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ABSTRACT

In some applications of graph visualization, input edges have asso-
ciated target lengths. Dealing with these lengths is a challenge, es-
pecially for large graphs. Stress models are often employed in this
situation. However, the traditional full stress model is not scalable
due to its reliance on an initial all-pairs shortest path calculation.
A number of fast approximation algorithms have been proposed.
While they work well for some graphs, the results are less satisfac-
tory on graphs of intrinsically high dimension, because nodes over-
lap unnecessarily. We propose a solution, called the maxent-stress
model, which applies the principle of maximum entropy to cope
with the extra degrees of freedom. We describe a force-augmented
stress majorization algorithm that solves the maxent-stress model.
Numerical results show that the algorithm scales well, and provides
acceptable layouts for large, non-rigid graphs. This also has poten-
tial applications to scalable algorithms for statistical multidimen-
sional scaling (MDS) with variable distances.

Keywords: graph drawing; distance scaling; low-dimensional em-
bedding

Index Terms: G.2 [Discrete Mathematics]: Graph Theory—; I.3.3
[Computer Graphics]: Picture/Image Generation—Line and Curve
Generation

1 INTRODUCTION

Graph drawing using virtual physical models on undirected graphs
is among the most common methods of visualizing relationships
between objects. This method has succeeded for several reasons:
it can be applied to any undirected graph; it often conveys certain
interesting properties of graphs, such as symmetry and clustering
relationships; and some variants can be implemented by scalable
methods.

Two virtual physical models are among the most popular. The
spring-electrical model [9, 11] treats edges as springs that pull
nodes together, and nodes as electrically-charged particles that re-
pel each other. High quality, efficient implementations have been
proposed [15, 17, 33] based on a multilevel approach and fast
force approximation within a suitable space decomposition scheme.
They can scale to graphs of millions of vertices and edges.

While the spring-electrical model has proven to be scalable and
to yield high quality layouts, it has problems when edges have pre-
defined target lengths. In the spring-electrical model it is possible
to encode edge lengths in the attractive and repulsive forces, but
such treatment is not rigorous.

In contrast, the (full) stress model assumes that there are springs
connecting all pairs of vertices of the graph. The energy of this
spring system is

∑
{i, j}∈V

wi j
(∥∥xi− x j

∥∥−di j
)2, (1)
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where di j is the ideal distance between vertices i and j, and wi j is a
weight factor. A layout that minimizes this stress energy is taken as
an optimal layout of the graph.

The stress model has its root in multidimensional scaling (MDS)
[23] which was eventually applied to graph drawing [21, 24]. Note
that typically we are given only the ideal distance between vertices
that share an edge, which is taken to be unit length for graphs with-
out predefined edge lengths. For other vertex pairs, we typically
define di j as the length of a shortest path between vertex i and j.

Related to the stress model is the strain model, also known as
classical scaling. It relies on the fact that if the edge length can be
achieved exactly using a set of node positions, then inner products
of the positions can be expressed as the squared and double centered
distances. Based on this observation, node positions can be found
by an eigen-decomposition of a matrix. Because the strain model
does not fit distances directly, graph layouts using this model are
not as satisfactory as those using the stress model [4], but they can
be used as a good starting point for the stress model.

In solving the full stress or strain model, the ideal distances be-
tween all pairs of vertices must be calculated. Johnson’s algorithm
takes O(|V |2 log |V |+ |V ||E|) times, and O(|V |2) memory. For large
graphs, these models are computationally too expensive.

A number of strategies [8, 13] have been proposed to approx-
imately minimize the stress or strain model. One notable effort is
that of PivotMDS of Brandes and Pich [3]. This is a fast approxima-
tion algorithm for solving the strain model, which requires distance
calculations from all nodes to only a few chosen nodes. Further-
more, Brandes and Pich suggested using this as a starting point for
solving a sparse version of the stress model. The sparse model con-
siders node pairs that are k or less hops away, where k� |V |. They
showed this to be efficient and of good quality for many graphs.
However, they noted that the algorithm tends to behave better on
graphs of small dimension, and concluded that “further research on
reliable sparsification schemes is needed” [4]. This is because spec-
ifying only local distances for node pairs is not sufficient for avoid-
ing the problem often observed in classical scaling and in the high-
dimensional embedding algorithm [16], where in non-rigid graphs
(e.g., trees), multiple nodes share the same position.

In this paper we are interested in embedding graphs with spec-
ified edge lengths. The limitations of previous work, mentioned
above, prompt us to seek an alternative algorithm that scales to
large graphs, handles edge lengths well, and does not degrade on
non-rigid graphs. Our motivation comes from the observation that,
for graph drawing, the ideal distance of each edge is the only infor-
mation given. To assume that the missing ideal distance between
non-neighboring vertices should be the shortest graph-theoretic dis-
tance is reasonable, but does add artificial information that is not
given in the input. And since it is not practical to calculate all-pairs
shortest distances for large graphs anyway, we need some way to
resolve the extra degrees of freedom in the node placement.

An interesting possibility is to apply the physics principle which
states that, subject to known constraints, a system always settles to
a state of maximum entropy. This maximum entropy principle pro-
vides the least-biased estimate possible on the given information,
i.e., it is “maximally noncommittal with regard to missing informa-
tion” [20]. This principle is also believed to give rise to aesthetic
beauty in nature. In the words of architect Greg Lynn [26], when-



ever there is a lack of information, nature reverts to symmetry –
“symmetry is the absence of information.” This principle has been
successfully applied in many areas of computational science, such
as species distribution modeling [29] and natural language process-
ing [2]. We propose that the same principle can be applied in graph
drawing. An optimal layout should be one that attempts to satisfy
the given ideal distances as much as possible. Since this itself is
not sufficient to determine the layout of all nodes, the remaining
degrees of freedom can be resolved through the principle of max-
imum entropy. We therefore propose a maximum entropy stress
model (or maxent-stress model) for drawing graphs with edge dis-
tances specified.

The rest of the paper is organized as follows. In Section 2, we
discuss related work. Section 3 gives the maxent-stress model, and
a way of solving it. Section 4 evaluates our algorithm experimen-
tally. Section 5 presents a summary and topics for further study.

2 RELATED WORK

In machine learning, Chen and Buja [6] use a force paradigm to
define localized versions of MDS stress functions. They assume
that local ideal distances are given for some pairs of items, and set
the global distances to some very large value. Through algebraic
manipulation, a stress energy model based on these distances is then
converted into two terms;

∑
(i, j)∈S

(∥∥xi− x j‖−di j
)2− t ∑

(i, j)/∈S
‖xi− x j‖,

the first term being the sparse stress energy, and the second the
energy related to distances of node pairs. Here item (i, j) is in S
if j is among the k nearest neighbors of i. They showed that this
model, with careful tuning, outperforms MDS, PCA, LLE, Isomap,
and KPCA [25] on image clustering. Their work differs from ours
in its motivation and in the energy model used. In addition, they
applied their method only to relatively small examples of up to 1956
nodes. Other than the selection of the parameter t, they did not give
details on the implementation of the algorithm, so it is difficult to
assess its scalability.

Another related model is the binary stress model of Koren and
Civril [22]. In that model, there is a distance of 0 between nodes
sharing an edge, and a distance of 1 otherwise. The model is then

∑
(i, j)∈E

‖xi− x j‖2 +α ∑
(i, j)/∈E

(
‖xi− x j‖−1

)2
.

Energy models other than stress or spring-electrical models have
also been suggested. Noack [27, 28] proposed the LinLog model
and, more generally, the r-PolyLog model,

∑
(i, j)∈E

‖xi− x j‖r− ∑
i, j∈V

ln‖xi− x j‖,

in the context of graph clustering.
The solution of the maxent-stress model requires an initial lay-

out, for which we use PivotMDS [3]. This gives a very fast approxi-
mate solution to classical scaling, and provides a good starting point
for the stress model. High-dimensional embedding [16] is another
fast algorithm, based on distances to k-centers and principal com-
ponent analysis, that could be used as an initial solution.

Chalmers [5] proposed the first linear-time iterative algorithm for
dimensionality reduction in the context of visualization via stochas-
tic sampling, and Ingram et al. [19] proposed Glimmer, a multiscale
variant adapted to run efficiently on graphics cards. In these works,
a single entry of the distance matrix is assumed to be available in
constant time, which is valid for multi-dimensional data, but not for
graphs, where graph theoretical distances have to be calculated.

Another attempt at a scalable, distance-sensitive embedding is
GRIP [12]. This is a multilevel algorithm, with coarsening carried

out by maximal independent set based filtration. On coarse levels,
a Kamada-Kawai algorithm [21] is applied to each node within a
local neighborhood of the original graph, but on the finest level, a
localized Fruchterman-Reingold algorithm is used [11]. Because of
this last step, the algorithm does not strictly solve a stress model.

In Section 1 we argued that symmetry should be used to fill in
the missing node-node distance information. Symmetry has long
been studied in the context of graph drawing. Purchase [30] found
that perceptual symmetry reduces reaction time or errors, though
not both. Symmetry has a more positive effect than other aesthetics
when it is at the maximum value. Eades and Lin [10] proved that
the solution of a “general spring model” can uncover symmetries.
This model is very general and includes many energy models as a
special case, including the full stress model and Eades’ force model
[9].

3 A MAXIMAL ENTROPY STRESS MODEL

The full stress model assumes that there are springs connecting all
vertex pairs of the graph, with the ideal spring lengths defined as
the graph-theoretical distances between vertices. The energy of
this spring system is given by formula (1), where di j is the graph-
theoretical distance between vertices i and j, and wi j is a weight
factor, typically 1/di j

2. A layout that minimizes the stress energy
is an optimal layout of the graph according to this model.

As discussed in Section 1, the full stress model has high compu-
tational cost because distances between all node pairs must be cal-
culated. We propose to fit only the given edge lengths via a sparse
stress model, and to resolve the remaining degrees of freedom via
maximization of the entropy of the layout. We denote this entropy
by H(x). The model we are proposing is:

max H(x)
subject to ‖xi− x j‖= di j, {i, j} ∈ S.

(2)

Here S is the set of vertex pairs that have predefined ideal distances.
Typically, S will be the same as E, but could be a superset of E
(e.g., the k-neighborhood graph).

This model may be infeasible because it is not usually possible
to satisfy all distance constraints simultaneously. Therefore, as a
compromise, we try to satisfy the constraints in (2) by minimizing
the sum of the distance errors (also known as the sparse stress),
while maximizing the entropy. In other words, we wish to solve

min ∑
{i, j}∈S

wi j
(∥∥xi− x j

∥∥−di j
)2−αH(x). (3)

Here α ≥ 0 is a parameter, and wi j is a weighting factor. Large
values of α favor maximizing the entropy, while small values put
more emphasis on satisfying the ideal distances.

It remains to define more precisely the “entropy” of a layout.
There exist notions of pointset entropy in image processing and
graph entropy based on statistical attributes of nodes, but these do
not seem applicable. Rather, we rely on an analogy from physics
and consider nodes of a graph as objects in space. To maximize
entropy without any constraints, these objects should be evenly dis-
persed in space, meaning that, on average, each node should be as
far from other nodes as possible. Since some vertex pairs have a
predefined ideal distance, we could define the entropy as

H(x) = ∑
{i, j}/∈S

ln
∥∥xi− x j

∥∥ ,

which will push the vertex pairs as far apart as possible when max-
imized. Or, more generally,

H(x) =− ∑
{i, j}/∈S

∥∥xi− x j
∥∥−q

, q≥ 0, (4)

where we denote ‖x‖0 =−ln‖x‖.



3.1 Force-augmented stress majorization
Next we turn to showing how the maxent-stress model (3) can be
solved while avoiding the cost of the full stress model.

The minimum for (3) is achieved at a stationary point where the
gradient vanishes. Thus taking the derivative of the model with
respect to xi and setting it to zero gives

∑
{i, j}∈S

2wi j
(∥∥xi− x j

∥∥−di j
) xi− x j∥∥xi− x j

∥∥−α ∑
{i, j}/∈S

q
xi− x j∥∥xi− x j

∥∥q+2 = 0,

(5)
or, simplifying by setting α ← αq/2,

∑
{i, j}∈S

wi j
(
xi− x j

)
= ∑
{i, j}∈S

wi jdi j(xi− x j)∥∥xi− x j
∥∥ + α ∑

{i, j}/∈S

xi− x j∥∥xi− x j
∥∥q+2

(6)
In matrix form, this is

Lwx = Lw,d x+α b(x), (7)

where the weighted Laplacian matrix Lw has elements

(Lw)i j =

 ∑{i,l}∈S wil , if i = j
−wi j, if {i, j} ∈ S
0, otherwise

the Laplacian matrix Lw,d has elements(
Lw,d

)
i j =

 ∑i 6=l wil dil
/
‖xi− xl‖ , if i = j

−wi j di j
/∥∥xi− x j

∥∥ , if {i, j} ∈ S
0, otherwise

and the vector b(x) has elements

b(x)i = ∑
{i, j}/∈S

∥∥xi− x j
∥∥−q−1 xi− x j∥∥xi− x j

∥∥ . (8)

Because of (7), the maxent-stress model can be solved in a way
similar to stress majorization. This is akin to the Jacobi method,
where we use the layout to calculate the right hand side of (7), then
solve the linear system (7) with the known right hand side. Notice
that if α = 0, and S is the set of all node pairs, this reduces exactly
to the stress majorization algorithm. Thus the difference in the pro-
posed method for solving the maxent-stress model is the term b(x).
Notice that b(x)i, as defined in (8), is the sum of the repulsive forces
from other nodes acting on node i, with the force proportional to
1/‖xi−x j‖q+1 along the direction from x j to xi. For this reason we
call this method force-augmented stress majorization.

An alternative way to solve the maxent-stress model is

xi←
1
ρi

∑
{i, j}∈S

wi j

(
x j +di j

xi− x j∥∥xi− x j
∥∥
)

+
α

ρi
∑
{i, j}/∈S

xi− x j∥∥xi− x j
∥∥q+2

(9)
where ρi = ∑{i, j}∈S wi j. This simple iterative scheme is useful for
large or dynamic graphs where it would not be practical (or neces-
sary) to solve the linear system accurately.

4 NUMERICAL RESULTS

We implemented the proposed force-augmented stress majorization
algorithm using PivotMDS for initial layout. Several further imple-
mentation details need to be resolved. First, the repulsive force term
(8) involves an almost all-pairs computation, which has the |V |2
complexity that we wish to avoid. Second, we need to choose α in
a way that is not dependent on the types or sizes of input graphs.

4.1 Repulsive force calculation
To reduce the complexity of the repulsive force calculation, we
employ Barnes-Hut approximation [1, 32, 31] to compute repul-
sive forces (8) in O(|V | log |V |) time with good accuracy. This
treats groups of distant vertices as supernodes, using a quadtree data
structure (octree in 3D).

Note that because we approximate the repulsive forces, it may
happen that these forces do not sum to zero. This makes the linear
system (7) inconsistent because both Laplacians have a row sum of
zero. Hence, after the fast force approximation, we normalize them
to a sum of zero by adding a constant to the right-hand-side.

4.2 Selection of parameters
We use the typical weighting factor of wi j = 1/d2

i j. For the re-
pulsive force calculation, based on our experimentation, and fol-
lowing the implementation of sfdp (a multilevel force directed
algorithm[17] based on the spring-electrical model, and available
as part of Graphviz [14]), our implementation uses q = 0 except
for a graph with many degree-1 nodes (i.e., more than 30% of the
nodes are degree-1 nodes), where we set q = 0.8. The justification
is that for such graphs, a weaker repulsive force helps to avoid a
“warping effect” [18]. In the graphs tested, q = 0.8 only for btree
and 1138 bus.

We also need to set the value of α . Since the goal of solving (3)
is to satisfy the constraints in (2), we want α to be small. On the
other hand, if α is too low initially, then we are essentially solving
a conventional sparse stress model, with its problems in handling
non-rigid graphs. Therefore we start with a relatively large α , and
gradually reduce it. To make sure the repulsive force is properly
scaled compared with the first term in the right hand side of (6),
we normalize the repulsive force vector b(x) so that it has the same
norm as that term. We experimented with several cooling schemes
for α , and chose one that works well experimentally. Initially α =
1, and we reduce it gradually with α := 0.3 ∗α in 5 steps, ending
with αmin = 0.008.

Also, we limit the number of force-augmented stress majoriza-
tion steps to 50 per setting of α . Thus, in the worst case, the maxi-
mum total number of stress majorization steps is 250. We solve the
linear system in (7) using the conjugate gradient method, with a tol-
erance of 0.1 (relative residual), and maximum number of iterations
of 10, since we found that it is not necessary to solve each of the in-
termediate linear systems exactly. We terminate the maxent-stress
algorithm when the relative change in the layout, ||xl+1−xl ||/||xl ||,
is less than 0.001, where xl is the 2|V |-dimensional vector of coor-
dinates for the 2D layout at iteration l of the stress majorization.

We implemented both PivotMDS and the force-augmented stress
majorization algorithm in C, compiled with gcc -O3. All results
are measured on one core of a 16 core machine with Intel Xeon
2.13 GHz E5506 processors, and 12 GB of memory.

4.3 Experimental results
We tested the force-augmented stress majorization algorithm for
solving the maxent-stress model (hereafter denoted as Maxent) on
a range of graphs. For comparison, we also tested PivotMDS, and
PivotMDS plus sparse stress majorization. We use PivotMDS(k)
to denote PivotMDS, followed by sparse stress majorization on a
graph consisting of the original edges, plus edges between vertex
pairs of k hops or less. The ideal distance between a vertex pair is
the length of the shortest path between them. We define Maxent(k)
similarly. Thus Maxent is essentially Maxent(1). We also consider
sfdp as well as an implementation of the full stress model (FSM)
that solves (1) using stress majorization. Finally, we include the
GRIP multilevel algorithm. As GRIP does not really attempt to fit
distances, and for technical reasons, we used a version that assumes
unit distances. We summarize all the tested algorithms in Table 1.

The exception of graph gd, which is an author collaboration
graph of the International Symposium on Graph Drawing between
1994-2007, the graphs used are from the University of Florida
Sparse Matrix Collection [7]. Our selection covers a range of
graph sizes, and includes mesh-like and other non-mesh graphs,
and graphs from Brandes and Pich’s experimental study of distance
scaling [4]. Two of the graphs (commanche and luxembourg)



Table 1: Algorithms tested.

Algorithm Model Fits distances?
PivotMDS approx. strain model Yes/No

PivotMDS(k) PivotMDS + sparse stress Yes. k-hops
Maxent(k) PivotMDS + maxent-stress Yes. k-hops

sfdp spring-electrical No

GRIP stress on coarser levels, No
spring-electrical on finest level

FSM full stress model Yes. All-pairs

Table 2: Test graphs. Graphs marked ∗ have pre-specified non-unit edge
lengths. Otherwise, unit edge length is assumed.

Graph |V | |E| description
gd 464 1311 Collaboration graph

btree 1023 1022 Binary tree
1138 bus 1138 1358 Power system
qh882 1764 3354 Quebec hydro power

lp ship04l 2526 6380 Linear programming
USpowerGrid 4941 6594 US power grid
commanche∗ 7920 11880 Helicopter
bcsstk31 35586 572913 Automobile component

luxembourg∗ 114599 119666 Luxembourg street map

have associated pre-defined non-unit edge lengths. In our study, a
rectangular matrix, or one with an asymmetric pattern, is treated as
a bipartite graph. Test graph sizes are given in Table 2.

In the graph renderings, we use a red-to-green-to-blue color scale
to encode edge lengths from short to long. Edges shorter that half
of the median edge length are red, edges longer than 1.5 times the
median are blue, and other edges are colored according to the scale.

We summarize drawings for all graphs tested in Table 3. Fol-
lowing Brandes and Pich [4], each drawing has an associated error
chart. In an error chart, the x-axis gives the graph distance bins, the
y-axis is the difference between the actual geometric distance in the
layout and the graph distance. The chart shows the median (black
line), the 25 and 75 percentiles (gray band) and the min/max errors
(gray lines) that fall within each bin. For ease of understanding, we
plot graph distance against distance error, instead of graph distance
vs. actual distance as suggested by Brandes and Pich [4]. Because
generating the error chart requires an all-pairs shortest paths calcu-
lation, we provide this chart only for graphs < 10,000 nodes.

With the error chart, we also include a graph distance distribu-
tion curve (red), representing the number of vertex pairs in each
graph distance bin. This distribution depends on the graph, and is
independent of the drawing. In making the error charts, the layout
is scaled to minimize the full stress, with wi j = 1/d2

i j.
As an example, the error chart for PivotMDS on btree (row 2,

column 2) shows that, on average, the median line is under the x-
axis for small graph distances. This means that the PivotMDS lay-
out under-represents the graph distance between vertex pairs that
are a few hops away. This is because it collapses branches of tree-
like structures. The leaves of such structures tend to be a few hops
away, but are now positioned very near to each other. To some
extent the same under-representation of graph distance for vertex
pairs that are a few hops away is seen for PivotMDS and Pivot-
MDS(1) on other non-rigid graphs, including 1138 bus, btree,
lp ship041 and USpowerGrid. Compared with PivotMDS
and PivotMDS(1), the median line for Maxent (column 4) does not
undershoot the x-axes as much.

As a side note, these error charts are helpful in understanding
the characteristics of other algorithms as well. For example, for
most of the graphs, sfdp tends to under-represent vertex pairs with
a long graph distance, seen as a dip of the median line past the
x-axis for large x. This is most likely due to the warping effect

[18] of the spring-electrical model, where the length of edges in the
layout are longer in the center of the graph and shorter around the
peripheral. The error charts for GRIP are seen to resemble those of
sfdp in many cases (e.g., btree and lp ship041), presumably
because GRIP applies the Fruchterman-Reingold algorithm on the
finest level.

In the following, we highlight drawings for a few graphs. In
Table 3, in the row for bcsstk31, we see that PivotMDS(1) and
Maxent give more or less the same layout, and both are qualita-
tively not far from that of PivotMDS. This is expected because
many graphs with an underlining mesh structure have a low intrin-
sic dimension, and PivotMDS alone can often give a good layout.
Inspecting the color of edges in the drawings, we note that Pivot-
MDS(1) and Maxent are dominated by green edges, indicating that
the specified edge length (in this case 1) is largely respected. Pivot-
MDS has more edge length variation. For comparison, we see that
sfdp produces a drawing with even more edge length variation, seen
as regions of blue for long edges, and small regions of red for short
edges.

(a) (b)

(c) (d)
Figure 1: Drawings by (a) PivotMDS, (b) PivotMDS(1), (c) Maxent and (d)
sfdp, on the 1138 bus graph

Figure 1 shows layouts for the 1138 bus graph. For this graph,
PivotMDS collapsed many of the branches in the tree-like struc-
tures. This is a known problem with algorithms such as Pivot-
MDS or high-dimensional embedding, for which “hairs” in tree-like
structures cannot be differentiated by only considering distances
from the k-centers. PivotMDS(1) expands some of the branches,
but still shows a collapsing effect. Maxent expands these branches
further, showing more details. Both PivotMDS(1) and Maxent pro-
vide more consistent target edge lengths, as indicated by the domi-
nance of green, compared with the sfdp layout.

Figure 2 shows layouts for the lp ship04l graph. The draw-
ing by FSM, seen in Figure 2 (a), identified 4 clusters sparsely con-
nected with each other. PivotMDS suffers from the same problem
as with 1138 bus, where branches in the tree-like structures are
collapsed, leaving only a skeleton of 3 arms. PivotMDS(1) does
not do much better. PivotMDS(2) is able to expand the clusters,
because the ideal distance between nodes of up to 2 hops are now
specified. Nevertheless its drawing overlaps two clusters with each
other, because to separate these would require specifying ideal dis-
tance of nodes many hopes away. Compared to the corresponding
PivotMDS(k) drawings, Maxent and Maxent(2) give better overall
layouts of this graph.

So far, the graphs we have considered are without known co-
ordinates. Figure 3 (a) shows a graph, commanche, with known
coordinates, representing a helicopter. We can use the coordinates
to compute edge lengths and see how well the graph can be regener-



Table 3: Drawings and error charts of algorithms. In an error chart, X is the target distance bin, Y is the difference between layout distance and target distance. The
chart shows median (black line), 25 and 75 percentile (gray band) and min/max errors (gray lines), as well as error distribution (red line). A limit of 10 hour CPU time
was imposed and “-” denotes runs that did not finish within that time, or ran out of memory. In the drawings, a red-to-green-to-blue color palette is used to encode
edge lengths from short to long.

Graph PivotMDS PivotMDS(1) Maxent sfdp GRIP FSM

gd

btree

1138 bus

qh882



Table 3: (continued) Drawings and error charts of algorithms. In an error chart, X is the target distance bin, Y is the difference between layout distance and target
distance. The chart shows median (black line), 25 and 75 percentile (gray band) and min/max errors (gray lines), as well as error distribution (red line). A limit of 10
hour CPU time was imposed and “-” denotes runs that did not finish within that time, or ran out of memory. In the drawings, a red-to-green-to-blue color palette is
used to encode edge lengths from short to long.

Graph PivotMDS PivotMDS(1) Maxent sfdp GRIP FSM

lp ship04l

USpowerGrid

commanche

bcsstk31

-

Luxembourg

-



(a) (b)

(c) (d)

(e) (f)
Figure 2: Drawings by (a) FSM, (b) PivotMDS (c) PivotMDS(1), (d) Pivot-
MDS(2), (e) Maxent and (f) Maxent(2) on the lp ship04l graph.

ated. PivotMDS collapses the rotors of the helicopter. Both Pivot-
MDS(1) and PivotMDS(2) have difficulty in separating the rotors.
Maxent and Maxent(2) are able to show a better overall structure,
although PivotMDS(2) gives more local details of the mesh.

While visually comparing drawings made by different algo-
rithms is informative, and may give an overall impression of the
characteristics of each algorithm, such inspection is subjective. Ide-
ally we would prefer to rely on a quantitative measure of perfor-
mance. However such a measure is not easy to devise. For ex-
ample, if we use sparse stress as our measure, PivotMDS(k), that
minimizes sparse stress, is likely to come out best, despite its short-
comings. As a compromise, we propose to measure full stress, as
defined by (1), with wi j = 1/d2

i j. Bear in mind that this measure
naturally favors the full stress model. Table 4 gives the full stress
measure achieved by each algorithm. Because it is expensive to
calculate all-pairs shortest paths, we restrict experimental measure-
ment to graphs with less than 10,000 nodes. From the table we can
see that, as expected, FSM is the best, because it tries to optimize
this measure. PivotMDS and sfdp end up with higher full stress. As
expected, sfdp and GRIP yield high full stress on commanche, be-
cause both assume unit edge length on a non-unit edge length input
graph.

Maxent often gives lower full stress than PivotMDS(1), although
it is not clear why Maxent(2) tends to gives higher full stress than
Maxent. For example, on commanche, Maxent(2) gives full stress
that is almost 60% higher than Maxent, but the drawing given by
Maxent(2) (Figure 3 (f)) does not seem any worse than that of Max-
ent (Figure 3 (e)). We conjecture that because we use the maximal
entropy principle to cope with the extra degrees of freedom, the
edge length information is all it takes for Maxent to work well, and
it is not necessary to have additional information for pairs of ver-
tices that do not form edges. On the other hand, PivotMDS clearly
benefits from such extra information.

Table 5 lists the CPU time used by these methods on a range
of graphs. Maxent(k) usually takes more time than PivotMDS(k),
because of its extra repulsive force calculation, but it still scales
to relatively large graphs. On the largest graph, luxembourg,
Maxent(k) is faster than PivotMDS(k), although not as fast as sfdp,
showing that there is still room for improvement in the implemen-

(a) (b)

(c) (d)

(e) (f)
Figure 3: Original graph (a), and drawings by (b) PivotMDS, (c) PivotMDS(1),
(d) PivotMDS(2), (e) Maxent and (f) Maxent(2) on the commanche graph.

tation of the force-augmented maxent algorithm. Both sfdp and
GRIP scale well to large graphs. For comparison, we also include
the CPU time for the FSM. Clearly CPU time for FSM increases
very quickly with the size of the graph, and it does not scale to
large graphs.

5 DISCUSSION AND CONCLUSIONS

This study proposed the maxent-stress model for graph embedding,
with the objective of satisfying input edge lengths, while resolving
the remaining degrees of freedom with the principle of maximal
entropy. The proposed method does not require an all-pairs shortest
path calculation, as needed by the full stress model, and is therefore
more scalable. Compared with other scalable stress models such as
PivotMDS, the proposed method also does not degrade as much on
non-rigid graphs.

The maxent-stress model incorporates a parameter α that con-
trols the strength of the repulsive forces. During iterative solution,
this parameter should gradually be reduced toward zero. We pro-
posed a scheme to reduce it geometrically. We are still experiment-
ing with refinements to this schedule. It is also not clear how to an-
alyze the convergence of the maxent-stress algorithm. Ideally, we
would like to solve the true maximum entropy model (2) by mak-
ing distance satisfaction the top priority, even though (2) contains
constraints that may be infeasible.

While we applied the force-augmented stress majorization al-
gorithm proposed in this paper to solve the maxent-stress model,
another potential way to solve the model is using a variant of a
pure force-directed algorithm (9). This might be combined with a
multilevel scheme, which would do away with the need for an ini-
tial global layout. We have implemented a prototype which seems
promising.

Embedding high dimensional data to fit known distances has
potential applications not only in graph drawing, but also in ma-
chine learning. We would like to investigate the use of the pro-
posed model in such problems, and compare it with established ap-
proaches such as LLE and Isomap.
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