Supplementary Material: Group Optimization for Multi-attribute Visual
Embedding

In sections below, we represent details on algorith-
m analysis, comparisons with traditional methods and
crowd data collection.

1. Details on Algorithm Analysis

As mentioned in the paper, our key idea is to collect
and embed qualitative measures in groups. In a query,
we ask a worker to classify N images into at most B bin-
s/clusters {S.}. We are interested to see how parameter-
s in crowd query affect the multi-embedding accuracy.
Besides, it is inevitable to collect noisy answers during
a public data collection platform, even though we set
several schemes to improve data quality. Therefore, we
conduct a stress test to analyze the robustness of our al-
gorithm under noises.

1.1. Stress Test under Noise

To test the robustness of our method to noise and
erroneous measures we performed the following test.
We collected the 228,000 tuples from the clustering
query answers of “A” and “O” embeddings, which form
ground truth tuples. Then we add noise to the ground
truth tuples by randomly selecting tuples and reversing
their similar/dissimilar label. The portion of reversed
tuples defines the noise level.

Figure 1 summarizes the results, where we can ob-
serve that our method tolerates small amount of query
noise, and the performance degrades smoothly. This in-
dicates that the grouped optimization method is robust
to reasonable degree of noisy measures.

1.2. Query Sampling, Query Size, and Bin Number

There are three factors controlling how we present
each query to users: query sampling strategy, query size
N and bin number B. Query sampling controls how the
images clustered are sampled from the entire set in each
attribute, either randomly or locally (as proposed in [1]).
In the local sampling strategy, the recovery is divided
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Figure 1: NDCG curve during the recovery of “AO” em-
beddings, with various levels of noise.

into several phases. Each hase first updates the embed-
ings, and then sample points to form queries from neigh-
boring regions, rather than randomly, in the following
phase. N is the number of images to be clustered in each
query. B is the number of bins — the maximum number
of clusters allowed for each query. We evaluate the per-
formance of our group optimization with synthetic data
generated with different sampling strategy, N and B.
We summarize the results in Figure 2. Note that, to
make fair comparisons, we make sure |@Q| X N = 3000,
i.e., more queries were used in tests with smaller query
size. We can see that larger N and B give better recovery
results, which is not surprising, since more information
can be collected from such queries. However, the ND-
CG gradually goes down with larger B when N = 10,
since our approach degrades to the non-group case. On
the other hand, smaller N and B are more friendly to
crowd workers. In particular, a small value of B en-
courages workers to make decisions based on a single
attribute in each query. We also show that the local
sampling strategy proposed in [1], when extended to
multiple-attribute setting, is more effective with smal-
1 query sizes and bin numbers. There exists a sweet
point which balances these factors and maximize the
cost-effectiveness. the optimization progresses.

2. Comparisons with Single Embedding Methods

We also compare our method with several previous s-
ingle embedding methods, including GNMDS [2], CK-
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Figure 2: NDCG curve during the recovery of “AO” em-
beddings, using different query sampling strategy, query
size and bin number.

L [3], and (t-)STE [4] using datasets from previous
work: Food [5], Music [6], Pima [7], and Vogue [8].
Pima dataset contains 768 instances, each having 8
features indicating people’s physical conditions. We
adopt the method in [9] to produce similarity triplet-
s, which generate 100 triplets for each instance in each
attribute. The other three datasets offer individually col-
lected {T'(i, j, k)} similarity triplets. We further convert
each {T'(i, j, k)} triplet to {T(i, j, 1)} and {T (i, k,0)} tu-
ples, which are grouped together.

As in [9], generalization error is used to evaluate the
performances, which describes the dissatisfaction ratio
of new recovered triplets in the ground truth. For multi-
embedding methods, a triplet is considered to be sat-
isfied if its distance relationship in one of the multi-
attribute embedding is consistent with that in ground
truth. Since single embedding methods cannot recov-
er multi-attribute embedding, we compare with their a-
bility to recover corresponding high dimensional space.
Figure 3 shows that multi-attribute embedding methods
outperform single embedding methods, and the tenden-
cy is more obvious as dimensions/attributes increase.

Note that, for these datasets, which contain only min-
imal grouped information — each triplet is considered
as a group, our algorithm degrades to non-group case.
However, as shown in Figure 3, even in this case, our
method performs comparable with the other method-
s. Also note that our method does not make any as-
sumption on the underlying data distribution, as that
in (t-)MVTE. In a summary, our method performs bet-
ter when group information is present, and compara-
ble when only non-grouped triplets are provided, while
making no assumption of the data distribution.

3. AMT Data Collections

Data Collection on Chair Dataset. We collected se-
mantic similarity data using clustering queries (pro-
duced by 2 updating phases of local sampling strategy)
instead of the more traditional triplet queries, using a
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Figure 4: MTurk HIT introduction for predefined-
attribute (e.g., arm) experiment on Chair dataset.

drag-and-drop graphical UI with N = 20 clustering im-
ages shown on the left and B = 5 grouping bins on the
right. Workers were required to cluster the 20 images
into the bins, with similar ones in the same bin. An
experimental task in AMT for each worker is consid-
ered as a human intelligence task (HIT). Each HIT be-
gins with an examplar introduction with guidelines for
crowd workers (see Figure 4), followed by 15 queries.
As a quality control, 3 queries in each HIT are ground
truth sentinels, answers from a worker with lower than
70% sentinel accuracy will be rejected. Additionally,
only crowd workers with higher than 80% approval rate
can accept our HIT.

We distribute in total 45,000 queries with ground
truth sentinels for the predefined-attributes experimen-
t, producing 3,000 HITs. After quality control, we col-
lected 41,287 valid clustering query answers, which are
aggregated to 7,953,827 final tuples. Workers are paid
on average $0.25 to cluster 15 queries and spent an aver-
age of 6 minutes per HIT. The total cost was about $800
spent over roughly a month and a half.

Data Collection on Poster Dataset. Film posters
present rich semantic information, which makes it hard
for workers to cluster queries without any predefined
attributes. To simplify the task, we collect clustering
queries (produced by 1 updating phase of local sam-
pling strategy) using a drag-and-drop graphical UI with
N = 10 clustering images shown on the left and B = 2
grouping bins on the right. Workers were asked to
cluster the 10 images into the bins according to their
own preferences. In this experiment, each HIT begins
with an examplar introduction with guidelines for crowd
workers (see Figure 5), followed by 10 queries. Since
there is no ground truth answers for this experiment, we
constrain valid crowd workers as those higher than 80%
approval rate as a quality control.

In total, we distributed 840 queries, producing in total
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Figure 3: Comparison with state-of-the-art single and multiple embedding methods on Food, Music, Pima and Vogue

Cluster Similar Posters into Groups
Hint
There will be 10 queries in this HIT.
Please look at the example query before starting HIT!! Thanks.
What to do
Here is an example query: some poster images are shown on the
left panel, and the task is o cluster the nto the bins on the right -
panel,
1. Similar images should belong to one of the bins, while dissimilar
ones stay in different bi.
2. The poster images have many semantic aspects. Two posters
might share strong similarty on some aspects while atthe same
time disagree on ofhers. Thus. we know that making overall
iy udgement s g === ]
3. To make the task easier, you are encouraged to make
judgement based on some aspects, as long as you find enough for
the clustering, while ignoring others.
4. Al the images should be ciassified, while some of the bins can
be left empty fthe images can be well clustered with less bins.

example input example group

attribute experiment on Poster dataset.

84 HITs. After excluding incomplete answers, we col-
lected 800 valid queries which are aggregated to 36,000
final tuples. Workers are paid on average $0.25 to clus-
ter 10 queries and spent an average of 3 minutes per
response. Please note that the reward was higher in this
experiment to accelerate the data collection. The total
cost was about $24 spent over one day.
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