
1

SLAMRecon: A Real-time 3D Dense Mapping System

Hao Li & Huayong Xu

Interdisciplinary Research Center in Shandong University

Contents

1 Introduction ... 2

2 System Overview ... 2

3 Technical Details ... 4

3.1 DataEngine .. 4

3.1.1 Architecture ... 4

3.1.2 Data Saving ... 6

3.2 SLAMEngine .. 6

3.2.1 Tracking ... 7

3.2.2 Local Mapping ... 7

3.2.3 Loop Closing .. 7

3.2.4 Optimization ... 7

3.3 FusionEngine .. 7

3.3.1 Scene Volume Representation .. 8

3.3.2 Fusion ... 9

3.3.3 Defusion ... 12

3.3.4 Rendering .. 13

3.3.5 Reconstruction .. 14

4 Conclusions ... 15

5 User Guide ... 15

5.1 Running the system ... 15

6 References ... 17

2

1 Introduction

SLAMRecon is a real-time 3D dense mapping system based on RGB-D camera.

The output is a reconstructed indoor scene model. As we know, there are some previous

3D Dense Mapping Systems, like Kinect Fusion[Kinect Fusion], Voxel Hashing[Voxel

Hashing] and InfiniTAM[InfiniTAM]. These works use ICP to do registration between

adjacent two frames. And ICP will fail when scan some flat area. However, these works

don’t do any local or global optimization for camera poses. During scan, the

reconstruction will drift because of accumulated errors. In our work, we used ORB-

SLAM2[ORB-SLAM] to help us estimate camera pose of each frame. Because of orb-

slam’s local and global optimization, we can avoid obvious drift when scan an indoor

scene. We use an integration and re-integration framework to handle changing camera

poses. Once a camera pose changes because of optimization, the system will do re-

integration process to remove data influenced by old camera pose from scene volume

and integrate data based on new pose to the scene volume.

2 System Overview

 In this section, we show an overview to introduce a basic pipeline of our system.

Our system, see an overview in Fig.2-1, incorporates three main modules:

DataEngine, SLAMEngine and FusionEngine. More specifically, DataEngine takes

Fig.2-1. An overview of SLAMRecon

3

charge of acquiring RGB-D images from different sources, such as RGB-D camera,

RGB-D images stored on disk, a remote server which can capture a sequence of RGB-

D images. Moreover, DataEngine stores each RGB-D frame in a pre-allocated memory

block, which will be used in later process.

SLAMEngine processes new RGB-D frames from DataEngine to get associated

camera pose related to world coordinate system of each frame. We use ORB-

SLAM2[ORB-SLAM] in SLAMEngine, which is made up by three threads that run in

parallel: tracking, local mapping and loop closing. It will be introduced detailedly in

section 3.2. During process of SLAMEngine, the camera pose of each frame may

update sometimes because of orb-slam’s local and global optimization. Once the

camera pose of special frame is updated, the frame with info about frame id, old camera

pose (camera pose before updated), new camera pose (camera pose after updated) will

be pushed into a waiting frame queue. In fact, the waiting frame queue is a map structure

which can be retrieved by a key (frame id). In order to increase processing speed of the

system, before a frame is pushed into the queue, the system first check if the frame

exists in the queue, if so, replace the old info in the frame, if not, push the frame into

the queue. And meanwhile, the new frame has priority over updated frame to provide

better user’s interaction. Because fusion and defusion will consuming a large amount

of computing resources, in order to ensure real time, the system only do defusion for

frames with large changes. If only have small changes of camera pose, the system will

ignore these frames to save computing resources, but have no impact for user’s

interaction.

FusionEngine is mainly in charge of defusing and fusing data of frames in waiting

frame queue one by one. Here, defusing means removing data influenced by old camera

pose from a scene volume, while fusing means integrating data based on new pose to

the scene volume. As introduced in [Voxel Hashing], the scene volume is organized by

voxel hashing structure. If the picked frame from the queue is a new frame,

FusionEngine only executes fusing process. In order to show quality of reconstruction,

FusionEngine also renders surface of the scanned scene under the current camera view

4

and a specified view by user’s interaction. After finishing scanning, FusionEngine will

re-fuse all frames with newest camera pose to get more accurate fusion result. and

employ marching cubes algorithm to extract final surface.

3 Technical Details

3.1 DataEngine

We have briefly introduced DataEngine in system overview. In this section, we

will show more details about this module.

3.1.1 Architecture

DataEngine is split into two layers as showed in Fig.3-1. The topmost abstract

layer is accessed by other modules and consists some blank interfaces and some

common variables. The interfaces and members of abstract layer is listed here:

class DataEngine

{

public:

 typedef std::shared_ptr<DataEngine> Ptr;

 typedef std::shared_ptr<DataEngine const> ConstPtr;

 DataEngine();

 virtual ~DataEngine() {}

 virtual bool hasMoreImages(void) = 0;

 virtual bool getNewImages(void) = 0;

 UChar4Image* getCurrentRgbImage();

 ShortImage* getCurrentDepthImage();

 cv::Mat getCurrentMatRgbImage();

 cv::Mat getCurrentMatDepthImage();

 Vector2i getDepthImageSize();

 Vector2i getRGBImageSize();

 UChar4ImagesBlock *getRgbImagesBlock();

 ShortImagesBlock *getDepthImagesBlock();

5

 int getCurrentFrameId();

 void readCameraPoses(std::string filename);

 const std::vector<Matrix4f>& getAllCameraPoses() const;

 const std::vector<int>& getAllFlags() const;

 const Matrix4f getCameraPoses(int i) const;

protected:

 UChar4Image *rgbImage;

 ShortImage *rawDepthImage;

 UChar4ImagesBlock *rgbImagesBlock;

 ShortImagesBlock *depthImagesBlock;

 cv::Mat matRgbImage;

 cv::Mat matDepthImage;

 int image_width;

 int image_height;

 int curFrameId;

 std::vector<Matrix4f> allCameraPoses;

 std::vector<int> allFlags;

};

The blank interfaces are implemented in the Implementation Layer. We have

implemented three subclass of DataEngine: OpenNIEngine, FileReaderEngine and

RemoteDataEngine. OpenNIEngine is in charge of acquiring RGB-D images from a

RGB-D camera that supports openNI library. FileReaderEngine can read RGB-D

images stored on disk in a special format. RemoteDataEngine receives data by

communicating eith a remote server which can capture a sequence of RGB-D images.

For a new data source, it is easy to write a new subclass to implement blank interfaces

in DataEngine.

Fig.3-1. Architecture of dataEngine

6

3.1.2 Data Saving

For each frame, we store the depth data on the memory in order to do the defusion

operation. All frames are stored on a linear memory block, the depth data is saved one

by one according to frame id, and can be retrieved easily by frame index. See Fig.3-2.

3.2 SLAMEngine

A general outline of SLAMEngine has already be given in section 2. In this section,

we will introduce each processing stage in detail. It should be point out that

SLAMEngine is developed based on ORB-SLAM[ORB-SLAM], more information

about ORB-SLAM can be found on its project homepage:

http://webdiis.unizar.es/~raulmur/orbslam/. Our system only could process RGB-D

image data, which ORB-SLAM could process Monocular, Stereo and RGB-D image

data.

Fig.3-3 shows the overview of SLAMEngine. There are three stages in

SLAMEngine process: tracking, local mapping and loop closing.

Fig.3-3. An overview of SLAMEngine

Fig.3-2. Depth image block

http://webdiis.unizar.es/~raulmur/orbslam/

7

3.2.1 Tracking

There are five stages in tracking process: orb extraction, initial pose estimation

from previous frame, initial pose estimation via global relocation, track local map and

new keyframe decision. More details can be found in paper[ORB-SLAM].

3.2.2 Local Mapping

There are five stages in local mapping process: keyframe insertion, recent map

points culling, new map point creation, local bundle adjustment and local keyframe

culling. More details can be found in paper[ORB-SLAM].

3.2.3 Loop Closing

There are four stages in loop closing process: loop candidates detection, compute

the similarity transformation, loop fusion and essential graph optimization. More details

can be found in paper[ORB-SLAM].

3.2.4 Optimization

There are three types of optimization in SLAMEngine process: Bundle

Adjustment(motion-only BA, local BA, global BA), Pose Graph Optimization and

Relative Sim(3) Optimization. More details can be found in paper[ORB-SLAM].

motion-only BA

In pose optimization or motion-only BA process, all map points are fixed and only

current frame’s camera pose is optimized. And pose optimization is used on every frame,

and will be used many times to continuously optimize current frame’s camera pose. If

map points are changed by other operations, the system will use pose optimization to

optimize camera pose.

3.3 FusionEngine

A general outline of FusionEngine has already be given in section 2. In this section,

8

we will introduce each processing stage in detail. It should be point out that

FusionEngine is developed based on InfiniTAM[InfiniTAM], more information about

InfiniTAM can be found on its project homepage:

http://www.robots.ox.ac.uk/~victor/infinitam/. Before read following section, we

suggest you to learn concept about TSDF by reading paper[Kinect Fusion].

3.3.1 Scene Volume Representation

We use a voxel hashing structure which is first proposed by Nießner et al. to

represent the scene volume. We use the implementation of this method in InfiniTAM.

Fig.3-4 shows a basic voxel hashing structure. It incorporates a hash table and

voxel block array, in which voxel block array is a sequential memory block and each

bucket in hash table may have several entries to access a voxel block in the memory.

The hash table consists ordered entries and unordered entries to avoid the entries

conflict. Each voxel block has N*N*N voxels, which are stored on memory linearly.

Here is the structure of each voxel:

struct FEVoxel_s

{

short sdf; //Value of the truncated signed distance.

short w_depth; //Number of fused observations that make up sdf.

};

The structure of hash entry is listed here:

struct FEHashEntry

Fig.3-4. Voxel Block Retrieval & Insertion by Hash Table

http://www.robots.ox.ac.uk/~victor/infinitam/

9

{

 Vector3s pos; // Position of the corner of the NxNxN volume.

 int offset; // Offset in the excess list.

 /** Pointer to the voxel block array.

 - >= 0 identifies an actual allocated entry in the voxel block array

 - -1 identifies an entry that has been removed (swapped out)

 - <-1 identifies an unallocated block

 */

 int ptr;

};

The main operation of hash table are retrieval and insertion. We will describe these

operations next.

Insertion

To insert new hash entries, we first evaluate the hash function and determine the

target bucket. We then iterate over all bucket elements including possible lists attached

to the last entry. If we find an element with the same world space position we can

immediately return a reference. Otherwise, we look for the first empty position within

the bucket. If a position in the bucket is available, we insert the new hash entry. If the

bucket is full, we append an element to unordered entries list (see Fig. 3-4).

Retrieval

To read the hash entry for a query position, we compute the hash value and perform

a linear search within the corresponding bucket. If no entry is found, and the bucket has

an unordered entries list associated (the offset value of the last entry is set), we also

have to traverse this list. The retrieval operation stops until the searched hash entry’s

offset value is less than -1 (see Fig. 3-4).

More details about voxel hashing can be got from these related papers: [Voxel

Hashing][InfiniTAM].

3.3.2 Fusion

There are two stages in fusion process: allocation and integration. In allocation

stage, new voxel blocks are allocated as required and a list of all visible voxel blocks is

10

built based on current depth image. In integration stage, the current depth frame is

integrated into the scene volume. Next, we will introduce these two stages in detail.

Allocation

1. Back projection. We cast rays from the optical center through each pixel in current

depth image. According to camera’s intrinsic calibration parameters, extrinsic

calibration parameters and the depth value, we can compute the associated 3D point

for each depth pixel. We can get another two 3D points along each casting ray

within a distance threshold μ relative to computed depth-associated 3D point. See

Fig.3-5.

2. For each 3D point computed in step1, we compute the associated intersection block.

For each intersection block, retrieving it from hash table, if it doesn’t exist, insert

a new entry to hash table.

3. Build visible table. The number of elements in visible table is equal to total number

of entries in hash table and is one-to-one. Each element mark if the voxel block

that its associated entry point to is visible in current view. To build this visible table,

we consider three kinds of situations. For blocks that are visible both in last view

and current view, we set the elements value in visible table as 3. For intersection

blocks that haven’t been allocated before or have already been allocated but haven’t

been removed, we set the elements value in visible table as 1. For intersection

blocks that have already been allocated and have been removed, we set the

elements value in visible table as 2. For other invisible blocks, we set the elements

value in visible table as 0. See Fig.3-6.

Fig.3-5. Back projection

11

4. Save visible table as a binary list to the memory block. We use a bit to represent

each element in visible table. For elements whose values are greater than 0, we set

corresponding elements in binary visible list as 1. Otherwise, we set 0. The binary

visible list is stored in a pre-allocated linear memory block, which can be retrieved

by frame index.

Integration

As showed in Fig.3-7, given visible table in allocation stage, we search visible

blocks by visible entries. Then we project all centers of voxels in all visible blocks to

depth image in current view according to camera’s intrinsic and extrinsic calibration

parameters. After that, we update T-SDF value in each voxel. See formulas (3.1, 3.2).

In formula (3.1), Kd is camera’s intrinsic parameters, Xd is center of a voxel, π

computes inhomogeneous 2D coordinates from the homogeneous ones and the

superscript (z) selects the Z-component of Xd. Id is pixel values in depth image.

In formula (3.2), D(X) is the T-SDF value, w is a field counting the number of

Fig.3-7. Integration: project all visible voxels to the depth image and update voxel values.

Fig.3-6. Visible table

(3.1)

(3.2)

12

observations in the running average, which is simultaneously updated and capped to a

fixed maximum value, u is a threshold for truncated signed distance function(TSDF).

More details can be found in [Voxel Hashing][InfiniTAM].

3.3.3 Defusion

There are also two stages in defusion process: updating visible table and repealing.

In updating visible table stage, we build a visible table for current processed frame. In

repealing stage, we will remove data influenced by old camera pose from a scene

volume. Next, we will introduce these two stages in detail.

Updating visible table

1. Retrieving binary visible list in memory block by current processed frame’s index.

2. Transform the binary visible list to the entries visible table as described before.

Traverse the binary visible list, for bit set as 1, we set corresponding elements in

visible table as 1. Otherwise, we set 0.

Repealing

As showed in Fig.3-8, given visible table in updating visible table stage, we search

visible blocks by visible entries. Then we project all centers of voxels in all visible

blocks to depth image in current view according to camera’s intrinsic and extrinsic

calibration parameters. After that, we update T-SDF value in each voxel. See formulas

Fig.3-8. Repealing: project all visible voxels to the depth image and update voxel values.

13

(3.3, 3.4).

Formula (3.3) is the same as Formula (3.1).

The parameters in formula (3.4) is the same as formula (3.3).

3.3.4 Rendering

We perform ray casting to render the image in current camera view. More

specifically, we cast rays from the optical centre through each pixel and find their first

intersection with the observed 3D surface in scene volume. In its simplest form, this

requires evaluating the SDF along all points of the ray. However, as already stated in

[Kinect Fusion], the values D(X) in the T-SDF give us a hint about the minimum

distance to the nearest surface and allow us to take larger steps. Detail procedure is

showed in Fig.3-10. More details can be found in paper[InfiniTAM].

(3.3)

(3.4)

Fig.3-9. Ray casting.

14

3.3.5 Reconstruction

After finishing scanning, the last step is to extract

geometry surface of the scanned scene. We use a

triangular mesh to represent the reconstructed surface.

To extract the isosurface, we employ the marching

cubes algorithm on the scene volume. In the scene

volume, each center of voxel is regarded as a corner of

a cube, and T-SDF value represent the distance

between the corner and the isosurface. Eight adjacent

voxels compose a cube. Since there are eight vertices

in each cube and two states, inside and outside, there are only 28 = 256 ways that a

surface can intersect the cube, which can be reduce to 14 patterns. See Fig.3-11. By

enumerating these 256 cases, we create a table to look up surface-edge intersections,

given the labeling of a cubes’ vertices. The table contains the edges intersected for each

case. More details can be found in paper[Marching cubes].

Fig.3-11. Marching cubes.

Fig.3-10. Flow chart of the ray casting procedure.

15

4 Conclusions

SLAMRecon is a real-time 3D dense mapping system based on RGB-D camera

which can avoid the problem about drift and loop closure when scanning compared

with previous systems. The system is developed based on ORB-SLAM2[ORB-SLAM]

and InfiniTAM[InfiniTAM], we thank authors of these two systems to open source their

code. No system is perfect. This is the first version of our code and it may have some

problems. We may offer more robust system in future.

We welcome developers to do further research based on our SLAMRecon system

and improve our system.

5 User Guide

In this section, we will introduce how to use the SLAMRecon system in details.

5.1 Running the system

In this section, we will introduce how to use the SLAMRecon system in details.

1. Run the system, you can get the below interface. See Fig.5-1.

Fig.5-1. User interface.

16

2. Initialization. For RGB-D images stored on disk, choose Files option and for

RGB-D camera(Kinect1, Xtion), choose Kinect1 option. And next you need choose our

SLAMRecon or original Kinect Fusion method to do slam and fusion. But whatever

method you choose, before run the slam and fusion, you need to do the

initialization(click the SystemInit button).

3. If you choose our SLAMRecon method, the system will ask you to choose twice.

First, you need choose the FILES_PARAM3.yaml for Files option or

KINECT_ONE_PARAM.yaml for Kinect1 option. It is important to note that the

ORBvoc.txt need to put the same folder as param files. The system will automatically

load this file. And then you need to choose the RGB-D image data folder. At last the

system will load camera calibration matrix, opencv distortion parameter and orb

vocabulary from this files and data folder. For the original Kinect Fusion method, you

only need choose once.

4. After initialization, you can click Start button to start the slam and fusion. You

also can stop the process(click Stop button) and restart(click Start button after stop). If

you click Reset button, the system will reset, and you should start from the 2 step(new

initialization). At last, you can save the fusion result(click SaveMesh button). See Fig.5-

2. You can see the running process of the system.

Fig.5-2. Running process.

17

6 References

[ORB-SLAM] Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: a versatile and

accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):

1147-1163.

[InfiniTAM] Kahler, Olaf, et al. "Very high frame rate volumetric integration of depth

images on mobile devices." IEEE Transactions on Visualization and Computer

Graphics 21.11 (2015): 1241-1250.

[Voxel Hashing] Nießner M, Zollhöfer M, Izadi S, et al. Real-time 3D reconstruction

at scale using voxel hashing[J]. ACM Transactions on Graphics (TOG), 2013, 32(6):

169.

[Kinect Fusion] Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time

dense surface mapping and tracking[C]//Mixed and augmented reality (ISMAR), 2011

10th IEEE international symposium on. IEEE, 2011: 127-136.

[Marching cubes] William E. Lorensen, Harvey E. Cline:

Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH

1987: 163-169

