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Figure 1: Through the system of this article, from a distribution of particles (a), we optimize under the condition of ensuring
its connectivity, and obtain the corresponding pore structure(b) and solid part(c) of the model. (d) shows the 3D printed result
of the organic porous structure.

ABSTRACT
Open-cell porous structures are ubiquitous in nature and have been
widely employed in practical applications. Additive manufacturing
has enabled the fabrication of shapes with intricate interior
structures; however, a computational method for representing and
modeling general porous structures in organic shapes is missing in
the literature. In this paper, we present a novel method for modeling
organic and open-cell porous structures with porosities and pore
anisotropies specified by users or stipulated by applications. We
represent each pore as a transformed Gaussian kernel whose
anisotropy is defined by a tensor field. The porous structure is
modeled as a level surface of combined Gaussian kernels. We utilize
an anisotropic particle system to distribute the Gaussian kernels
concerning the input tensor field. The porous structure is then
generated from the particle system by following the anisotropy
specified by the input. We employ Morse-Smale complexes to
identify the topological structure of the kernels and enforce pore
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connectivity. The resulting porous structure can be easily controlled
using a set of parameters. We demonstrate our method on a set
of 3D models whose tensor field is either predesigned or obtained
from the mechanical analysis.
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1 INTRODUCTION
Porosity is an integral property of natural structures. Stones
and soils contain interconnected pores and channels that permit
liquid and gas penetration. Porous media exhibit desirable physical
properties, such as being lightweight or having high impact
absorption; therefore, the properties and preparation methods of
such media have been comprehensively studied [Gibson and Ashby
1999]. Porous materials are used in medical applications (bone
substitutes and dentures), chemical engineering (catalyst carriers
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and membranes for water treatment), civil engineering (concrete,
fibrous assemblies, and structural materials), material engineering
(metal foam, insulating materials, sound-absorbing coatings, and
biomaterials), and tissue engineering.

Many attempts have been made over the years to reconstruct
the geometric structures of porous media for analyzing effective
properties and estimating material performance, through imaging
or scanning procedures, or mathematical methods by simulating
the fabrication process [Pant 2016]. The progress in 3D printing
enables fabricating the complex geometries and further broadens
the applications of porous structures at different scales. Thus,
increasing efforts have been devoted to modeling and utilizing
porous structures in various applications, including scaffold design
for tissue engineering [Hollister 2005; Wu et al. 2011; Yoo 2011],
and interior structures for mechanical optimization [Lu et al. 2014;
Wu et al. 2017; Yan et al. 2019], etc.

Natural porous media like bones, reefs, and plants mostly possess
two characteristics, curvilinear structures, and interconnected
pores. Such features benefit both macroscopic physical properties
and additive manufacturing. Organic pore architecture help avoid
stress accumulation. Interconnected pores and solids make the
models feasible to powder-based 3D printing techniques. However,
existing porous modeling methods can hardly produce organic
open-cell porous structures with capabilities of controlling the
anisotropy, porosity, pore shape, etc.

In this paper, we attempt to propose a modeling framework for
generating organic open-cell porous structures with controllable
porous properties. Specifically, we represent each pore by a param-
eterized anisotropic Gaussian kernel, which possesses controllable
organic shape and conforms to the given anisotropy. Then, the full
connectivity of pores and solids is enforced with the guidance of the
Morse-Smale complex (MSC), respectively. Given the pore shape,
target porosity, and specified anisotropy, the porous structures
could be produced to incarnate users’ design using our modeling
method. We further develop an optimization framework to drive
the porous structures to the optimized internal surface area, and
strength, etc.

Our contributions are as follows.

• We present a modeling framework that automatically gen-
erates organic open-cell porous structures, conforming to
given tensor fields.

• Our algorithm guarantees the connectivity of both solids and
pores via an MSC-based enforcement method and supports
controllable porosity, density, and pore shapes.

• Our optimization framework can be adapted to different
objectives, like the internal surface, mechanical properties,
etc.

2 RELATEDWORK
Porous structure reconstruction. Most 3D porous structure model-

ing techniques apply a reconstruction methodology to mimic the
full or partial scale of existing porous structures. In general, these
techniques apply statistical or stochastic models for reconstructing
3D porous media from 2D thin section images or 3D voxel data.

The sampled digitized serial sections are obtained by scanning
electron microscopy (SEM) [Kwiecien et al. 1990; Whitehouse and

Figure 2: Given a 3D cuboid shape and a user-designed
tensor field (a), we generate the corresponding interior-
point distribution and compute the MSC structure (b). By
using combined anisotropic Gaussian kernels, we obtain
connected pores and solids (c-e), with varying porosity
values of 20%, 50% and 80%, respectively. (The upper row
displays the pores in the shape, in green; the lower row
displays the corresponding left porous volume, in blue.)

Dyson 1974], high-resolution X-ray tomography (HRCT) [Dun-
smuir et al. 1991], or micro-computed tomography (µCT) [Zhu et al.
2014]. 3D porous structures are obtained by either geometrical
reconstructions [Pouech et al. 2010; Sun et al. 2005; Zhu et al.
2014], or texture synthesis [Holdstein et al. 2009; Liu and Shapiro
2015; Zhang et al. 2017]. Researchers in material science introduced
physical process-based mimicking techniques, including infrared
(IR) gas porosimetry, mercury intrusion porosimetry [Cernuschi
et al. 2013], etc. A detailed description of existing reconstruction
modeling methods for porous structure can be found in [Pant
2016]. Reconstruction methods rely on data acquisition and high
computational cost, and can hardly realize the porous model’s full-
scale details.

Porous structure design. Stochastic methods stand in the classical
group for modeling the porous structures with varying density
and porosity properties close to the existing porous media. The
basic idea is using a two-point probability function to represent a
voxel to be grain or pore and then applying stochastic functions to
generate the synthetic data. Stochastic functions include simulated
annealing [Manwart et al. 2000], a pressure correction algo-
rithm [Hilfer and Manwart 2001], Monte Carlo methods [Manwart
and Hilfer 1999], CSG operations [Schroeder et al. 2005]. The
local porosity distribution is controlled by a probability density
function, which can generate organic pore shapes. [Mosser et al.
2017] attempted to train generative adversarial neural networks
on segmented volumetric images for three-dimensional stochastic
image reconstruction of porous media.

Spatial tessellations are also often used in porous modeling.
Existing approaches employ Voronoi diagrams to tessellate the
given shape in a stochastic and space-pleasing manner, and then
model the pores via inscribed implicit curves or parametric B-
splines [Kou and Tan 2012; Wyvill et al. 2012; Yaman et al. 2016].
[Lu et al. 2014] took centroidal Voronoi tessellations, represented
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each Voronoi cell as a harmonic field, and carved with an opti-
mized hollowness parameter in terms of the global strength-to-
weight ratio. They only considered the von Mises value without
the stress tensor’s directions and produced an isotropic closed
porous structure. To involve anisotropy in Voronoi-based porous
structures, [Ying et al. 2018] proposed the anisotropic closed-
cell porous modeling method, but only in 2.5D. [Martínez et al.
2016] proposed to generate aperiodic, stochastic open-cell Voronoi
foams with prescribed isotropic elasticity, through a procedure akin
to solid procedural textures. They extended isotropic structures
into orthotropic foams [Martínez et al. 2017] and achieved k-
nearest structures with good orthotropic elasticity. However, the
basic structural element is the beam but not the organic anymore.
In [Martínez et al. 2018], they further present the closed-cell, self-
supported stochastic foams friendly to fused filament fabrication
(FFF) based 3D printers. Recently, [Martínez et al. 2019] introduced
the star-shaped metrics in Voronoi diagrams, such that more
structures could be involved, and the range of mechanical properties
is widened.

Both stochastic methods and spatial tessellations have advan-
tages in representing organic pore shapes. Unfortunately, these
methods share the same problem that porous connectivity is hard
to achieve.

Topology optimizations have emerged as an option for porous
modeling over recent years. However, the grain element is usually
truss or lattice structures [Arora et al. 2019; Wang et al. 2013; Wu
et al. 2016b]. [Wu et al. 2017] proposed a density-based approach to
design bone-like porous structures via topology optimization under
local material volume constraints. The authors further present a
method to design lattice structures that conform with both the
principal stress directions and the shape boundary [Wu et al. 2019].
Except for the inorganic pore shapes, the pore connectivity cannot
be theoretically guaranteed for these methods.

Microstructure design and tiling can also produce porous struc-
tures [Chen et al. 2018; Tozoni et al. 2020]. Families of periodic mi-
crostructure tiles with varying properties are predesigned through
an inverse homogenization problem [Sigmund 1994]. Then, they can
be easily synthesized to fulfill target functionalities [Panetta et al.
2015; Schumacher et al. 2015]. Nevertheless, such microstructure
does not satisfy organic properties.

To our knowledge, existing porous modeling methods can barely
generate the porous structures that fulfill all the objectives we
tackled, i.e., organic pore shape, connectivity for both pores and
solids, and conforming to the given tensor field.

Tensor field sampling. The modeling process of our study is
primarily driven by a user-defined tensor field or a stress field
obtained from the mechanical analysis. Therefore, the tensor field
design is critical to the outcome of a porous structure. Tensor fields
have been adequately researched in terms of mathematical and
numerical analyses. Moreover, tensor field visualization has been
well developed for postprocessing applications for computational
mechanics by the scientific visualization community [Neeman et al.
2005]. [Zhang et al. 2007] present an interactive design system that
allows users to create a wide variety of symmetric tensor fields
over 3D surfaces either from scratch or by modifying a meaningful
input tensor field such as the curvature tensor. [Palacios et al.

2017] provided a 3D tensor field design system, which can edit
the topology of the tensor fields. On the basis of these studies, a
meaningful tensor field is regarded as a reasonable input for porous
modeling.

Gaussian kernels have strong capabilities to fit in a given
shape and are widely used in many applications. In the realm of
signal processing, Gaussian kernels are used as a basis function to
approximate an arbitrary signal and reconstruct sparse signals
through matching pursuit methods. In numerical simulations,
Gaussian kernels act as the Green’s function for the diffusion
equation.

Under Gaussian kernels, a particle denotes the center of a peak,
and accordingly determines pore position. With the technology of
anisotropic centroidal Voronoi tessellations [Du and Wang 2005],
anisotropic meshing [Zhong et al. 2013] or anisotropic blue noise
sampling [Li et al. 2010], the particle could be sampled in a pattern
driven by a user-defined anisotropy field for a given volume.

Morse-Smale Complex analysis. TheMorse-Smale Complex (MSC)
is a topological structure that captures the gradient behavior of a
scalar function on a manifold. The MSC decomposes the domain
into monotonic regions associated with the critical points of the
function, indicating the smallest topological features. As a natural
and mathematically sound tool, the Morse-Smale complex is widely
used for topology-based shape analysis and understanding, and
thus supporting various applications, such as surface smoothing,
segmentation, compression and visualization [Čomić et al. 2013;
De Floriani et al. 2015; Edelsbrunner et al. 2003; Gyulassy and
Natarajan 2005; Ling et al. 2014] etc. Moreover, the efficient com-
putation of a 3D MSC has gained considerable attention [Gyulassy
et al. 2007; Shivashankar and Natarajan 2012].

3 OVERVIEW
Given a 3D shape Ω ⊂ R3 defined by a boundary surface mesh,
in addition to a second-order tensor field, our method generates
porous structures that are consistent with the tensor field in terms
of both the magnitude and directional features of the tensor field.
Our modeling framework intends to drive the porous structures
to the target porosity, cell size, maximal surface area, with the
constraints that both pores and solids are fully connected.

We employ the transformed Gaussian kernel conforming to
the given tensor in terms of both magnitudes and directions. We
regard the initial tensor field as an underlying field, where each
sample point has a 3 × 3 symmetric tensor matrix; see Fig. 2a. We
consider this matrix as an anisotropic local metric, and generate
a varying point distribution by utilizing the generalized Poisson
disk property through dart-throwing and relaxation algorithms;
see Fig. 2b. With the point distribution, we fit each point with an
anisotropic Gaussian kernel function defined by the local tensor
metric and the variance parameter. Subsequently, we construct the
level surface with a level set value to represent the porous surfaces.

The overall porous structure is determined by the kernel distri-
butions P and their scalesK . The two sets of variables are optimized
according to the objectives, like porosity, cell size, surface area, etc.
(Fig. 2c-g).
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Figure 3: The flow chart of the porousmodeling framework.

To ensure that the pores and solids are both fully interconnected,
we compute the MSCs within Ω to identify the topological struc-
tures and employ it as the guidance for connectivity enforcement.
The Gaussian function defined over the given space is directly
employed as the volumetric Morse function. Thus, critical points
(maxima, minima, 1-saddle, and 2-saddle) can be extracted accord-
ingly, in which the maxima coincide with the kernel centers. Once
the ascending and descending manifold cells are computed (Fig. 2b),
we have the full guidance for constructing connections between the
isolated pores or solid and their topological neighbors. A smooth,
adaptive blending tunnel between the kernels based on a Bernstein
basis function is added to enforce the connectivity.

The discretized form is used for the efficiency of both MSC com-
putation and implicit surface reconstruction. After the optimization
and connectivity enforcement, the porous structure is reconstructed
via marching cubes. Fig. 3 shows the flow of the porous modeling
framework.

4 ANISOTROPIC GAUSSIAN KERNEL
4.1 Tensor Field Defined Anisotropy
Anisotropy implies different properties in different directions. In
this paper, we use a tensor-based metric for representing anisotropy.
Local anisotropy can be defined by three orthogonal principal
directions and an aspect ratio in each direction. The local metric
of each point in the domain Ω is defined by a symmetric tensor
matrix T . The matrix T can be decomposed into

T = RΛRT, (1)

where Λ is a diagonal matrix that contains ordered eigenvalues,
and the columns of the orthogonal matrix R are the respective
eigenvectors. The matrix R defines the rotation of the local frame
while Λ represents the scaling of three principal axes. Fig. 4
illustrates the transformation defined by T .

The distance between two points pi and pj under anisotropic
metric T is expressed by��pi ,pj ��T = √(

pi − pj
)T
T
(
pi − pj

)
. (2)

In Fig. 2, we use a simple user-defined tensor field, where each
point shares the same anisotropic ratio, with the scaling factor
proportional to its axial length from the origin at the corner. We
compute the Frobenius norm for each tensor matrix and color code
it in Fig. 2a.

Figure 4: Iso-surface of the same distance from a point
would change from sphere (left) to an ellipsoid (right) if the
anisotropic metric is applied.

4.2 3D Anisotropic Gaussian Kernel
The basic 3D isotropic Gaussian kernel centered at point pi is
defined as

Gi (p) =
1(√

2π · ki
)3 e− ∥p−pi ∥

2

2ki 2 , (3)

where ki > 0 determines the width of the Gaussian kernel at pi and
∥ · ∥ denotes the Euclidean norm.

By considering the general case of an oriented anisotropic
Gaussian function, we apply the anisotropic metric defined in
Section 4.1 and obtain the 3D anisotropic Gaussian kernel at point
pi with the tensor matrix Ti as follows:

GA
i (p) =

1
(
√
2πξki )3

e
−
(p−pi )

TTi (p−pi )
2k2i , (4)

where ξ = 1
λ1λ2λ3

, and λ1, λ2, λ3 represent the ordered eigenvalues
of Ti . The variable ki is for flexibly controlling the shape of the
Gaussian kernel.

4.3 Combined Gaussian Kernels
Given n Gaussian kernels centered on {pi }

n
i=1, we define the

combined function F : R3 → R for every point p ∈ Ω as

F (p) =
∑
i

GA
i (p) . (5)

This combined function is regarded as the level set function.
Once given a value C ∈ R+, a level surface can be extracted via
F (p) = C .

Therefore, we represent our porous structure as a level surface
determined by Equation 6, including three set of parameters,
distribution of the particles P = {pi }

n
i=1, scale of the kernels

K = {ki }
n
i=1, and the level set value C ,∑

i

GA
i (p) = C . (6)

Fig. 5 illustrates the idea in 2D in terms of the parameterC . There
are three 2D Gaussian kernels with different variances generated
from neighboring sites on a plane. Different level set values drives
the level curve with different shapes. For one kernel, the level curve
is an ellipse considering the anisotropic metric.

5 POROUS STRUCTURES MODELING
5.1 Kernel Distribution
To distribute the kernels conforming to the underlying tensor
field, we optimize the distributions via a blue noise sampling
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(a) (b) (c)

Figure 5: Combined 2D Gaussian kernel and its level set
curve. (a) combined 2D Gaussian kernels cut by three level
planes; (b) side view of (a); (c) three extracted level curves
from (a).

method. First, we generate the initial particle distribution through
anisotropic dart throwing. The particles are generated sequentially
one by one. To determine the next particle’s location, a trial sample
is randomly generated from the input domain. If the new sample
is at least a predefined distance from all existing samples, the
particle is added to the domain. Note that the distance here is under
anisotropic metric, which would lead to the anisotropic distribution
of particles.

Then, we apply relaxations for the particles P via conventional
3D centroidal Voronoi tessellations (CVT) computation [Liu et al.
2009]. The objective function is

F (P) =
n∑
i=1

∫
p∈Ωi

(p − pi )
TT (p − pi ) dp, (7)

where Ωi is the Voronoi region for pi clipped by the given shape
boundary ∂Ω. There are two subroutines of the relaxation: Lloyd
method and LBFGS optimization. In Lloyd subroutine, the particle
is moved to the centroid of its affiliated cell in each iteration. After
each iteration, particles tend to be distributed in a more regular
formwhile maintaining the random property of blue noise sampling.
However, the LBFGS method has a much faster convergence speed
compared to the Lloyd method. The target problem of Limited-
memory variant of Broyden-Fltcher-Goldfarb-Shanno (LBFGS)
method as described in [Nocedal and Wright 2006] is to minimize
the differentiable scalar function 7 and get each pi . We use limited
steps of LBFGS iterations to refine particle distributions in those
scenarios which regular patterns are more appreciated.

Generally, when modeling complex tissue structures, the Lloyd
method can better depict the overall randomness while following
underlying patterns. LBFGS routine would be applied if the input
patterns need to be strictly followed. Fig. 2b shows the anisotropic
particle distribution generated based on our framework.

5.2 Kernel Variance
As discussed, besides {pi }ni=1 , the level surface is determined by
{ki }

n
i=1 andC . Essentially, these two sets of variables are correlated.

Specifically, while keeping one of {ki }
n
i=1 and C unchanged,

adjusting the other can change the pore size. Also for this reason, the
initial value of C can be chosen at will. To obtain more controlling
capabilities, we set {ki }ni=1 as the variables and C as the parameter
(C = 1 in our experiments). After the value of C is fixed, {pi }ni=1

Figure 6: Illustrations on the effectiveness of the parameter
η. Larger η indicates the larger influence of the kernel (the
light blue contour on the right.) (η1 > η2 > η3) In the case of
η3, pi -kernel swallows pj -kernel.

and {ki }
n
i=1 are independent variables, which together control the

porous structure.
To facilitate the optimization on the kernel variance, it is worth

to put efforts in initializing the variance value for ki . The kernel’s
scale needs to coincide with its local tensor and neighborhood.
For example, if several kernels are close to each other and one
kernel has a large scale, then the level surface would be dominated
by the large scale kernel and lose the porous feature. Therefore,
in order to ensure that the porous structure is organic and each
pore is guaranteed to be independently identified, we introduce a
dominance parameter η as the upper bound to locally determine each
ki value. Intuitively, η indicates the dominant range for each kernel
and thus reflects the local porosity around the kernel. Practically,
for a kernel at pi , we search the closest neighboring kernel point pj
in terms of the anisotropic distance metric defined by Ti as follows

pj = argmin
j,i

(
(
pj − pi

)T
Ti

(
pj − pi

)
). (8)

Then we solve ki for the kernel pi by

GA
i (pj ) =

1
(
√
2πξki )3

e
−
(pj −pi )

T
Ti (pj −pi )

2k2i = ηC . (9)

The dominance parameter η is represented by the standard
deviations in the normal distribution. Empirically, we set η = 2σ ,
which means the probability that the values larger than 2 standard
deviations away from the mean for the normal distribution, i.e.
η = 4.55%.

Fig. 6 illustrates the effectiveness of the η values. If η is too large,
the neighboring pore might be “swallowed”. If η is too small, it
shrinks the design space.

Fig. 7 shows level surfaces of combined anisotropic 3D kernels
under different values of variance K in a unit cube.

5.3 MSC-based Connectivity Enforcement
To generate an open-cell porous structure, all pores and solid
materials must be interconnected. I.e., for both pore and solid part,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Kernels (n=250) are adaptively distributed in a unit
cube under the tensor field, defined by the position vector
for each sample point. From left to right, K increases and
the porosity ρ = 43.6%, 54.3%, 67.1%, 74.0%, respectively.

they form one single component. Level surfaces derived in the
preceding section have no guarantees on the full-connectivity. Thus,
we need additional treatment to enforce connectivity.

Generally, there are two ways to control the pore connectivity,
modulating the iso-surface value, or identifying neighboring pores
and making connectivity. The iso-surface method cannot adapt
to the complex local geometry due to the global influence of the
iso-value. The local connectivity enforcement strategy relies on
an efficient and effective way of exploring the local neighborhood.
Heuristics methods, like the minimum spanning tree (MST), can
hardly identify all local neighborhoods. The irregularly distributed
anisotropic pores make the problem even hard.

To this end, we employ the Morse-Smale Complex (MSC) for
identifying the local neighborhood, which has proven to be a simple
and effective solution, without the pain of parameter tweaking.
Then we enforce the full connectivity with the guidance from
MSC, constructing connections between pores rationally and
automatically.

5.3.1 MSC computation. We consider Equation 5 as the Morse
function defined over the bounded volumetric space, and follow
the method in [Gyulassy et al. 2007] for MSC computation. An
MSC in a 3-manifold contains four types of critical points of the
function, called minimum, 1-saddle, 2-saddle, and maximum. The
complex decomposes the space into monotonic regions, which can
be regarded as an overlay of ascending and descending manifolds.

Maxima in the MSC naturally coincide with the kernel positions.
We identify the 2-saddles and trace the integral lines between two
maxima crossing a 2-saddle point. If there is an integral path be-
tween two maxima, it indicates that the two corresponding kernels
are topological neighbors. Similarly, the solid part contains minima.
Two minima are topological neighbors if they are connected by an
integral path crossing a 1-saddle point. Therefore, the MSC result
coincides with the existing connections of kernels. Fig. 8(a) and (b)
display the MSC results in ascending and descending manifolds
respectively, for 40 kernels in the uniform and isotropic tensor field,
where minimum, 1-saddle, 2-saddle and maximum are represented
by blue, yellow, green and red dots, respectively.

(a) (b)

(c) (d) (e) (f)

Figure 8: MSC structures for 40 kernels in a uniform
isotropic tensor field, consisting of maxima (red) and 2-
saddles (green) in (a), minima (blue) and 1-saddles (yellow)
in (b). Tunnel construction in pores (c) and its related solid
(d). Tunnel construction in solid (f) and its related pores (e).

Figure 9: Illustration on constructing connections between
two kernels.

5.3.2 Connection construction. With the global neighboring in-
formation from MSC, we cast the full connectivity enforcement
problem into constructing extra connections between two neigh-
bors. I.e., we create a “tunnel” between two pores if they are not
connected and their corresponding kernels are neighbors in MSC.

To smoothly blend the two pores, we construct the tunnel in the
form of fat curves [Mestetskii 2000]. A fat curve is a curve having a
width; it is the trace left by a moving circle of a variable radius in 2D.
We build a parametric function on the radius to control the tunnel
shape, using the Bernstein basis polynomials of degree n = 4,

R(t) =
n∑
i=0

Bi,n (t)ri , 0 ≤ t ≤ 1,

where Bi,n (t) =
(n
i
)
t i (1− t)n−i , i = 0, . . . ,n, and ri is the control

point in term of radius of a sphere in 3D.
We reconstruct the exterior envelope of the family of spheres

defined by R(t). As illustrated in Fig. 9, for two kernels, we sample
five control points uniformly on the line segment connecting the
kernel centers, and assign the radius on each control point. In
practice, we set the radius for the two endpoints as the radius of
the inscribed sphere of the corresponding pore. Then the radius
on the middle, i.e., the minimal radius, is set according to the
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fabrication and application constraints to ensure the printability and
conductivity. For example, the minimal radius value is determined
by the pore size, usually given by users.

For combining fat curves and the combined Gaussian function,
we create a combined function in the voxel space to represent fat
curves. The function values at the surface of the fat curves are C
so that we can carve out the curves with width controlled via the
Bernstein basis polynomials. After this step, the selection of the
final combined function value is to choose the maximum value of
Function 5 and the combined function for fat curves. In this way,
it can be ensured that both pores and connection structures are
successfully expressed at the same time.

We also rely on the guidance of MSC to guarantee the connectiv-
ity of the solid parts. For the inner isolated solid parts, we generate
tunnels to its neighboring minima in different solid parts.

Once the additional fat curves are settled, we use the combined
function in Equation 5 to represent them. I.e., the function values at
the surface of the fat curves are set as C such that the tunnels can
be reconstructed simultaneously with the porous structures. Fig. 8
shows the tunnel construction results for pores (c-d) and solids
(e-f), respectively.

We note that the fat curve is generated in terms of Euclidean
distance to minimize the modulations on the porous structure.
Moreover, although rarely happens, it is theoretically possible that
the fat arcs connecting pores interact with those connecting solids.
In this case, we keep the solid arc as long as the pore arc is redundant
to that pore.

6 APPLICATIONS AND RESULTS
The porous structure is defined as S(P ,K), driven by two sets of
variables (P ,K), where P = (pi )

n
i=1 indicates the distribution of

the transformed Gaussian kernels, n is the number of kernels, pi
represents the position for each kernel; and K = (ki )

n
i=1, ki ∈ R+

controls the width of the kernel. To demonstrate the capabilities of
variables (P ,K), we plot the relationships between the variables and
porosity, surface area, respectively. For the sake of simplicity, we
take a constant, isotropic tensor field within a unit cube as the input,
and generate the porous structures varying in the number of kernels
and the uniform width for all kernels. We compute the porosity
and surface area for each porous structure and plot the modeling
space, shown in Fig. 10. The porosity is of positive correlation with
K and n, when fixing the other set of variables. The relationship
between the surface area and n is positive with a fixed K . The
porosity of the structures with the maximal surface area is around
50%. We note that the MSC arcs do not play into the optimization
framework. Whenever the optimization is done, we check and
enforce the connectivity. In order to explore the potential of our
organic porous structure modeling framework in various fields,
we tried a variety of applications and optimization problems with
different objectives.

6.1 Porosity and Cell Size Control
In applications such as the implant design, there are constraints
on the target porosity and cell size. This can be solved as a search
problem from (P ,K) in the modeling framework. The porosity in
this section refers to the ratio of the volume of the model entity to
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Figure 10: Illustrations on the modeling spaces of the
porosity and surface area in the cube. Sample models
are with 70% porosity and with the maximized surface
area in two spaces respectively. Numbers of kernels are
200, 300, 400, 500 from left to right.

the total volume. For printability considerations, users are more
concerned about the minimum size of the pores in the model. So we
define the cell size as the length of the shortest axis in an ellipsoidal
pore.

Suppose the cell size isγ . Then for the i-th kernel we first find the
direction vector of the shortest axis of the local tensor denoted by
xi and then solve ki such that GA

i (pi +
γ
2 xi ) = C . Since the kernel

number n has a positive correlation with porosity when fixing K ,
we can obtain the target porosity by a linear search of n.

Fig. 11 lists some resulted porous structures with the target
porosity and cell size in a designed tensor field.

6.2 User Design
We offer an easy-to-use interface for users to design porous
structures in shapes with given tensor fields. We represent the
porous structures by three parameters, density(n), porosity(ρ), and
shape of pores. Once users provide the parameter values, the porous
structure can be automatically generated.

The modeling space is described by three axes, density of pores,
porosity, and shape of pores. Density is controlled by P , i.e., the
number of kernels. Specific porosity is achieved by K , as explained
in Section 6.1. The shape of pores is open to users for creative design
as well.

For a given shape, the tensor field can be predesigned by
interactive tools like [Palacios et al. 2017]. Then we use the
directions of the tensor field and permit users to adjust the shape
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Figure 11: Different porous geometries with the same
porosity under the tensor field as in Fig. 2. The porosity is
50% and 80% for the upper and lower row, respectively. The
cell size increases from left to right.

of pores by selecting three eigenvalues of the tensor. Fig. 12 shows
an example of varying parameters for the vase model, where we
only show two dimensions of the design space, density, and shape
of pores, as influences of porosity and density have been elaborated
above. Fig. 13 shows some results. The pore shape of the bunny
model is isotropic. The pore shape in the other two figures is
the most anisotropic in the space of Fig. 12. The tensor fields for
the double-torus and vase model are designed by [Palacios et al.
2017]. The tensor field guides the overall trend of anisotropic pore
arrangement.

6.3 Surface Area Optimization
The surface area is a critical issue for porous media. The large
area benefits several physical properties like heat dissipation,
permeability, and tissue ingrowth. From the modeling space, the
larger number of kernels there is, the larger surface area we will
achieve. While, the kernel number is bounded by the fabrication
capability like the printing feature size.We propose the optimization
that maximizes the surface area of the current porous structure
by tuning (P ,K) without changing the number of kernels. The
formulation is as follows,

argmax
P,K

AS(P ,K), (10)

where AS(P ,K) represents the area of the porous structure S.
We employ a gradient descent optimization to maximize the area,
in which the approximated gradient of P and K is computed by
numerical differentiation. Fig. 14 shows an example of the optimized
porous structure on its surface area. The change of surface area
and porosity along with iterations is plotted. We remark that the
surface area optimization is an exception of the flow in Fig 3, as the
surface reconstruction is needed for each iteration.

6.4 Strength Optimization
Given the 3D shape and its working conditions including external
forces and boundary conditions, we follow the same goal as in the
state-of-the-art structural optimization frameworks [Lu et al. 2014;
Wang et al. 2013], to design the inner structures and maximize the

Figure 12: An example of the design of the porous structure
in the vase model, whose tensor field is from [Palacios
et al. 2017]. The horizontal axis shows the increasing of the
density value from n = 250 to n = 920. The vertical axis lists
three settings for the shapes of pores. The porosity is 50% for
all.

strength-to-weight ratio. The objective function can be formulated
into achieving the lightest interior that sustains given forces, via
variables (P ,K).

However, in order to ensure the organic properties of the
porous structure, we control the pores to be fully expressed during
optimization. Therefore, we use the η introduced in Section ref-
sub:levelSurface to calculate the upper bound of K to initialize the
optimization process.

We assume single uniform isotropic materials and Hooke’s linear
elastic model in the FEM computation, where we regard a voxel as
the primary element. For each element, we have a Cauchy stress
tensor from the FEM analysis.

Denote VS(P ,K) as the volume function of the structure S

determined by (P ,K). We formulate the search for the lightest
interior with the target porosity ρ0 into a constrained optimization,

argmin
P,K

VS(P ,K) s .t . SM(S, F ) < χ && ρ < ρ0,

where SM(S, F ) is the stress map computed by applying the forces
F on S. χ is the yielding point of a specific material (by default
χ = 2.5e7N /m2 for plastic).

Starting from a dense distribution of kernels, we employ a
stochastic gradient descent (SGD) strategy, to iteratively relieve
the stress. It includes two loops of iterations. For each voxel, we
compute its dominating Gaussian kernel, under which it has the
largest Gaussian function value. In the inner loop, we traverse the
voxel elements. If it is weak, i.e., the vonMises stress value is beyond
the yielding point, then its dominating kernel is marked. After the
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Figure 13: Results produced using different tensor field
specified by users. Left: pores; Right: porous structures.
Bunny: n = 1650, ρ = 65%; Double-torus: n = 1000, ρ = 50%;
Vase: n = 1650, ρ = 48%.
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Figure 14: Optimizations on the surface area for the cube
with edge 2cm. The surface area before optimization is 39cm2

(b), and 56cm2 after optimization (d), gaining 44%. Plots of the
surface area (blue curve) and porosity (orange curve) along
with optimization iterations in (e).

whole traversal, all marked Gaussian kernels decrease their width
with one step size. The step size is set as the 0.25kmin, where kmin
is the minimal value of all marked K . In the outer loop, we merge

Figure 15: Optimization iterations for the femur model, targeting for both

porous structure and mechanical properties.

each very small kernel that is still associated with weak elements
to its closest neighbor to gain materials and thus further relieve the
stress. The stopping criteria are that no weak element is left, or the
model becomes fully solid. Fig. 15 shows iterations of the porous
structures in the femur model, with ρ0 = 70%.

6.5 Comparisons
We admit that our porous models do not outperform in terms of the
strength-to-weight ratio comparing with the results from standard
topology optimization methods. Fig. 16 shows the comparison
among the result with a total volume constraint [Wu et al. 2016a],
with local volume constraints [Wu et al. 2017] and ours. The
three models are optimized with the same material properties
and boundary conditions. Our result need a bit more materials to
gain the same strength due to the Gaussian kernel representations.
However, the classic topology optimization method has finer
grain in deciding the occupancy of the materials, thus driving the
porous into beam-like structures. We also compare a cubic sample
from [Wu et al. 2017] and one from a human femur CT scans with
ours in Fig. 17. It can be seen that our sample is visually similar to
the natural bone sample, as our organic porous structures are more
like cellular structures.

Since our porous structures have guaranteed full connectivity
and optimized surface area, it would greatly benefit the design of
biological implants. Requirements for the metallic implants include
that, the mass is similar to that of the natural bone, and it allows
existing biologic tissue to grow right into it.

Based on the consultation with medical doctors, for the vertebra,
the porosity is around 60%, the pore size is around 0.5mm, and
the tissue grows typically in 5mm. Thus, we design the tensor
field along the main compressive direction with the magnitudes
gradually decrease from the shape boundary to the interior. (See
Fig. 18.)
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(a) (b) (c)

Figure 16: Comparison between the structures generated by
topology optimization with a total volume constraint [Wu
et al. 2016a] (a), and with local volume constraints [Wu et al.
2017] (b), and our method with the porosity constraints (c).
The volume ratio is 45%, 44%, and 50% from left to right. Our
yielding value in (c) is the samewith (b), i.e., χ = 1.03e7N /m2.

(a) (b) (c)

Figure 17: Visual comparison of a cubic sample from [Wu
et al. 2017](a), a real bone sample from CT scans (Image
courtesy of R. Müller [Müller and Rüegsegger 1997])(b), and
our result (c).

Figure 18: The porous vertebra model and its cross-section.
The porosity is 60%.

6.6 Computational Cost and Fabrications
We tested our algorithm on a PC with a 4.01GHZ Core CPU, 16.0GB
RAM, running Windows 10. The volumetric shape is discretized
in voxels in the whole framework. In the implementations, the
sampling rate is 1003 within the bounding box.

The modeling framework and listed optimization are of computa-
tional efficiency except for the surface area optimization. During the
strength optimization on (P ,K), which is described in Section 6.4,
only the combined function value is updated for each voxel and no
need for the surface reconstruction. In the strength optimization
process, FEM analysis is themost time-consuming part, which needs

Figure 19: Some physical printouts. The first row is printed
by an FDMprinter. From left to right, themodel from Fig. 10
(ρ = 65%), Fig. 2 (ρ = 60%, 80%), and Fig. 7 (ρ = 75%). The second
row is printed by an SLS printer. Themodels are fromFig. 13.

3-5 minutes for 60K voxels. The number of iterations is influenced
by the initial value of K and step size for decreasing each kernel
size. It takes 20 to 30 iterations usually in our experiments.

Since the resulted porous structures are of both pore and solid
connectivity, they can be fabricated by standard 3D printing
techniques, such as FDM, SLS, SLM, and EBM, etc. Fig. 19 lists the
3D printed models using PLA-plastic material on an FDM printer
or using nylon material on an SLS printer.

7 DISCUSSION, LIMITATIONS AND FUTURE
WORK

Our paper provides a unified framework for modeling anisotropic,
non-uniform, open-cell porous structures with organic pore shapes,
considering both magnitude and directions of the given tensor field.
The framework offers capabilities to control porous structures’
properties by porosity, cell size, and cell shapes. We propose an
MSC-based algorithm for ensuring the connections between both
pores and solid components, via the guidance from the topology
level, which we believe is the first of such attempt.

Gaussian kernels. Gaussian kernels naturally integrate the tensor
matrix for each sample point, such that a global implicit function
is defined in the volume. The level surface extracted from the
global function is like the cellular structure. Such organic structures
possess friendly properties like having sizeable internal surface
areas, robustness for digital fabrication, etc.; however, they are
not optimal concerning mechanical properties, compared with fine-
grained topological optimization. It is worth to explore the potential
for coordinating the oriented Gaussian kernels with the topology
optimization framework, to achieve both tensor field awareness
and optimal material occupancy.

MSC connections. MSCs naturally identify the local neighbor-
hood for both pores and solid components through the ascending
and descending manifolds. We remark that there might be alterna-
tives to the fat curves for constructing the connections.
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Material anisotropy. We mention that our anisotropy is on the
structure level, not the material level. The material is homogeneous
in our experiments. Our framework shares a similar philosophy
of the inverse homogenization approach. Given a tensor field
representing the physical properties, our method may generate
the corresponding geometric structures. In many cases, to derive
the relationship between target physical properties and tensor fields
is itself a challenging problem.

Strength optimization. Optimization of the porous structures is
a multiple-objective problem. Regarding the strength-to-weight
criterion, our porous structure modeled based on the anisotropic
Gaussian function is not the most efficient solution, as more
materials are used to keep the cellular porosity comparing to
topology optimization. Besides, voxel-based FE-analysis is not the
best option in terms of accuracy and efficiency. We would like to
investigate the multi-resolution finite element method in the future.

Future work. Aside from addressing limitations and possible
extensions mentioned above, we expect to integrate the support-
free constraints into our framework. We would like to adapt
our framework to more applications, considering more physical
properties or functionalities, like thermal conductivity, permeability,
elasticity, etc. We also have an interest in investigating the rela-
tionships or mappings between physical properties and geometric
structures.
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