crossings and wiggles in the original illustration



GLOUCESTER’S CASTLE\ REGAN:

CONWALL

—

= ,
N — =\
//:ﬁ//:\ ALBANY’S PALACE \__/

P —— A o
DN

REGAN—————————————— oswaLD

“HAKING LEAR’S PALACE

Wrong hierarchy

ALl NY'SP LAQ
;

—

’BRiTIsH caM,
" GLOUCESTER’S CASTLE HOVER \ z——ﬂ I =
RITISH CAMP
(b) 4‘—\J
ALBANY’S PALACE \—/
,_./-/_ ——

AR j .‘—\4

sl g’- = King Lear

& F=

m?égu KING LEAR’S PALACE

Fig. 13. Comparison of King Lear on encoding hierarchical locations: (a) layout by StoryFlow, (b) layout by the TM method. In this layout, Albany’s
palace (the solid rectangle) is incorrectly placed as a part of Dover. In our layout, the two locations are placed separately (the dashed rectangle).

were 53 and 107, while ours had 25 and 110, and the TM method had 80
and 110. In terms of line wiggles, the tree layouts are very similar. In
terms of line crossings, our method outperforms the others. Compared
with the original, our method removes more than half of the crossings,
which implies the effectiveness of the proposed optimization method.

Next, we used the movie Inception to illustrate that our layout can
handle entities with hierarchical locations very well. As shown in
Fig. 12, although the location hierarchy is correctly encoded in both
layouts, our layout is much more balanced and compact than the one
generated by the TM method. For complex entity relationships, the
TM method may fail to correctly represent the hierarchical locations.
For example, Fig. 13 shows the storyline visualizations of the drama
King Lear. In the layout generated by the TM method, Albany’s palace
(in the solid black rectangle) is incorrectly placed as part of Dover.
While in our layout, these two locations are placed separately (see the
dashed black rectangle). This is because hierarchical locations are well
considered in our optimization approach.

To demonstrate the usefulness of StoryFlow, we conducted a case
study with a sociology PhD student and a professor in media and com-
munication studies. In this case study, we aimed to trace the evolution of
the temporal cooccurrence relationships between opinion leaders based
on their attention to different topics. We used a Twitter dataset related to
the 2012 US presidential election. We collected 89,174,308 tweets from
Twitter using query words such as “Obama,” “Romney,” and “election.’
These tweets were gathered from May 8, 2012 to Nov. 13, 2012 and cov-
ered the major events related to the presidential election. We selected
900 opinion leaders based on the number of retweets. The opinion lead-
ers were classified into three major groups by the two experts: political
figures (334 ), media (288), and grassroots (276). Five popular topics,
Welfare, Defense, Economy, Election, and Horse race, were identified
by the domain experts. Based on the classification result, we extracted
2,344 popular hashtags that were associated with the topics during the
election. The topics and hashtags constitute a 2-level hierarchy.

We grouped the data by 3-day periods and obtained 63 time frames.
At each time we assigned an opinion leader to a hashtag that he/she
tweeted or retweeted most frequently. Thus, we created a session table
for the opinion leaders at each time. With the session tables and the
topic hierarchy, we visualized the temporal relationships between the
opinion leaders. Fig. 14 shows the overall interactions of the three
groups of opinion leaders. Each layer represents a topic. In each
layer, three colored stripes were used to encode the opinion leaders
involved in this topic: green for grassroots, yellow for media, and pink
for political figures. The width of a layer at a time frame encodes
the overall proportion of different opinion leader groups in the topic.

)

Several patterns stand out clearly in the bundled storyline visualization.
First, all three opinion leader groups focused mainly on the Election
topic. The grassroots group was also interested in the Economy topic as
it was closely related to their daily lives. Their attention switched more
frequently than that of the media and political figures. On the other
hand, political figures were more focused and seldom switched. The
media also primarily stayed on the Election topic but they switched to
other topics occasionally. For instance, a large proportion of the media
switched their focus to the Welfare topic from Oct. 29 to Nov. 7.

Five significant peaks emerged in the Election topic. Four of them
were related to the presidential debates and the vice presidential debate.
The last one was about voting. The visualization shows that the topics
that were discussed in the debates would remain popular on Twitter for
the next few days. One interesting pattern was observed after the third
TV debate, which was related to foreign affairs and covered the Libya
issue. During that time, grassroots attention on the Election topic de-
ceased gradually and many of them switched their focus to the Defense
topic. We expanded this region to see more information at the hashtag
level (Fig. 14(b)). Clearly, the grassroots mainly discussed the issue
related to the hashtag “benghazi.” To discover more information about
“benghazi,” we browsed the related tweets. Most of them criticized the
Obama administration for its handling of the terrorist attack on the U.S.
diplomatic compound in Benghazi. For example, one of the tweets is
‘doesn’t obama owe us answers (on #benghazi)?”

Second, we identified two significant focus transitions from the
Election to the Economy. On Oct. 14, a large amount of users in the
grassroots group switched their attention from the Election to the Econ-
omy while fewer media or political figures switched. We expanded
the Economy topic from Oct. 14 to 16 to examine the related hashtags
(Fig. 14(a)). Obviously, grassroots attention switched to the hashtag
“sensata.” We used the hashtag to retrieve the related tweets for fur-
ther analysis (such as the tweet “think Romney is tough on china?
ask the workers of #sensata about that as they train their chinese re-
placements”) and found that the transition was caused by the Sensata
scandal invovling Mitt Romney. Then the grassroots group returned
to the Election topic to see Romney’s response to the scandal in the
second debate around Oct. 17. Surprisingly, only a small proportion
of media or political figures discussed the issue on Twitter. After we
read the tweets related to this issue, we found that the media’s opinion
was similar to that of the grassroots group. They criticized Romney
for outsourcing jobs to China to make profits. For political figures
they discussed the impact of this scandal on Romney and Romney’s
response to the scandal. We speculated that they were more careful
about what they said, while the grassroots group were more likely to



10/5/2012 10/8/2012 10/11/2012

10/14/2012 10/17/2012 10/20/2012 10/23/2012

-Defense

First debate VP debate Second debate  Third debate - - Voting Election
e 7 - Economy
e 7 7 PR el Gl R
- X y [ Welfare
z 2 | W Mgl SRR U J
’ -, S
=< z = Horse race
3 S a
Grassroots (a) (b) (c)
Media . forward d
Political figures benghazi sandy
Sensata
tlot
teaparty americaforward fema

gop

Fig. 14. Visualization of the 2012 US presidential election. It contains 900 opinion leaders and 63 time frames. The opinion leaders are organized by
a 2-level topic hierarchy. The opinion leaders are bundled together by the LOD technique. Each color represents an opinion leader group.

express their opinions regarding different events/scandals. On Oct. 29,
we found that a lot of opinion leaders turned from Election to Welfare.
Most of them were from the media group. We expanded the related
region to the hashtag level (Fig. 14(c)). We found that the transition was
caused by the breaking news of hurricane “Sandy” which hit US on Oct.
29. As the hurricane weakened, the media gradually returned to the
Election topic from Nov. 1 to 4 since the election date was approaching.
The presidential election on Nov. 7 attracted a significant amount of
attention from the media. After the election, they started talking about
other topics, as demonstrated by the fact that the media’s interest in the
election declined gradually. The sociology professor commented, “This
phenomena is interesting and can be interpreted through the lens of the
issue-attention cycle theory in communication and media studies [12].”

7.3

To evaluate the usefulness of StoryFlow, we conducted a semi-
structured interview with three experts, a film professor (User F), a
sociology PhD student (User S), and a professor (User P) in media and
communication studies.

The interview of User F took 60 minutes, including 10 minutes of
system demonstration, 20 minutes of case study and free exploration,
and 30 minutes of post interview. Overall, StoryFlow was well received
by User F. He commented, “I love this visualization! It is a great
way to show the interactions between characters over time, which can
definitely help filmmaking.” He suggested several use scenarios:

e Film directors can use StoryFlow to understand the story evolu-

tion in a movie to make a proper plan for the film shooting. User
F commented, “StoryFlow enables a fast review of the shooting
timetable and allows the directors to make a better decision on
the most advantageous shot order.”

e Script adapters can use Storyflow to review a script quickly to
decide whether to add or remove certain characters or scenes.
User F said, “StoryFlow can also be used as an effective tool to
communicate their ideas to the film directors and producers.”

e Actors can use StoryFlow to better trace their related scenes and
see immediately where and who they will interact with, so that
they can better prepare for their performance.

User F also suggested adding a storyboard, which consists of a

sequence of key frames, to show the expressive context.

After conducting the 2012 US presidential election case study with
User P and User S, we also took 40 minutes to interview them. They
both confirmed the usefulness of StoryFlow and the intuitiveness of
the visual design. User S was very impressed by the visualization and
commented “It is stunning and engaging. It definitely outperforms the
static infographics that I have seen before.” He also appreciated the
interactive, level-of-detail feature of StoryFlow, which enables him to
immediately see the overall patterns as well as to directly interact with
the visualization to see more detail. User P said, “StoryFlow would
be particularly useful for data-driven journalism because it not only
provides a clear visual summary of events but also shows informative
context for investigative analysis. He further added, “StoryFlow can be

Initial User Feedback

widely used since it can produce expressive visualizations with simple
input.” Both scholars suggested several potential applications for Sto-
ryFlow. For example, User S indicated that it would be interesting to see
the dynamic relationships of the liberal and conservative opinion leaders
over time, while User P suggested adding sentiment information to the
StoryFlow visualization to provide richer context for further analysis.

8 DiscussioN AND FUTURE WORK

We have presented an efficient optimization approach to generate a
storyline layout with thousands of entities and hundreds of time frames.
The major feature of this approach is that it divides the layout optimiza-
tion into two parts: discrete optimization to minimize the number of
line crossings and wiggles, and continuous optimization for minimizing
the wiggle distance and white space. With this division, our method can
quickly achieve a better local optimum than the state-of-the-art method.
Due to the efficiency of the method, a set of rich interactions is provided
to allow users to examine the story and its evolution from multiple per-
spectives. Accordingly, one interesting avenue for future work is to
investigate which interactions are useful for what kind of analysis tasks.

Although StoryFlow has achieved certain successes in illustrating the
story evolution in several domains such as movies, dynamic social net-
works, and blog analysis, it has some limitations in certain applications.

First, in many applications, if the time scale is coarser, an entity may
occur in several locations in the same time frames. However, our layout
method assumes that an entity only belongs to one session at one time.
This will limit its application to some extent. One potential solution is
to use several lines to represent one entity and allow them to merge and
split over time. Then the current optimization approach is extended to
accommodate this new representation. This is very interesting problem
to investigate in the future.

Second, the timeline in StoryFlow is linear, which does not scale
well with thousands of time frames. An intuitive solution is to use a non-
linear timeline with some unimportant time frames merged. However,
a non-linear timeline may not be compatible with the mental map of
average users. As a result, the key is to find an appropriate visual
metaphor that can both well present the non-linear information and
preserve users’ mental maps.

Finally, a story is told sequentially in StoryFlow. In addition to a
sequential narrative, a flashback and a narration interspersed with flash-
backs are also two widely used narrative methods in storytelling. For
a simple flashback, we can still leverage the StoryFlow visualization,
while for a narration interspersed with flashbacks, it is quite challenging
to illustrate the story with one storyline layout. Small multiples, which
display several sequential stories simultaneously, might be a solution.
In the future, we plan to augment the existing storyline visualization to
support more narrative methods used in various storytelling practices.

ACKNOWLEDGMENTS

The authors would like to thank Yuzuru Tanahashi for providing
the comparison data and helping generate some of the comparison
examples and Stephen Lin for proofreading the paper.



REFERENCES

(1]
[2]

(3]
(4]

(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Mosek package. http://www.mosek.com, March 2013.
SIMILE  Widget. http://www.simile-widgets.org/
timeline/, March 2013.

Wikipedia. http://en.wikipedia.org/wiki/Story, March
2013.
W. Aigner, S. Miksch, B. Thurnher, and S. Biffl. PlanningLines: novel

glyphs for representing temporal uncertainties and their evaluation. In
Proceedings of the International Conference on Information Visualisation,
pages 457-463, 2005.

P. André, M. L. Wilson, A. Russell, D. A. Smith, A. Owens, and M. C.
Schraefel. Continuum: designing timelines for hierarchies, relationships
and scale. In Proceedings of the annual ACM symposium on User interface
software and technology, pages 101-110, 2007.

C. Blundell, Y. W. Teh, and K. Heller. Bayesian rose trees. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence, pages 65-72,
2010.

A. A. T. Bui, D. R. Aberle, and H. Kangarloo. TimeLine: visualizing
integrated patient records. IEEE Transactions on Information Technology
in Biomedicine, 11(4):462-73, 2007.

M. Burch, F. Beck, and S. Diehl. Timeline trees: visualizing sequences
of transactions in information hierarchies. In Proceedings of the Working
Conference on Advanced Visual Interfaces, pages 75-82, 2008.

M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel edge
splatting for scalable dynamic graph visualization. /EEE Transactions on
Visualization and Computer Graphics, 17(12):2344-2353, 2011.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong.
TextFlow: towards better understanding of evolving topics in text. I[EEE
Transactions on Visualization and Computer Graphics, 17(12):2412-2421,
2011.

A. Downs. Up and down with ecology the “issue-attention cycle”. The
Public Interest, 28:38-50, 1972.

P. Eades and N. C. Wormald. Edge crossings in drawings of bipartiie
graphs. Algorithmica, 11(4):229-233, 1994.

J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. A visual
interface for multivariate temporal data: finding patterns of events across
multiple histories. In IEEE Symposium On Visual Analytics Science And
Technology, pages 167-174, 2006.

D. Fisher, A. Hoff, and G. Robertson. Narratives: a visualization to track
narrative events as they develop. In IEEE Symposium On Visual Analytics
Science And Technology, pages 115-122, 2008.

Y. Frishman and A. Tal. Online dynamic graph drawing. /EEE Transac-
tions on Visualization and Computer Graphics, 14(4):727-740, 2008.

E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214-230, 1993.

J. Hullman and N. Diakopoulos. Visualization rhetoric: framing effects in
narrative visualization. IEEE Transactions on Visualization and Computer
Graphics, 17(12):2231-2240, 2011.

M. Jensen. Visualizing complex semantic timelines. Technical report,
NewsBlip, 2003.

N. W. Kim, S. K. Card, and J. Heer. Tracing genealogical data with
timenets. In Proceedings of the International Conference on Advanced
Visual Interfaces, pages 241-248, 2010.

M. Krstajic, M. Najm-Araghi, F. Mansmann, and D. Keim. Incremen-
tal visual text analytics of news story development. In Proceedings of
Conference on Visualization and Data Analysis, VDA, 2012.

V. Kumar, R. Furuta, and R. B. Allen. Metadata visualization for digital
libraries: interactive timeline editing and review. In Proceedings of the
third ACM conference on Digital Libraries, pages 126—133, 1998.

S. Liu, M. X. Zhou, S. Pan, W. Qian, W. Cai, and X. Lian. Interactive,
topic-based visual text summarization and analysis. In CIKM, pages
543-552, 2009.

S. Liu, M. X. Zhou, S. Pan, Y. Song, W. Qian, W. Cai, and X. Lian. Tiara:
Interactive, topic-based visual text summarization and analysis. ACM
Trans. Intell. Syst. Technol., 3(2):25:1-25:28, 2012.

D. Luo, J. Yang, M. Krstajic, W. Ribarsky, and D. A. Keim. Eventriver:
visually exploring text collections with temporal references. IEEE Trans-
actions on Visualization and Computer Graphics, 18(1):93-105, 2012.
K.-L. Ma, L. Liao, J. Frazier, H. Hauser, and H.-N. Kostis. Scientific story-

[27]
(28]
[29]

(30]

(31]

(32]

(33]

(34]

[35]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

telling using visualization. IEEE Computer Graphics and Applications,
32(1):12-19, 2012.

R. Munroe. Movie narrative charts. http://xkcd.com/ 657/, March
2013.

J. Nocedal and S. Wright. Numerical optimization. Springer, 1999.

M. Ogawa and K.-L. Ma. Software evolution storylines. In Proceedings
of the international symposium on Software visualization, pages 35-42,
2010.

V. Ogievetsky. Plotweaver.
PlotWeaver/, March 2013.

C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. LifeLines:
visualizing personal histories. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 221-227, 1996.

C. Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller, and B. Shneider-
man. LifeLines: using visualization to enhance navigation and analysis of
patient records. In Proceedings of the AMIA Annual Symposium, pages
76-80, 1998.

H. C. Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In Proceedings of the International Symposium on Graph
Drawing, pages 248-261, 1997.

K. Reda, C. Tantipathananandh, A. Johnson, J. Leigh, and T. Berger-
Wolf. Visualizing the evolution of community structures in dynamic social
networks. Comp. Graphics Forum, 30(3):1061-1070, 2011.

S. Rose, S. Butner, W. Cowley, M. Gregory, and J. Walker. Describing
story evolution from dynamic information streams. In Proceedings of
IEEE Symposium on Visual Analytics Science and Technology, pages 99—
-106, 2009.

E. Segel and J. Heer. Narrative visualization: telling stories with data.
IEEE Transactions on Visualization and Computer Graphics, 16(6):1139—
1148, 2010.

C. Shi, W. Cui, S. Liu, P. Xu, W. Chen, and H. Qu. Rankexplorer: Visual-
ization of ranking changes in large time series data. /EEE Transactions on
Visualization and Computer Graphics, 18(12):2669-2678, 2012.

C. Stab, K. Nazemi, and D. W. Fellner. Sematime-timeline visualization
of time-dependent relations and semantics. In International Symposium
on Visual Computing, pages 514-523, 2010.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man
and Cybernetics, 11(2):109 — 125, 1981.

R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing
and readability of diagrams. IEEE Transactions on Systems, Man and
Cybernetics, 18(1):61-79, 1988.

Y. Tanahashi. Movie interaction dataset. http://vis.cs.
ucdavis.edu/~tanahashi/data_downloads/storyline_
visualizations/, March 2013.

Y. Tanahashi and K.-L. Ma. Design considerations for optimizing story-
line visualizations. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2679-2688, 2012.

I. Tazawa, S. Koakutsu, and H. Hirata. An immunity based genetic al-
gorithm and its application to the VLSI floorplan design problem. In
Proceedings of IEEE International Conference on Evolutionary Computa-
tion, pages 417421, 1996.

T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, S. Murphy, and B. Shnei-
derman. Aligning temporal data by sentinel events: discovering patterns
in electronic health records. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 457-466, 2008.

K. Wongsuphasawat and D. Gotz. Exploring flow, factors, and outcomes
of temporal event sequences with the outflow visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 18(12):2659-2668, 2012.
K. Wongsuphasawat, J. A. Guerra Gémez, C. Plaisant, T. D. Wang,
M. Taieb-Maimon, and B. Shneiderman. LifeFlow: visualizing an
overview of event sequences. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1747-1756, 2011.

P. Xu, Y. Wu, E. Wei, T. Peng, S. Liu, J. Zhu, and H. Qu. Visual analysis
of topic competition on social media. /EEE Transactions on Visualization
and Computer Graphics, 19(12), 2013.

http://ogievetsky.com/


http://www.mosek.com
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://en.wikipedia.org/wiki/Story
http://xkcd.com/657/
http://ogievetsky.com/PlotWeaver/
http://ogievetsky.com/PlotWeaver/
http://vis.cs.ucdavis.edu/~tanahashi/data_downloads/storyline_visualizations/
http://vis.cs.ucdavis.edu/~tanahashi/data_downloads/storyline_visualizations/
http://vis.cs.ucdavis.edu/~tanahashi/data_downloads/storyline_visualizations/

	Introduction
	Related Work
	Temporal Event Visualization
	Storytelling

	StoryFlow Overview
	Considerations For StoryFlow Visualization
	Design Guidelines
	Optimization Metrics and Constraints
	Optimization Strategy

	StoryFlow Layout
	Construction of the Relationship Tree
	Ordering
	Alignment
	Compaction

	Interactive Exploration
	Evaluation
	Quantitative Analysis
	Case Studies
	Initial User Feedback

	Discussion and Future Work

