
Selecting the Aspect Ratio of a Scatter Plot
Based on Its Delaunay Triangulation

Martin Fink, Jan-Henrik Haunert, Joachim Spoerhase, and Alexander Wolff

(a) a point set with four clusters at two different aspect ratios (b) a point set showing a sine curve at two different aspect ratios

Fig. 1. Choosing the aspect-ratio of a scatter plot has a considerable influence on the readers’ impression and their ability to recognize
clusters and trends of point data.

Abstract—Scatter plots are diagrams that visualize two-dimensional data as sets of points in the plane. They allow users to detect
correlations and clusters in the data. Whether or not a user can accomplish these tasks highly depends on the aspect ratio selected
for the plot, i.e., the ratio between the horizontal and the vertical extent of the diagram. We argue that an aspect ratio is good if the
Delaunay triangulation of the scatter plot at this aspect ratio has some nice geometric property, e.g., a large minimum angle or a
small total edge length. More precisely, we consider the following optimization problem. Given a set Q of points in the plane, find
a scale factor s such that scaling the x-coordinates of the points in Q by s and the y-coordinates by 1/s yields a point set P(s) that
optimizes a property of the Delaunay triangulation of P(s), over all choices of s. We present an algorithm that solves this problem
efficiently and demonstrate its usefulness on real-world instances. Moreover, we discuss an empirical test in which we asked 64
participants to choose the aspect ratios of 18 scatter plots. We tested six different quality measures that our algorithm can optimize.
In conclusion, minimizing the total edge length and minimizing what we call the “uncompactness” of the triangles of the Delaunay
triangulation yielded the aspect ratios that were most similar to those chosen by the participants in the test.

Index Terms—Scatter plot, aspect ratio, Delaunay triangulation

1 INTRODUCTION

Scatter plots are widely applied in scientific visualization to find clus-
ters, patterns, and trends in empirical bivariate data. Each data element
is visualized as a point in the plane, for example, by using a dot sym-
bol. Additionally, scatter plots often show trend lines or contour lines.
According to a survey by Friendly [8], scatter plots appeared in the
scientific literature later than pie charts, line graphs, and bar charts,
which are generally attributed to William Playfair (1759–1823). Prob-
ably, scatter plots have not been used before 1833, when Herschel [12]
investigated the relationship between the magnitudes and the spec-
tral classes of stars. Today, however, scatter plots are very common.
Tufte [26] notes that “the relational graphic—in its barest form, the
scatterplot and its variants—is the greatest of all graphical designs.”

The two dimensions displayed in a scatter plot are usually of dif-
ferent units—consider, for example, a scatter plot that shows the re-
lationship between pairwise measurements of temperature (in degree
Celsius) and air pressure (in hPa). Often, each of the two units of
the input data is simply mapped to one geometric unit in the drawing.

• Martin Fink is with Lehrstuhl I, Institut für Informatik, Universität
Würzburg. E-mail: martin.a.fink@uni-wuerzburg.de.

• Jan-Henrik Haunert is with Lehrstuhl I, Institut für Informatik, Universität
Würzburg. E-mail: jan.haunert@uni-wuerzburg.de.

• Joachim Spoerhase is with Lehrstuhl I, Institut für Informatik, Universität
Würzburg. E-mail: joachim.spoerhase@uni-wuerzburg.de.

• Alexander Wolff is with Lehrstuhl I, Institut für Informatik, Universität
Würzburg. E-mail: alexander.wolff@uni-wuerzburg.de.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

This approach is inappropriate, however, since a very different visual-
ization would be obtained if the input data was given in different units
(for example, in Fahrenheit and Bar). At the worst, this may affect
the conclusions that researchers draw about the presence of trends or
clusters in their data. Therefore, the mapping between the units of the
input data and the coordinates of the drawing needs to be chosen care-
fully. In this paper, we require that this mapping is a scaling. We do
not address, for example, scatter plots with a logarithmic scale. We
also assume that the area of the plot is prescribed, thus we only have
to choose the aspect ratio of the drawing, that is, the ratio between its
horizontal and its vertical extent.

The problem of finding a good aspect ratio for a scatter plot is
closely related to the problem of finding a good aspect ratio for a line
chart (that is, the plot of a function), which has been intensively dis-
cussed in the literature on information visualization [2, 3, 11, 23, 24].
The existing methods, which we review in Sect. 2 in more detail,
mainly rely on properties of the line segments displayed in the dia-
gram. Therefore, they cannot easily be generalized to scatter plots that
display points only. A way to overcome this problem, which was pro-
posed by Cleveland et al. [3], is to apply a line-segment-based method
to “virtual line segments”, that is, line segments that humans may per-
ceive in a scatter plot though they do not physically exist [22]. Cleve-
land et al. suggested applying their method to the segments of a (vir-
tual) polyline connecting all data points or the segments of a regres-
sion (poly-)line that reflects a global trend. While this approach pro-
duces satisfactory results if the data contains a trend, Talbot et al. [23]
showed that the trend-line-based approach is inappropriate in the case
of two variables that do not have a functional relationship. In this case,
it is still interesting to visualize the data, for example, to detect clus-
ters. Therefore, Talbot et al. used contour lines that they computed
for the given points with a kernel density estimator (KDE) [19], which
is implemented in the statistics package R [16]. Then, they selected
the aspect ratio with a line-segment-based method that minimizes the

2326

        1077-2626/13/$31.00 © 2013 IEEE       Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013



total length of the contour lines. Talbot et al. did, however, not con-
sider that the KDE result heavily depends on the scale between the two
dimensions of the input data.

0

0

y

1

1

2

3

x 0

0

x1 2

1

2

3

y

0

0

1 2 3

1

2

3

y

x

Fig. 2. Scaling a point set (crosses) changes the result of a kernel
density estimator and the contour lines derived from it.

Figure 2 illustrates our concern about the contour-line-based
method. Suppose that we are given a set of nine data elements that con-
stitute a regular 3×3 grid, see Fig. 2 (center). Clearly, we would say
that the data is not clustered. Accordingly, R’s kde2d method yields a
separate peak for each data element. If we now change the ratio be-
tween the vertical and the horizontal spacing of the grid (to simulate
a change of the units of the input data), the kernel density estimator
groups the points into rows (Fig. 2 (left)) or columns (Fig. 2 (right)).
Similarly, since humans tend to group points by proximity [28], a hu-
man may incorrectly conclude that the data is partitioned into three
clusters. Therefore, we should rescale the axes of the diagrams such
that we obtain the regular grid in Fig. 2 (center). This solution will
not be found, however, by minimizing the total length of the contour
lines in Fig. 2 (left) or (right). In fact, since Talbot et al. [23] showed
that their method tends to transform ellipses to circles, the point sets
in Fig. 2 (left) and (right) would be scaled in the wrong direction: for
each of the clusters enclosed by a set of ellipse-like ovals, the three
contained points would move even further together.

Our method for choosing the aspect ratio of a scatter plot reuses the
idea of virtual line segments suggested by Cleveland et al. [3]. Other
than the method of Cleveland et al. and the contour-line-based method
of Talbot et al., however, our method is not based on line segments that
were computed before optimizing the aspect ratio. Instead, we define
based on the output diagram visible to the user (and thus based on the
aspect ratio chosen) whether or not two points are linked via a virtual
edge. We argue that the aspect ratio has appropriately been set if the
virtual edges have nice properties. (Like Talbot et al. [23], we consider
minimizing the total edge length, but we also tested other criteria and
we will discuss them.) In contrast to the method that optimizes the
aspect ratio based on precomputed contour lines, our method ensures
that the result is independent of the units of the input data.

To deal with two variables without a functional relationship, we de-
fine a virtual line segment for each edge of the Delaunay triangulation
D(P) of the set P of points displayed. This defines a meaningful (usu-
ally termed the natural) neighborhood for P: if for two points u,v ∈ P
there exists a point w∈R2 such that both u and v are nearest neighbors
of w in P, then there exists an edge {u,v} in D(P).

The Delaunay triangulation not only has a conceptually meaningful
definition, but has also been shown empirically to explain (to some de-
gree) human perceptual grouping. For example, Dry et al. [5] report on
an experiment in which humans were shown constellations of stars and
asked to display structures in the constellations by connecting pairs of
stars with edges. As an average result, 98% of the edges drawn by
an individual were edges of the Delaunay triangulation of the stars.
On the other hand, on average, an individual did not draw 58% of the
Delaunay edges. Therefore, to automate perceptual grouping, the De-
launay triangulation is often reduced to a subgraph, for example, to
the relative neighborhood graph [25] or the Gabriel graph [9]. In this
paper, we restrict our discussion to the Delaunay triangulation, but we
believe that our approach can be generalized to also find an aspect ratio
that optimizes favorable properties of, say, the Gabriel graph.

Fig. 3. Scaling a point set may change its Delaunay triangulation.

We now face the problem of choosing the aspect ratio of a scatter
plot such that the displayed points have a nice Delaunay triangula-
tion, for example, a Delaunay triangulation with minimum total edge
length. This is in fact a challenging algorithmic problem, since—just
as the contour lines for a set of points—the Delaunay triangulation
may change if we change the aspect ratio, see Fig. 3. To solve the
problem, we first consider a naive algorithm that discretizes the in-
terval of possible aspect ratios into a finite but large set S of possible
values. Then, we explicitly test each of the |S| values in S. That is,
for each s ∈ S, we apply the aspect ratio to the diagram, triangulate the
points, and evaluate the total edge length of the triangulation. Finally,
we return the aspect ratio that was evaluated best.

The naive algorithm would clearly work, but computing the De-
launay triangulation |S| times from scratch would be extremely ineffi-
cient. (Since computing the Delaunay triangulation of a set of n points
requires Θ(n logn) time, the runtime of the naive algorithm would be
in Θ(|S|n logn).) To do better, we present an algorithm that traverses
the interval of possible aspect ratios while efficiently maintaining the
Delaunay triangulation. This algorithm allows us to move from one
aspect ratio to the next larger (or smaller) aspect ratio where the De-
launay triangulation changes in Θ(logn) time.

Our paper is structured as follows. First, we give an overview over
existing methods for aspect-ratio selection for line charts. Next, we
precisely define our problem, discuss first ideas, and introduce our
quality measures for the aspect ratio of a scatter plot. Then, we present
our algorithms for optimizing these quality measures. Finally, we de-
scribe our experimental evaluation of the different measures including
a user study we performed.

2 EXISTING METHODS FOR ASPECT RATIO SELECTION

The problem of choosing the aspect ratio of a line chart was first dis-
cussed by Cleveland et al. [3]. The authors observed that the orien-
tation resolution of two line segments s1 and s2 with positive slopes
(that is, the absolute difference of their orientation angles) is maximal
if the mean orientation of s1 and s2 is 45◦. In order to allow humans
to recognize orientation changes of a line, Cleveland et al. then sug-
gested choosing the aspect ratio such that the median absolute slope of
all line segments is 1. This method is usually termed banking to 45◦
and is perhaps the most widely applied automatic method for aspect
ratio selection, not least because it is implemented in the statistical
software R. Later, Cleveland [2] suggested a weighted version of the
method to avoid that redundant line vertices (which would imply an in-
crease in the number of line segments) have an influence on the aspect
ratio. In this new version, the length-weighted mean of the absolute
orientations of the line segments is set to 45◦. Two additional methods
for aspect ratio selection have been introduced and tested by Heer and
Agrawala [11]. Their first method maximizes the sum of the squared
orientation differences over all pairs of line segments; their second
method computes the aspect ratio such that the length-weighted mean
of the absolute slopes of the line segments equals 1. The most signifi-
cant innovation of the authors, however, is a multi-scale approach that
allows the visualization of a line to be optimized for different levels of
granularity. This method finds trends at multiple frequency scales and
then generates multiple line charts, of which each optimizes the aspect
ratio to visualize the trend at one of the scales.

Talbot et al. [23] suggested choosing the aspect ratio of a line chart
by minimizing the total arc length of the line. As the authors show, this
method has a close similarity to the method of Heer and Agrawala [11]
that maximizes the sum of squared orientation differences (if only
pairs of consecutive line segments instead of all pairs of line segments

2327FINK ET AL: SELECTING THE ASPECT RATIO OF A SCATTER PLOT BASED ON ITS DELAUNAY TRIANGULATION



are considered). In contrast, the method of Talbot et al. is parameteri-
zation invariant—redundant line vertices do not influence the result—
and faster to compute since only Θ(n) instead of Θ(n2) pairs of line
segments need to be considered. The most recent contribution to the
topic [24], also by Talbot et al., is an empirical study on how the as-
pect ratio of a line chart influences humans in estimating the slope of a
line. The authors conclude that banking to 45◦ degrees is not necessar-
ily the best choice and that “substantial future work remains to flesh
out a full theory of aspect ratio selection”. With our paper we aim
to give fresh impetus to this discussion. We choose a computational-
geometry approach that offers new possibilities of optimizing various
favorable properties of a scatter plot.

3 PROBLEM STATEMENT AND QUALITY MEASURES

Given a set Q = {q1,q2, . . . ,qn} ⊂ R2 of points, we search for a scale
factor s ∈ R+ that defines the set P(s) of displayed points, that is,
the resulting scatter plot. We denote the coordinates of each point
qi ∈ Q by xi and yi and require that the scatter plot P(s) contains the
point pi := (s · xi,yi/s). This ensures that the bounding box of Q and
the bounding box of P(s) have the same area. By choosing the scale
factor, also the aspect ratio becomes determined. We write P instead
of P(s) if the choice of s is clear from the context.

To choose a good scale factor, we define various criteria. Basically,
we measure the quality of a scatter plot with a function f : S → R,
where S is the set of all possible scatter plots for the given point set.
Then, we search for a scale factor whose corresponding scatter plot
maximizes f . Before discussing possible settings of f , however, we
introduce two simple methods that are not based on a quality measure.

Simple ideas for choosing an aspect ratio. A first approach
would be to compute the bounding box of Q and to scale it to a pre-
scribed drawing area, for example a square. With this method, how-
ever, at most four points (those with extremal x- or y-coordinates) de-
fine the scale factor, while all other points do not influence the result.
Therefore, it is left to chance whether the scatter plot allows clusters or
trends to be detected. This shows the inappropriateness of the method.

A second, more promising idea is to consider the empirical stan-
dard deviations σx and σy of the x- and y-coordinates of the displayed
points. It is somehow reasonable to require σx = σy since the varia-
tions in both variables may be assumed to be equally important and
thus their standard deviations should allocate the same geometric unit.
This requirement can be fulfilled by setting

s = 4

√
∑

n
i=1 (yi− ȳ)2

∑
n
i=1 (xi− x̄)2 with x̄ =

1
n

n

∑
i=1

xi , ȳ =
1
n

n

∑
i=1

yi. (1)

Since this method is conceptually simple and computationally inex-
pensive, we include it into the discussion of our experiments in Sect. 5.
It is also clear, however, that the standard-deviation-based method has
its limitations. Consider, for example, the point set in Fig. 1 (right)
scattered around the sine function and assume that it represents a sig-
nal we observe, that is, the behavior of a variable (plotted on the y-
axis) over time (plotted on the x-axis). Clearly, by observing a suffi-
ciently large number of periods of the signal, the standard deviation
of the input x-coordinates gets arbitrarily large. On the contrary, the
standard deviation of the input y-coordinates stays constant (or only
changes marginally because of the non-periodic nature of the noise).
Therefore, by setting σx = σy the signal will get more compressed
in the horizontal direction the longer we observe it. At some point,
we would be unable to recognize the sine function. This shows the
deficiency of the standard-deviation-based method. Moreover, the ex-
ample suggests that we need a measure that quantifies the quality of
every part of the scatter plot locally, for example, to ensure that ev-
ery period of a sine signal gets nicely scaled. We need a definition of
locality, a local measure of quality, and a function that aggregates the
local measures into a single global score that is to be optimized.

Quality measures. As pointed out in the introduction, experi-
ments have shown [5] a strong connection between human perceptual

Fig. 4. Triangulations of a point set with incircles of the triangles.

grouping in a given point set P and the edges of its Delaunay triangu-
lation D(P). This motivates our study of Delaunay triangulations as
the underlying structure for finding a suitable aspect ratio of a scatter
plot. To give an intuitive explanation why the Delaunay triangulation
yields a meaningful neighborhood, consider the basic example of Fig-
ure 4 where the two possible triangulations of a point set are shown.
A possible explanation (for alternative explanations see below) why
the triangulation to the left seems less natural than the right one is
that it contains very small angles between adjacent edges leading to
an “uncompact” appearance. In fact, it is well known that among all
triangulations of a given point set (with a fixed scale factor) the Delau-
nay triangulation (which is the triangulation to the right in Figure 4) is
the one whose smallest angle is maximal [21].

The idea behind our first quality measure is therefore to maximize
the smallest angle also over different scale factors. That is, we choose
the scale factor such that the smallest angle of D(P) is as large as pos-
sible. Indeed, we can find the scale factor that optimizes this criterion.
Our experiments, which we will discuss in Sect. 5, showed, however,
that this sometimes yields unsatisfactory results.

A problem with maximizing the minimum angle is that an overall
good scatter plot is rated poor if its Delaunay triangulation contains
only one very small angle, which may dictate the overall outcome.
Therefore, we need a measure that better aggregates local properties
of the scatter plot. Interestingly, the Delaunay triangulation not only
maximizes the minimum angle but also the mean inradius of the trian-
gles [14]. (See also Figure 4.) Since this aggregating measure has the
potential to be more robust than a max-min measure when applied to
an interval of scales, we also consider maximizing the mean inradius
of the triangles of D(P).

While our motivation for the first two measures was mainly driven
by properties of the Delaunay triangulation, we also consider measures
that have earlier been proposed for selecting the aspect ratio of a line
chart. In particular, inspired by the idea of Talbot et al. [23], who
defined the aspect ratio of a line chart by minimizing the length of the
displayed line, we consider minimizing the overall length of the edges
of D(P). Similarly, inspired by an idea of Heer and Agrawala [11],
who proposed minimizing the square sum of orientation differences of
line segments, we consider minimizing the square sum of the angles
of the triangles of D(P).

Furthermore, we suggest maximizing the mean compactness of the
triangles of D(P). We define compactness as MacEachren [15] did for
the analysis of geographic shapes, that is, we define the compactness
of a triangle ∆ with perimeter c(∆) and area A(∆) as

√
A(∆)/c(∆).

Finally, instead of maximizing the average compactness, we consider
minimizing the mean uncompactness of the triangles of D(P), where
the uncompactness of a triangle ∆ is defined as c(∆)/

√
A(∆) [15]. We

remark that our uncompactness measure may be viewed as a weighted
variant of the above length measure. In fact, both measures behaved
similarly in our experiments; uncompactness was slightly better. The
uncompactness criterion weighs each edge by a factor that depends
(reciprocally) on the areas of the incident triangles. This increases the
impact of edges incident to skinny triangles while lowering the impact
if the incident triangles are compact anyway.

Note that, for a fixed scale, all of the above measures prefer the right
over the left triangulation in Figure 4.

To wrap up, we propose six optimization criteria, which we group
into angle-based, length-based, and triangle-based measures, namely
(1) maximizing the minimum angle of the triangles of D(P),
(2) minimizing the square sum of the angles of the triangles of D(P),
(3) minimizing the total edge length of D(P),
(4) maximizing the mean inradius of the triangles of D(P),
(5) maximizing the mean compactness of the triangles of D(P), and
(6) minimizing the mean uncompactness of the triangles of D(P).

2328 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013



In the next section, we present an exact algorithm for maximizing the
minimum angle and an algorithm that approximates an optimal solu-
tion for any of the other five criteria.

4 OUR ALGORITHM

Finding the optimum scale factor s can be seen as a process of continu-
ously increasing s starting with s = 1. In doing so, the Delaunay trian-
gulation undergoes topological changes at certain event points which
we need to keep track of. We output the scale factor at which our ob-
jective function is optimized. Using the same approach we can traverse
all scale factors s < 1 and, hence, find the global optimum.

Our algorithm consists of two layers. The first layer steps through
the discrete set of event points in the order in which they occur in
the above described process. The second layer optimizes between the
event points. Between two consecutive event points si,si+1 the topo-
logical structure of the Delaunay triangulation does not change. Each
of our optimization measures is a continuous function of s ∈ [si,si+1].
We can compute the scale factor (or an approximation of it) at which
this function is maximized within the interval [si,si+1]. Doing this
for all such intervals allows us to determine the globally optimal scale
factor (or an approximation).

Our approach is closely related to the problem of maintaining a
Delaunay triangulation for a set of continuously moving points. In
fact, the first layer of our algorithm may be seen as a special case
of this problem where each point moves along a horizontal line at an
individual but constant speed. To see this, map any input point (xi,yi)
to (s2xi,yi) instead of mapping it to (sxi,yi/s) at scale factor s. Clearly,
this does not change the topology of the triangulation. Substituting s2

by s shows that it is sufficient (at least in the first layer where only
the topological structure of the Delaunay triangulation is relevant) to
map (xi,yi) to (sxi,yi). That is, in the first layer we only need to scale
x-coordinates by s while leaving the y-coordinates unchanged.

For the general setting of moving points, Roos [17] describes a data
structure for maintaining (the topological structure of) a dynamic De-
launay triangulation. His data structure takes O(logn) time per topo-
logical change. His results requires that the movement of the points
meets a (weak) technical assumption that holds for many natural sce-
narios such as movement along parametric polynomial curves.

The question of how many topological changes a dynamic Delau-
nay triangulation can undergo (again under some weak and natural as-
sumptions on the movement) is an important field of research in com-
putational geometry [7]. There is a series of lower or upper bounds to
the problem [10, 17, 20, 1, 18]; closing the gap is a major open prob-
lem. In a recent breakthrough, Rubin [18] shows that there are at most
O(n2+ε ) topological changes for a large class of movements (includ-
ing our scenario). This almost matches the currently best quadratic
lower bound [20]. We argue that in our case there can be in fact only
O(n2) topological events and that this bound is tight. Therefore, we
are able to close the gap in our setting.

The following characterization of a Delaunay triangulation D(P) of
a point set P = {p1, . . . , pn} is crucial for our algorithm; it consists of
two equivalent properties:
(P1) The interior of the circumcircle of any triangle of D(P) does not

contain points of P.
(P2) For any edge pi p j of D(P) there exists a circle whose boundary

contains pi and p j but whose interior does not contain points
of P.

The converse also holds. Any triangulation that satisfies (P1) or (P2)
is a Delaunay triangulation.

4.1 Maintaining the Delaunay Triangulation Through Scale
Space

Now we turn to tracking the Delaunay triangulation through scale
space. Given a set P of n points, h of which lie on the convex hull,
it is well-known that any triangulation of P contains 2n−2−h trian-
gles and 3n−3−h edges. Clearly, the number of points on the convex
hull is the same at any scale. Hence, the numbers of triangles and
edges do not change either. Therefore, for each triangle (or edge) that
disappears from the Delaunay triangulation at some event point s?, a

new triangle (or edge) is created and vice versa. For the sake of pre-
sentation, we assume in what follows that no five points are co-circular
at any fixed scale factor.

Consider an event point s? at which some triangle disappears from
the Delaunay triangulation. According to property (P1) there is at least
one point pr that enters the circumcircle C(pi, p j, pk) of the triangle
at s?. More precisely, the interior of C(pi, p j, pk) contains pl at any
s > s? but not at s = s?, where pl is on the boundary.

We first characterize the situations at which we have to perform
topological changes. To this end, let a D-quadrilateral be the union of
two triangles of the Delaunay triangulation that share an edge.

Lemma 1. If the Delaunay triangulation undergoes a topological
change at event point s?, then there is a D-quadrilateral pi p j pk pl with
diagonal pi pk such that pl enters the circle C(pi, p j, pk) at s?.

pi

pj

pk

pl

pr

C(pi, pk, pl)

C(pi, pj , pk)

Fig. 5. Proof of Lemma 1.

Proof. There must be a triangle
∆pi p j pk that disappears at s? because
there is a topological change at s?. This
means that there is a point pr entering
C(pi, p j, pk), w.l.o.g. between pi and
pk. Let pl be the vertex of the trian-
gle adjacent to ∆pi p j pk and incident
to edge pi pk as depicted in Figure 5.
We show that pr = pl , which completes
the proof. Assume to the contrary that
pr 6= pl . The point pl must lie outside
the circle C(pi, p j, pk) since no five points are co-circular. But then
the interior of C(pi, pl , pk) contains pr, which is a contradiction. �

Consider a point pl entering the circumcircle of a triangle ∆pi p j pk
at event point s? as described in Lemma 1. This situation is depicted
in Figure 6.

pi

pj
pk

pl

D(P (s? − ε))

pi

pj
pk

pl

pi

pj

pk

pl

D(P (s?)) D(P (s? + ε))

Fig. 6. An elementary topological change: a flip at scale s?.

Now, if we replace edge pi pk with edge p j pl at event point s? we
obtain a new triangulation. We call this operation a flip. The cru-
cial observation is that the interiors of the circumcircles of the newly
formed triangles ∆pi p j pl and ∆p j pl pk are empty at scale s? + ε for
some sufficiently small ε > 0 because no point other than pl enters
C(pi, p j, pk) at s?. Therefore, if no further flips are to be performed at
s?, the current Delaunay triangulation is valid at s?+ ε for any suffi-
ciently small ε > 0. Also note that the flip of pi pk corresponds to the
co-circularity of the unique quadrilateral pi p j pk pl that contains pi pk.

It can happen that more than one flip has to be performed at s?.
Observe, however, that the four edges of the quadrilateral pi p j pk pl
need not be flipped at s? because otherwise a fifth point would have to
enter its circumcircle (contradicting our assumption). This means in
particular that multiple flips that are performed at s? can be carried out
independently of each other.

Our algorithm determines the sequence s1, . . . ,sm of event points
one by one in increasing order starting with s1 := 1. Given an event
point si and the corresponding Delaunay triangulation D(P(si)), we
need to compute the next event point si+1, that is, the smallest scale
factor larger than si at which we have to perform flips. Note that any
flip that we have to perform at si+1 corresponds to the co-circularity
of the unique quadrilateral of D(P(si+1)) containing the edge flipped
(see Figure 6). In other words, for every edge, we have to compute the
smallest scale factor larger than si at which the corresponding quadri-
lateral becomes co-circular. For each edge, this event point can be

2329FINK ET AL: SELECTING THE ASPECT RATIO OF A SCATTER PLOT BASED ON ITS DELAUNAY TRIANGULATION



Algorithm 1: FindAspectRatio(P)

s = 1
(V,E) = D(P) // Delaunay Triangulation
Q = new PriorityQueue()
foreach e ∈ E do

Find event point t ≥ s where e is flipped.
Q.Insert(t, e) // args: priority, edge

while Q 6= /0 do
ptr = Q.ExtractMin()
t = ptr.event point
e = ptr.edge
f = Flip(e)
E ′ = set of edges of quadrilateral containing f
foreach g ∈ E ′ do

update event point for g in Q

computed in constant time by solving a polynomial equation on s of
constant degree (Roos [17] describes more details). The next event
point si+1 is then the minimum of the resulting event points.

Algorithm 1 describes how we traverse the sequence s1, . . . ,sm of
event points in increasing order. Initially, we compute the Delaunay
triangulation at s := s1 = 1 and set up a priority queue Q that maintains
for each edge of the current triangulation the event point at which this
edge has to be flipped.

The sequence of event points is computed in the while loop. First,
the next event point t is computed by extracting from queue Q the next
scale factor t at which some edge has to be flipped. We also retrieve
the corresponding edge e from Q. Note that t may be equal to the
current event point s since more than one edge may be flipped at s.

Whenever an edge e is flipped, the queue Q has to be updated ac-
cordingly. This affects the set E ′ of the four edges of the quadrilateral
containing f . For each such edge, its corresponding quadrilateral has
changed due to the flip of e, which may require to update the event
point at which the edge must be flipped.

Let us now analyze the running time of the algorithm. The initial-
ization step takes O(n logn) time for computing the Delaunay trian-
gulation and O(n) time for building the priority queue. For each flip
that is performed by the while loop we spend overall O(logn) time
for extracting the minimum of Q and updating the four edges of the
corresponding quadrilateral.

It remains to determine the maximum number of flips performed by
the algorithm. Consider the situation depicted in Figure 6 where we
flip the edge pi pk at event point s?. Observe that, for every scale factor
s > s?, the circle C(pi, p j, pk) contains pl in its interior. Therefore,
every circle with pi and pk on its boundary either contains p j or pl
in its interior. By property (P2) we can conclude that the edge pi pk
cannot be part of a Delaunay triangulation for any s > s?. Since there
are at most O(n2) potential edges (one for each point pair) and since
no edge that has been flipped can be re-inserted into the Delaunay
triangulation (as we have just seen), the algorithm performs at most
O(n2) flips. Let us summarize.

Theorem 1. Algorithm 1 traverses the sequence s1, . . . ,sm of all event
points in increasing order and computes for every i = 1, . . . ,m− 1
the (graph of a) Delaunay triangulation that is valid in the interval
[si,si+1]. It performs O(n2) topological changes (flips) each of which
requires O(logn) time. The overall running time is O(n2 logn).

There is a simple input instance showing that our above analysis is
asymptotically tight. Let r and s be line segments of slope −1 that
lie in the first and third quadrant, respectively. For any positive (even)
integer n, we obtain a worst-case instance Pwc(n) by picking n/2 arbi-
trary points on r and n/2 arbitrary points on s. It is not hard to verify
that our algorithm—and any algorithm that maintains the Delaunay
triangulation explicitly—performs Ω(n2) topological changes.

4.2 Finding a Good Scale Factor
In general, the event points described in the previous section can be
scattered quite unevenly over scale space. In order to find a good scale
factor it is therefore not sufficient to consider only the event points as
potential solutions. In this section, we want to find good solutions for
scale factors between event points.

4.2.1 Finding an Approximate Solution
We describe our method for the objective of minimizing the mean un-
compactness uD of the Delaunay triangulation. The method can be
applied similarly to the other objective functions listed in Sect. 3.

Fix an interval [si,si+1] of consecutive event points and fix an ar-
bitrarily small error parameter ε > 0. Our goal is to find an (1+ ε)-
approximate solution, that is, a scale factor sapp for which uD(sapp)≤
(1+ ε)uD(sopt), where sopt is the globally optimal scale factor.

Let e = p1 p2 be an edge of the Delaunay triangulation in this in-
terval with end points p1 = (x1,y1) and p2 = (x2,y2), and let le(s) =√

s2(x1− x2)2 +(y1− y2)2/s2 denote the length of e as a function of
s ∈ [si,si+1]. The crucial observation is that this length function be-
haves smoothly with respect to small changes in the scale factor. More
precisely, we have that le((1+ ε)s)≤ (1+ ε)le(s).

Now consider a triangle ∆ of the Delaunay triangulation with edges
e1,e2,e3. Its uncompactness is given by u∆(s) = (le1(s) + le2(s) +
le1(s))/

√
A(∆) where A(∆) denotes the area of ∆, which is indepen-

dent of s. The above inequality yields that u∆((1+ε)s)≤ (1+ε)u∆(s).
Recall that uD(s) denotes the mean uncompactness of D(P(s)). Hence,
we have that uD((1+ ε)s) ≤ (1+ ε)uD(s) since uD(s) is the mean of
the functions u∆(s) over a fixed set of triangles (due to s ∈ [si,si+1]).

We restrict ourselves to scale factors between 1 and C for some
sufficiently large constant C, which is sufficient for practical purposes.
Let s1, . . . ,sm denote the sequence of event points (between 1 and C)
and let sm+1 :=C.

Now consider a fixed interval [si,si+1] with i = 1, . . . ,m. Our al-
gorithm computes uD(·) for all test values t j := si+1/(1+ ε) j where
j ∈ N and t j ∈ [si,si+1]. Let topt be the test value at which uD(·)
is minimized, and let sopt be an optimum scale factor in the interval
[si,si+1]. We claim that uD(topt) ≤ (1+ ε)uD(sopt), that is, we ob-
tain an (1+ ε)-approximation for the current interval. To see this, let
tk be the smallest test value such that tk ≥ sopt, which implies that
tk/(1+ ε) < sopt = tk/(1+ ε ′) for some ε ′ ≤ ε . Then we can con-
clude that uD(topt) ≤ uD(tk) = uD((1+ ε ′)sopt) ≤ (1+ ε ′)uD(sopt) ≤
(1+ ε)uD(sopt) as desired. Finding the test value that minimizes the
mean uncompactness over all intervals gives therefore a global (1+ε)-
approximation.

Now let us analyze the running time of the algorithm. The num-
ber of test values in the interval [si,si+1] is the smallest integer j for
which si+1/(1+ ε) j ≤ si holds. That is, we have at most (logsi+1−
logsi)/ log(1+ ε)+1 many test values in this interval. Summing this
term over all O(n2) intervals yields (logsm+1− logs1)/ log(1+ ε)+
O(n2) test values in total. Since sm+1 = C and ε are constants and
evaluating the objective function requires O(n) time, we obtain the
following result.

Theorem 2. For any fixed ε > 0, we can compute a (1 + ε)-
approximate solution for minimizing the mean uncompactness (given a
constant upper bound on the scale factor). The algorithm takes O(n3)
time. Taking ε into account, the running time is O(n3+n/ log(1+ε)).

4.2.2 Maximizing the Minimum Angle
We now sketch an efficient algorithm for determining the scale factor s
that maximizes the smallest angle of the Delaunay triangulation of the
scatter plot at scale s.

Recall the continuous process that we described in the previous sec-
tion where we maintain a dynamic Delaunay triangulation with in-
creasing scale factor s. Each angle β (specified by two line segments)
that occurs during this process can be described as a function on the
scale factor s. The angle β is not necessarily present over the whole
scale space because its defining line segments may not be part of the

2330 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013



Delaunay triangulation all over the scale space. Therefore, the domain
of β is a subset of the interval [1,+∞]. As we argued in the previous
section, any edge that disappears from the Delaunay triangulation will
not reappear at a larger scale factor. Therefore, the domain of β is
actually an interval [lβ ,rβ ]. Let A be the set of all angles (functions)
that appear at some scale factor in the Delaunay triangulation and let
env(A ) be the lower envelope of A . Then determining the scale fac-
tor that maximizes the smallest angle of the Delaunay triangulation
amounts to determining the maximum of env(A ).

Now consider some angle β ∈A , and let pi p j and p j pk be the line
segments defining β . Because every triangle has an angle smaller than
π/2, the angle β can only contribute to env(A ) if β (s)≤ π/2 for some
s ∈ [lβ ,rβ ]. We set up a coordinate system with origin p j. Then β is
strictly larger than π/2 for any s if pi and pk lie in diagonally opposite
quadrants. Therefore, we can safely remove from A all angles whose
line segments lie in opposite quadrants.

Under this assumption, it is not hard to verify that any β ∈ A
can be expressed as β (s) = c1π + arctan c2s

c3s2+1 where c1 ∈ {0,1} and
c2,c3 ∈R are easily computable constants that only depend on the line
segments defining β but not on s. Elementary calculations reveal that
two functions of the above form can have at most one intersection.

Agarwal and Sharir [20] show that the lower envelope of a set of m
partially defined functions, where two functions can intersect at most
r times, has complexity (number of distinct curve segments) at most
λr+2(m). Moreover, the lower envelope can be constructed algorith-
mically in O(λr+1(m) logm) time. Here λq(m) denotes the Davenport-
Schinzel sequence of order q.

To apply these results to our setting let m be the number of angles
in A . Because two functions (angles) in A can intersect at most once
the lower envelope env(A ) has complexity at most λ3(m). It is known
that λ3(m) = O(mα(m)) [20], where α denotes the extremely slowly
growing functional inverse of the Ackermann function.

The lower envelope can be constructed in O(λ2(m) logm) time. It is
known that λ2(m) = O(m) [20]. For each curve segment of the lower
envelope, the maximum can be computed in constant time. Because
the complexity of the lower envelope is O(mα(m)), we can compute
the globally optimal scale factor in O(m logm) time.

Now let us examine how large the number m of angles in A is in
terms of the number n of points. Note that, for any scale factor, the
number of angles in the Delaunay triangulation is O(n). Any flip (see
Figure 6) that we perform in the scaling process removes four angles
from the triangulation and introduces four new angles. Since at most
O(n2) flips are performed, A contains at most m = O(n2) angles. Let
us summarize.

Theorem 3. The scale factor that maximizes the smallest angle in
the Delaunay triangulation of a set of n points can be computed in
O(n2 logn) time.

Alternatively, we propose the following algorithm, which is much
easier to implement and fast in practice. The algorithm steps through
the set of event point as described in the previous section. It maintains,
for each interval of consecutive event points, the collection of angles
(functions of s) that are present in that interval. This means that, for
any flip that is performed, the collection of angles has to be updated,
which takes O(1) additional time (besides the flip) because a constant
number of angles is removed or added to the collection. Within each
interval, the algorithm traverses the intersection points of curves (an-
gles) on the lower envelope by increasing scale factor s. Given some
intersection point on the lower envelope, the next intersection point (in
the interval) can be determined in O(n) time by computing the inter-
section of the currently smallest function with any of the other O(n)
functions, which needs O(1) time for each function. To summarize,
our algorithm traverses intersection points on the lower envelope and
spends O(n) time at each intersection point. Since there are O(n2α(n))
intersection points, our algorithm takes O(n3α(n)) time. Our experi-
ments have shown that this algorithm is fast in practice.

5 EXPERIMENTAL RESULTS

In order to analyze the quality of our methods, we implemented our al-
gorithms and tested them on data showing clusters and trends. To eval-
uate the output of our algorithms, we conducted a user study in which
users selected their preferred aspect ratio for the same data sets. We
then measured how closely our different methods matched the prefer-
ences of users in our study.

5.1 Implementation and Test Instances

We implemented our algorithms in Java. For maximizing the min-
imum angle, we used the simplified version of our exact algorithm
mentioned at the end of Sec. 4.2.2. For the other criteria, we used the
approximation algorithm with ε = 0.01.

Table 1 shows results on five test instances: (a) a cluster of points
distributed normally around a center; (b) three such clusters next to
each other; (c) a collection of four clusters of varying shape; (d) points
sampled along a sine function at distances that are distributed nor-
mally; (e) the same for a linear trend with varying standard distance.

5.2 Results on Clustered Point Sets

A feature that often occurs in scatter plots are clusters of points. It is
of course desirable that clusters can be identified easily. Therefore, we
tested the optimization criteria on input data containing clusters. We
generated clustered point sets by first choosing cluster centers, and
then iteratively adding randomly generated points around each center
at normally distributed distances with equal standard deviation; see the
first two columns in Table 1 for instances with one and three clusters,
respectively.

As one simple cluster tends to be symmetric, it should be visualized
at an aspect ratio at which the cluster looks like a circular point cloud.
In our tests, this worked well for all optimization criteria.

The second column of Table 1 shows point sets with multiple (here:
three) clusters placed in a row. Here, the standard deviation and, in
particular, the inradius criterion gave bad results, that is, they scaled
the point set too much in y-direction. For such instances, the best
results were achieved by minimizing squared angles, maximimizing
compactness, and minimizing uncompactness. The resulting scatter
plots separate the clusters well and display each as a nice, almost cir-
cular, point cloud.

In another test, we generated a collection of four clusters of varying
sizes and with different standard deviations, see the middle column of
Table 1. In this case all methods produced nice outputs, except for the
maximization of the smallest angle, which stretched the scatter plot in
an unacceptable way. Due to its nature as a max-min-criterion such a
behavior occurs easily; there only needs to be a small substructure in
which a very small angle exists at any aspect ratio.

5.3 Results on Point Sets Showing Trends

A second structure that scatter plots help reveal and visualize are
trends (for example, over time) and functional dependencies. Here
we created instances with points randomly scattered around linear,
quadratic, and sine functions; the standard deviation from the value
of the function was either chosen as a constant or proportional to the
function value.

Two such instances are included in Table 1. For the rough linear
trend shown in the last column, all methods achieved good results, that
is, the slope of the trend was close to 45◦. In contrast, the results for a
sine-like trend (fourth column) heavily depended on the optimization
criterion. The aspect ratios achieved by minimizing the smallest angle,
minimizing total edge length, and minimizing uncompactness allow
us to recognize the sine function. In contrast, the drawings achieved
by minimizing the sum of squared angles, maximizing compactness,
and by using the standard deviation criterion are stretched too much
in y-direction. This makes it hard to see whether the trend is a sine
function or a polyline of a few straight-line segments. The drawing
resulting from maximizing the mean inradius is stretched extremely
and does not allow the trend to be seen at all.

2331FINK ET AL: SELECTING THE ASPECT RATIO OF A SCATTER PLOT BASED ON ITS DELAUNAY TRIANGULATION



Table 1. Test results for seven optimization criteria on five generated instances (outputs scaled to fit into the boxes).

normal distribution three clusters four mixed clusters noisy sine rough trend

m
in

.t
ot

al
le

ng
th

m
in

.u
nc

om
pa

ct
.

m
ax

.c
om

pa
ct

.
m

ax
.m

ea
n

in
ra

di
us

m
in

.s
qu

ar
ed

an
gl

es
m

ax
.m

in
.a

ng
le

st
an

da
rd

de
vi

at
io

n

2332 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013



(a) original scatter plot (b) min. uncompactness

(c) banking to
45◦ of a re-
gression line

(d) method of Talbot et al. [23] applied to contour lines

Fig. 7. A scatter plot showing velocities of DNA with different molecule
lengths [27] in aspect ratios computed by different methods.

5.4 Results on Real Scatter Plots
We also tested our method on nine scatter plots used in Nature ar-
ticles [4, 13, 23, 27]. Both minimizing total edge length and mini-
mizing total uncompactness resulted in scale factors between 0.64 and
1.27 relative to the aspect ratios chosen by the authors. We consider
this quite close to 1. For one of the instances, Fig. 7 shows the origi-
nal scatter plot, the result of minimizing uncompactness, the result of
applying the method of Talbot et al. [23] to contour lines generated
with R’s kde2d, and the result of banking a regression line to 45◦ as
suggested by Cleveland et al. [3]. The results for all instances we pro-
cessed can be found in the supplementary material. Before applying
any of the methods to an instance, we prescaled the instance by a fac-
tor of 2. This ensured that we did not overrate the quality of a method
that tends to select aspect ratios close to the input aspect ratio.

Our experiment shows that minimizing total edge length and min-
imizing uncompactness yields scatter plots similar to the scatter plots
published in Nature. In particular, with these two measures, our
method works well on both clustered data and data containing trends.
An intuitive explanation for this is that, on data containing a trend,
the triangulation is dominated by edges following the direction of
the trend line, thus decreasing the total length of triangulation edges
(which is rewarded with both measures) has an effect similar to bank-
ing the trend line to 45◦. With clustered data, on the other hand, the
triangulation contains for each point the star connecting that point with
its natural neighbors. Minimizing the edge lengths thus means that the
neighbors are attracted by the central point and thus clusters become
nicely compacted rather than unnaturally stretched in one direction.
Banking a regression line to 45◦ yields nice results if the data contains
a clear trend (e.g., columns 1 and 2 in Table 1 of the supplementary
material) but clearly fails on clustered data (column 2 of Table 2). The
result of the method based on contour lines turned out to yield results
close to the input aspect ratio, see the last row of Tables 1 and 2.

5.5 Empirical Study
To assess our algorithms, we conducted a study in which we asked ev-
ery participant to choose the aspect ratios of the same 18 scatter plots.
The study was based on a Java applet, which is accessible on-line1.
We received 64 submissions in total, 34 from colleagues, 11 from stu-
dents, 16 from others, and 3 did not answer to questions regarding
themselves. Among the 95% of the participants who did answer these
questions, the average age was 28 years and 87% were male.

5.5.1 Experimental Set Up
In brief instructions, we told the participants that, for each of the point
sets they will be shown, they are supposed to control the aspect ra-

1www1.informatik.uni-wuerzburg.de/scatterplots

tio with a slider and to accept the aspect ratio that allows structures,
clusters, or trends to be perceived best or, in general, gives the best
overview of the data. Additionally, we showed a set of points forming
a smiley and suggested that the best visualization of the point set is the
one in which the smiley has a circular shape.

After the instructions, we showed 18 point sets in succession. Each
point set was initially displayed such that it fitted a square and the
slider was in its middle position. Then, by changing the slider position,
the participants could select the aspect ratio from the range between
1 : 3 and 3 : 1. We chose the test instances such that this range covered
all reasonable values of the aspect ratio. Before participants could
confirm their preferred aspect ratio for a given instance, the applet
forced them to check all ratios by moving the slider at least once from
its rightmost to its leftmost position. Participants could, however, at
any time skip the current point set and proceed with the next one.

We designed the first two point sets of the test to accustom the par-
ticipants with their task. (We showed the instance with the smiley
and a point set that, when appropriately scaled, formed a regular pen-
tagon.) Then, we showed four automatically generated instances with
clusters where the points were normally distributed around the cluster
centers. These instances included an instance with a single cluster, two
instances with multiple clusters side by side, and an instance with mul-
tiple clusters intersecting each other (middle column of Table 1). The
next nine instances were automatically generated by scattering points
around graphs of functions, for example, a straight line, a sine curve,
and a parabola. Finally, we showed three instances from Fisher’s iris
data set [6], which is frequently used to assess classification methods.

After the last instance was completed, we asked the participants
to rate the difficulty of the test between “very easy” (1.0) and “very
difficult” (5.0). On average, the test was found to be “fair” (2.7). Each
of the 18 instances was solved by at least 58 of the 64 participants.

5.5.2 Assessment of Results
For each instance, we computed the geometric mean µg(s) =
k
√

s1 · . . . · sk of the values s1, . . . ,sk that the users had selected for
the scale factor s (determining the new coordinates of a point (x,y)
as (s · x,y/s); see Sect. 3). To clarify why we must use the geo-
metric mean instead of the more common arithmetic mean µ(s) =
(s1 + . . .+ sk)/k, we note that, instead of analyzing values chosen for
s, we could just as well analyze values chosen for 1/s. Therefore, the
mean of 2 and 1/2 (or more generally, of a number a and its recipro-
cal 1/a) should be 1 (rather than 1.25). Moreover, if the mean of two
numbers a and b is c, then the mean of 1/a and 1/b should be 1/c.
This is ensured with the geometric mean. Accordingly, to assess the
variation in the values selected for s, we computed for each instance
the geometric standard deviation σg(s) of s as σg(s) = exp(σ(lns)),
where σ(lns) is the common (i.e., arithmetic) standard deviation of
the values lns1, . . . , lnsk. To clarify the meaning of σg(s), we note
that, if the values lns1, . . . , lnsk follow a normal distribution, the inter-
val [µg(s)/σg(s),σg(s) ·µg(s)] contains roughly 68% of all samples.

On average over all instances, the geometric standard deviation was
1.47, which means that there was a rather low agreement among the
participants. While the lowest variation (σg(s) = 1.18) was found in
the solutions for the set of points that form a smiley, the highest varia-
tion (σg(s) = 1.81) occured for a set of points containing three clusters
whose centers lie on a common horizontal line.

We compared the results of the empirical study with the results of
our algorithm, which we tested with all six objective functions that
we defined in Sect. 3. More precisely, for each of the 18 instances
and each scale factor sopt that we obtained by optimizing one of our
objective functions, we computed the geometric standard score

z =
ln(sopt/µg(s))

lnσg(s)
=

lnsopt−µ(lns)
σ(lns)

, (2)

where µ(lns) is the arithmetic mean of the values lns1, . . . , lnsk.
The geometric standard score z tells us by how many values of the

standard deviation σ(lns) the result lnsopt of our algorithm is above
or below the mean µ(lns). Therefore, its absolute value |z| is a rea-
sonable quality measure. The average z̄ of |z| over all instances then

2333FINK ET AL: SELECTING THE ASPECT RATIO OF A SCATTER PLOT BASED ON ITS DELAUNAY TRIANGULATION



yields a single quality measure for each objective function that we op-
timized with our algorithm. Additionally, we used the same approach
to measure the quality of the simple standard-deviation-based method
that we introduced in Equation (1). Table 2 summarizes our results.

Table 2. Absolute values of geometric standard scores computed based
on geometric means and geometric standard deviations that resulted
from the empirical study and scale factors that resulted from our algo-
rithm. Minima, maxima, and averages were computed based on 18
test instances. The last row shows the results of the simple standard-
deviation-based method defined in Equation (1).

method minimum maximum average (z̄)
max. min. angle 0.02 3.47 0.82
max. mean inradius 0.02 6.62 1.74
min. total length 0.05 1.75 0.48
min. squared angles 0.06 3.08 0.62
max. comp. 0.01 4.40 0.81
min. uncompact. 0.05 1.59 0.45
standard deviation 0.06 2.64 0.84

From Table 2 we conclude that, on average, minimizing the total
edge length and minimizing the mean uncompactness of the triangles
yield the best results. With both objective functions, z̄ is less than 0.5.
To understand the meaning of this value, we also computed z̄ based on
the results of each individual participant, that is, for the aspect ratios
selected by each participant we assessed the distances to the mean as-
pect ratios. For 38 of the 64 participants (i.e., for 59%) we obtained
z̄≥ 0.5, meaning that our algorithm performed better than most of the
participants (assuming that the aim was to get close to the mean as-
pect ratios over all participants). Maximizing the mean inradius seems
inappropriate, since z̄ = 1.74 is very high. With all other objective
functions, however, our method produces somehow reasonable results.

Using the simple standard-deviation-based method resulted in z̄ =
0.84, which shows that this method may be useful. However, when
optimizing any of our objective functions (except when maximizing
the mean inradius) our method resulted in a smaller value for z̄.

With our best method (i.e., minimizing the mean uncompactness of
the triangles) the highest value |z| attained for one instance was 1.59.
That instance consists of a set of points that are scattered around the
graph of the function f : x 7→ xsinx, see Fig. 8. When comparing the
scatter plot favored by the users (Fig. 8a) and the scatter plot yielded
by our algorithm (Fig. 8b) we observe that, though the aspect ratios
of both scatter plots are quite different, they both allow the functional
relationship between the two variables to be perceived.

(a) scaled to the mean aspect ratio
chosen by the participants of our user
study

(b) scaled to the best aspect
ratio according to the uncom-
pactness criterion

Fig. 8. An instance used in our study.

We also applied the method of Talbot et al. [23], which for a given
line chart yields the aspect ratio that minimizes the length of the dis-
played line, to the nine instances in which we scattered the points
around the graphs of functions. Since the method of Talbot works well
for line charts, we exploited our knowledge of the functions that we
used to generate the point sets. More precisely, we applied the method
of Talbot et al. to piecewise-linear approximations of the graphs of
the nine functions. Again, we compared the results with the aspect
ratios selected by the participants of our study. On average over the
nine instances, the method of Talbot et al. (with additional knowledge)

achieved z̄ = 0.41, whereas we obtained z̄ = 0.55 when we applied our
point-based method with the mean uncompactness criterion to the nine
point sets (without additional knowledge). This means that, if we al-
ready know the functional relationship between the two variables of
the scatter plot, we should use this knowledge and apply the method
of Talbot et al. to the graph of the function. If we do not know a func-
tional relationship, however, our point-based method still achieves as-
pect ratios that are almost as good as those selected with the use of
the prior knowledge. We repeated this experiment with the arc-based
method of Cleveland [2]. On our instances, this yielded almost the
same results as the method of Talbot et al.

5.6 Runtime
As, in praxis, a user who wants to draw a scatter plot is not willing to
wait long for the result, the runtime of our method is important. We
measured runtimes using our implementation on a standard PC with 4
GB RAM and an Intel Core2 Duo CPU with 3 GHz. We measured the
time needed for finding an aspect ratio that is a 1.05-approximation
with respect to minimizing the total edge length. To this end, we gen-
erated noisy sine functions as well as clustered instances similar to the
one shown in the middle column of Table 1 consisting of a growing
number of points; see Table 3.

Table 3. Runtimes (in ms) for minimizing the total edge length on in-
stances of different sizes.

number of points 50 100 200 400 600 800 1 000
noisy sine 45 59 167 528 1 113 2 139 3 574
four mixed clusters 51 50 259 795 1 947 3 516 5 659

In the worst case, our method may have to travers Θ(n2) Delaunay
triangulations. On the worst-case instance Pwc(n) (see Sect. 4.1), this
took about 10 seconds for n = 1000. On typical instances, however,
our method is much faster. For example, for the clustered instance
shown in the middle column of Table 1, which contains 240 points, an
optimum solution (maximizing the smallest angle) was found in one
second; a 1.05-approximative solution for the better criterion of mini-
mizing the total edge length was computed in 244 ms. (For instances
with more than 1000 points, legability and runtime become issues.
To improve the runtime, we simply suggest applying our algorithm to
randomly selected subsets of the points.)

As only the evaluation of the quality measure differs, obtaining ap-
proximate solutions for the remaining criteria took nearly the same
time. Optimizing the aspect ratio of the other instances with a similar
number of points was even faster. We conclude that our method is fast
enough for practical applications.

6 CONCLUSION

We have presented a new method that automatically chooses the aspect
ratio of a scatter plot. The basic idea behind our method is to select
the aspect ratio such that the resulting scatter plot has a nice Delau-
nay triangulation. We defined “nice” by six different measures, which
are motivated by properties of the Delaunay triangulation, by related
work on the problem of choosing the aspect ratio of a line chart, or by
previous research on shape analysis.

We conclude that, in terms of quality, our method performs par-
ticularly well when minimizing the total edge length of the Delaunay
triangulation or the mean uncompactness of the Delaunay triangles.
For both measures, our algorithm yields scatter plots in which clusters
or trends are clearly visible. The suitability of these two measures was
confirmed by applying them on scatter plots published in Nature and
by comparing them to aspect ratios chosen by subjects in a user study.

An idea for future research is to assess the quality of a scatter plot by
asking users to solve certain tasks. An interesting algorithmic problem
that our research brings up is to compute aspect ratios that optimize
favorable properties of other neighborhood graphs than the Delaunay
triangulation, for example, the Gabriel graph.

2334 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013



REFERENCES

[1] G. Albers, L. J. Guibas, J. S. Mitchell, and T. Roos. Voronoi diagrams of
moving points. Int. J. Comput. Geom. Appl., 8(3):365–380, 1998.

[2] W. S. Cleveland. A model for studying display methods of statistical
graphics. J. Comput. Graph. Statist., 2(4):323–343, 1993.

[3] W. S. Cleveland, M. E. McGill, and R. McGill. The shape parameter of a
two-variable graph. J. Am. Stat. Assoc., 83(289–300), 1988.

[4] D. Dawson and K. Reid. Fatigue, alcohol and performance impairment.
Nature, 388(6639):235–235, 1997.

[5] M. J. Dry, D. J. Navarro, K. Preiss, and M. D. Lee. The perceptual orga-
nization of point constellations. In Proc. 31st Annual Conference of the
Cognitive Science Society, pages 1151–1153, 2009.

[6] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2):179–188, 1936.

[7] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, pages 513–528. CRC Press, Boca Raton, FL, U.S.A., 2004.

[8] M. Friendly and D. Denis. The early origins and develeopment of the
scatterplot. Journal of the History of the Behavioral Sciences, 41(2):103–
130, 2005.

[9] K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic
variation analysis. Systematic Zoology, 18(3):259–278, 1969.

[10] L. J. Guibas and J. S. Mitchell. Voronoi diagrams of moving points in the
plane. In Proc. 17th Int. Workshop Graph-Theor. Concepts Comput. Sci.
(WG’91), pages 113–125, 1991.

[11] J. Heer and M. Agrawala. Multi-scale banking to 45◦. IEEE T. Vis.
Comput. Gr., pages 701–708, 2006.

[12] J. F. W. Herschel. On the investigation of the orbits of revolving double
stars. Memoirs of the Royal Astronomical Society, pages 171–222, 1833.

[13] C. Johnson. Species extinction and the relationship between distribution
and abundance. Nature, 394(6690):272–274, 1998.

[14] T. Lambert. The Delaunay triangulation maximizes the mean inradius. In
Proc. 6th Canadian Conf. Comput. Geom. (CCCG’94), pages 201–206,
1994.

[15] A. M. MacEachren. Compactness of geographic shape: Comparison and
evaluation of measures. Geografiska Annaler. Ser. B, Human Geogr.,
67(1):53–67, 1985.

[16] R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2013.
http://www.r-project.org/.

[17] T. Roos. Voronoi diagrams over dynamic scenes. Discrete Appl. Math.,
43(3):243–259, 1993.

[18] N. Rubin. On topological changes in the Delaunay triangulation of mov-
ing points. In Proc. 28th ACM Symp. Comput. Geom. (SoCG’12), pages
1–10, 2012.

[19] D. Scott. Multivariate Density Estimation: Theory, Practice, and Visu-
alization. Wiley Series in Probability and Statistics. Wiley, New York,
USA, 1992.

[20] M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their
geometric applications. Cambridge University Press, 1995.

[21] R. Sibson. Locally equiangular triangulations. The Computer Journal,
21(3):243–245, 1978.

[22] K. A. Stevens. Computation of locally parallel structure. Biological Cy-
bernetics, 29(1):19–28, 1978.

[23] J. Talbot, J. Gerth, and P. Hanrahan. Arc length-based aspect ratio selec-
tion. IEEE T. Vis. Comput. Gr., 17(12):2276–2282, 2011.

[24] J. Talbot, J. Gerth, and P. Hanrahan. An empirical model of slope ratio
comparisons. IEEE T. Vis. Comput. Gr., 18(12):2613–2620, 2012.

[25] G. Toussaint. The relative neighborhood graph of a finite planar set. Pat-
tern Recognition, 12(4):261–268, 1980.

[26] E. Tufte. The Visual Display of Quantitative Information. Graphics Press,
1983.

[27] W. Volkmuth and R. Austin. DNA electrophoresis in microlithographic
arrays. Nature, 358(6387):600–602, 1992.

[28] J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson,
M. Singh, and R. von der Heydt. A century of Gestalt psychology in
visual perception: I. Perceptual grouping and figure-ground organization.
Psychological Bulletin, 138(6):1172–1217, 2012.

2335FINK ET AL: SELECTING THE ASPECT RATIO OF A SCATTER PLOT BASED ON ITS DELAUNAY TRIANGULATION


