
Computer-Aided Design 127 (2020) 102853

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Fabricable dihedral Escher tessellations
Xiaokang Liu a, Lin Lu a,∗, Andrei Sharf b, Xin Yan a, Dani Lischinski c, Changhe Tu a

a School of Computer Science and Technology, Shandong University, Qingdao, China
b Ben-Gurion University of the Negev, Israel
c Hebrew University of Jerusalem, Israel

a r t i c l e i n f o

Article history:
Received 27 March 2020
Accepted 17 April 2020

Keywords:
Shape modeling
Dihedral tessellation
Digital fabrication

a b s t r a c t

The growing popularity of 3D digital manufacturing has spurred a high demand for accessible methods
for designing and fabricating customized 3D objects. In this paper, we present a novel approach to
model and fabricate Escher dual-shape tilings from user-defined shapes. In a nutshell, Escher’s dual
shape tiling method smoothly transforms one tile pattern into another, generating a dual perception
effect of the two shapes. We adapt Escher’s dual shape tiling and perception effect to 3D manufacturing.
Thus, our method takes two user-defined shapes and computes their dual shape tiling. A key feature of
our method is that the dual shape patterns utilize solid and hollow spaces simultaneously. Specifically,
our technique maps one shape to solid structure, while the second shape is mapped to hollow
background, optimizing both spaces and bringing higher utilization of materials. To conform with
3D printability requirements, our tiling computation accounts for connectivity and strength as well
as dense packing for efficiency. Our dual shape tiling algorithm gives rise to novel manufacturing
applications such as ornamental texturing with dual perception Escher patterns, decorative window
blinds, flexible tiling patterns, and shade effects.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

3D manufacturing is rapidly progressing towards mass usage,
with goals to enable non-professionals to easily manipulate and
customize their 3D models into creative and beautiful products.
Therefore, in recent years there has been significant research
dedicated to providing computational tools for a wide range
of shape manipulation and customization tasks for 3D print-
ing. Among others, researchers have introduced novel techniques
and applications such as balancing the manufactured shapes [1],
creating spinnable objects [2], turning trees into printable mod-
els [3], stenciling decorative patterns [4], designing shapes as
musical wind instruments [5], lampshades with projecting light
control [6], models generating playful shadows [7], embedding
QR codes [8] and helping users maintain printability during mod-
ifications [9].

In this paper, we study the modeling and fabrication of cus-
tomized decorative patterns obtained by computing tilings of
two shapes that coexist together. Dual shape tilings are mostly
well-known from Escher’s works, as a form of graphical art offer-
ing a dual perception mechanism. Specifically, the foreground–
background assignment of neighboring shapes can reverse
depending on the viewer’s focal attention. Escher intentionally
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employed dual figure-ground arrangements to reveal the ambi-
guities of visual perception and categorization. Their simplicity
yet exciting perceptual effects, turned Escher’s dual tiles into
ubiquitous art and design structures [10].

In our work, we adapt Escher’s dual tiles for artistic and
decorative 3D printing purposes. Thus, we demonstrate their
application to 3D manufacturing of decorative textured shapes.
Our 3D tiles can be joined by hinges and connectors to form
articulated Escher tilings. We utilize this dynamic pattern and
apply it to create window blinds and dynamic structures that can
be fabricated using a home printer. To the best of our knowl-
edge, this is the first attempt to apply Escher’s dual tiles to 3D
manufacturing.

Decorative and artistic tools have been previously introduced
in the context of 3D manufacturing. In general, these works, ma-
nipulate the printable 3D shape in search for novel applications
to enrich 3D manufacturing. Nevertheless, the majority of these
methods design artistic effects by focusing on the solid shape [11]
or on the hollow space that emerges from the printed solid
structure [6,7]. Our work, however, utilizes both solid and hol-
low spaces simultaneously. The method computes a dual shape
tiling where the first shape is defined by the solid printed parts
while the second shape emerges from the contour of the com-
plementary background. The utilization of both solid and hollow
spaces on the given surface introduces novel artistic and aesthetic
effects as well as having the advantage of simplifying the overall
structure and saving printing material.
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The dual shape tiling is computed by optimizing the solid
shape together with its complementary background while pre-
serving visual shape properties such as contour and geometric
features for each of the two shapes. To account for 3D printability,
solid tiles, as well as complementary hollow tiles, should adhere
to strength requirements. In our case, solid tiles should be par-
tially connected using connectors wider than the minimum print-
ing accuracy, while hollow parts should remain unconnected.
We denote this condition as mutual surroundings constraint. We
observe that this problem can be reduced to a dihedral tes-
sellation problem in the plane under the constraint of mutual
encirclement.

2. Related work

Our related work discussion is divided into surveying Escher
tilings computation, manufacturing of tiling patterns and mosaics,
and packing.

2.1. Escher tilings

A tiling of the plane is a collection of shapes that cover the
plane without any gaps or overlaps. Dual tiling patterns a.k.a.
‘‘figure-ground’’ patterns may be observed as early as the nine-
teenth century in drawings of Koloman Moser. Most famous is
M.C. Escher work in the first half of the twentieth century, which
studied the regular division of the plane into tiles. In particular, he
produced a large collection of ingenious tessellations [10], made
from motifs resembling people, animals, and fantasy creatures.
Following, Dress [12] has introduced a specific class of dihedral
Escher tilings called ‘‘Heaven and Hell patterns’’ and Grünbaum
and Shephard [13] have defined the mathematics behind tiling
and geometric patterns.

‘‘Escherization’’ was initially termed by Kaplan and Salesin [14]
as a problem in computer graphics of tiling a plane with a given
closed figure. The method modifies the given figure to conform
to an isohedral tiling pattern. In a follow-up [15], authors extend
their method to admit two shapes tilings using dihedral tiling
patterns.

Yen and Séquin [16] developed a method to compute Escher
Spheres, i.e., Escher tiles that are assembled on a sphere do-
main through a tiling deformation. Similar to us, Howison and
Séquin [17] adapt Escher tiles for 3D manufacturing purposes.
In their work, they investigate 2.5D isohedral tilings through
extrusion and manual mesh editing. They also show 3D isohe-
dral tilings using predefined latices. In contrast, our technique
is automatic and produces Escher dual-shape tilings that are 3D
printable, allowing novel effects and applications.

Dual shape Escher tilings were explored [18] to generate a
gradual transformation between the two shapes and obtain the
dual perception effect. Escherization tiling has been formulated
as a maximum eigenvalue problem to allow more intricate and
complex tile shapes [19]. The shape optimization is also explored
using interactive genetic algorithms [20] to find a shape for
isohedral Escher tilings. In common to these works is finding a
minimal modification for generating feasible single shape tilling
patterns.

Recently Lin et al. [21] proposed a framework integrating
matching and warping to generate Escher-like tiles transforma-
tions for dual shape perception. Our work has similar components
addressing the dual shape tiling; however, ours is 3D fabrica-
tion oriented accounting for specific printability and application
requirements.

2.2. Fabricable tilings

With the growing popularity of 3D digital manufacturing, re-
searchers have paid much attention to the problem of

generating geometric patterns to decorate surfaces with the pur-
pose of customization and enhancement of 3D printing.

Ornaments were applied to fabricated 3D objects by synthe-
sizing 1D patterns along curves with restricted topology [22].
Similarly, synthesized printable 3D patterns were demonstrated
by modifying texture synthesis to conform with a base sur-
face [23]. Martinez et al. [24] synthesized flat shapes for laser cut-
ting manufacturing and Chen et al. [25] synthesized filigree-like
structures along surfaces. Their approach synthesizes a set of base
elements along a target surface by preserving their appearance
and allowing overlaps.

Zehnder et al. [26] introduced a method for interactive design
with curve networks as ornamental priors onto 3D surfaces. In
their work, the user positions curve elements onto a surface,
which are then deformed using elastic rods simulation. Schu-
macher et al. [4] introduced a method to allow artistic cutouts
into shell objects by removing material while accounting for
printability and stability. Chen et al. [11] further proposed a
method for synthesizing flat tile patterns on a base surface, such
that the planar tiles can be easily printed and assembled after-
wards. Recently Schüller et al. [27] introduced a novel fabricable-
friendly tiling called ‘‘zippable’’. In their work, they represent
a 3D model with a single, long ribbon with a zipper around
its boundary. In this approach, some distortion may occur to
areas on the model. These works are concerned with mapping
and printing 3D tilings onto arbitrary surfaces. Nevertheless, our
technique involves 2D and 2.5D tilings in the plane, thus avoiding
3D mapping problems. Our method focuses on dual-shape tilings
and the geometric relations between the solid and hollow parts
in the manufactured patterns and their applications.

2.3. Mosaics tiles and packing

Mosaics are a form of art in which a large image is formed
by placing together a collection of small images tiles. Photomo-
saics [28] are a collection of small images arranged in a rectan-
gular grid in such a way that when they are viewed together
from a distance, they suggest a larger image. Simulated Decora-
tive Mosaic [29] approaches the problem of aligning square tiles
with varying orientations to preserve input image edges while
maximizing the area covered by the colored tiles.

Related to mosaics, tiling is the packing problem that has
been extensively studied in computational geometry with appli-
cation to a broad spectrum of layout problems, such as for cloth,
leather, and glass. Since the packing problem is NP-hard [30],
numerous heuristics have been developed. Kim and Pellacini [31]
obtain a tighter mosaic packing by minimizing an energy function
for a new kind of mosaics called Jigsaw Image Mosaic (JIM).
To obtain the closest mosaic arrangement with no overlapping,
Hu et al. [32] sample the surface according to the curvature
and re-divide it using the chordal axis transform (CAT) obtaining
optimal positions for the tiles elements. Kwan et al. [33] proposed
a novel shape descriptor for computing the filling collage pattern.
The major difference with our problem is that no adjacency
constraints are considered in the above methods.

3. Overview

Given two user-defined shapes S1, S2, our algorithm computes
an optimized dihedral tiling following four tiling rules while
optimizing the shapes to account for tiling adjacency, printability
requirements, and preserve their visual appearance.

Since the compatibility between S1 and S2 has a significant
impact on the quality of the final result T1, T2, it is more con-
venient for non-professional users to manually specify S1 and let
the system suggest a set of best candidates for S2 from a database.
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Fig. 1. Given a target shape and its quadrilateral polygon (a), we compute a rule-based four tiles pattern (b) and find the best matching shape to the enclosed
tile from a database (c). We simultaneously morph the two shapes (d) such that they couple together, while preserving their visual appearance (d), resulting in a
fabricable dual Escher tessellation (e) that can be mapped on a 3D object and efficiently manufactured (f).

Fig. 2. Escher’s artworks using Isohedral (a) and dihedral (b) tilings. Tiling
polygons are marked by dash lines.

Both options are offered by our design framework and they share
the same methodology.

Starting with one of the shapes S1, we compute a quadrilateral
polygon from its sample points. To compute a tiling of the plane
from the initial quadrilateral, we define four tiling rules that
satisfy the mutual surroundings constraints.

Next, we use the enclosed space M between the four tile
shapes of S1 to define the complementary (hollow) dual shape
pattern and match S2 to it. Then we morph this tiling configu-
ration into the transformed shapes T1, T2 such that they couple
together and conform to printability requirements while preserv-
ing the visual appearance of the original shapes S1, S2 as much as
possible.

Our algorithm exhaustively searches for the best tiling pattern
while simultaneously optimizing the two shapes to minimize
their distortion and achieve an optimal tiling. The dual shape
tiling can be applied as texture on a 3D surface to follow a 3D
printing process. The algorithm pipeline is illustrated in Fig. 1.

4. Technical details

4.1. Dihedral tiling generation

A tiling of the plane is a collection of tiles that cover the plane
without any gaps or overlaps. A tiling vertex is a point where
three or more tiles meet. A tiling is dihedral if the tiling consists
of two different tile shapes that are adjacent in the tiling (Fig. 2).
We refer to [15] for further detailed definitions of dihedral tilings.

Our technique generates a two shape tiling where the first
shape is contained in the foreground solid tile while the second
shape is contained in the background similar to [21].

Starting with one of the shapes, we compute its corresponding
quadrilateral tiling polygon by randomly selecting four points
from the candidate points composed of feature points according
to local curvature and uniformly sampling points between feature

points. Next, we define four tiling rules for placing the initial
quadrilateral tiling polygon and generate a dihedral tiling pattern
(see Fig. 3). Following these rules, the tiling pattern can be ex-
tended to the whole plane through repeated replications of the
initial tile.

Essentially, these rules define a replication schemes of the
initial tiling polygon into a grid-like four tile arrangement. The
rules guarantee that the four tiles are touching each other, en-
closing an isolated surface in their interior, which defines the dual
background tile.

Translation rule. Translate P1 (Pi is the ith tile) along the
diagonal vector

−→
13 (−→pq is the vector from vertex #p to #q) to

obtain P2. Translate P1 and P2 along the diagonal vector
−→
24 to

obtain P3 and P4 respectively. (Fig. 3a).
Flipping rule I. Translate P1 along the diagonal vector

−→
24 to

obtain P3. Flip P1 and P3, and translate along the diagonal vector
−→
13 to obtain P2 and P4 respectively. (Fig. 3b).

Flipping rule II. Translate P1 along the diagonal vector
−→
13 to

obtain P3. Flip P1 and P3, and translate along the diagonal vector
−→
24 to obtain P2 and P4 respectively. (Fig. 3c).

Rotation rule. Rotate P1 around its tiling vertex #1 180 to
obtain P2. Rotate P2 around its tiling vertex #2 180 to obtain P3.
Rotate P3 around its tiling vertex #3 180 to obtain P4. This rule is
applicable only for parallelograms, otherwise the four elements
cannot enclose a dual tile in their interior (Fig. 3d).

The above rules are a subset selection from the twelve ‘‘heaven
and hell’’ tiling rules in [15]. Specifically, the translation rule
corresponds to (IH01;1,4), flipping rules correspond to (IH03;2,5)
and rotation rule corresponds to (IH47;2 1

2 ,4
1
2 ). Our motivation

behind this selection of rules is that they generate nicely shaped
quad tiles. Thus, they allow fitting shapes in their interior with
minimal distortion.

Note that collisions between shapes may still occur when
fitted to the quad tiles. In such cases, we avoid the specific tiling
rule and keep only the valid tiling schemes.

4.2. Shape matching and morphing

With the above tiling rules, we search for the best matching
tiling scheme followed by morphing the shapes to fit these tiles.
Given a polygonal shape S1, we uniformly sample its contour and
compute its features at high curvature points. This yields a set of
candidate tiling vertices.

We perform an exhaustive search, selecting each time four or-
dered points from the candidate set as a tiling polygon, generating
quadrilateral tiling patterns according to our rules and computing
a shape matching energy function. Our technique commences
once a sufficient tiling has been found in terms of shape matching
quality as measured by the energy function.
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Fig. 3. Dihedral tiling rules: translation rule (a), flipping rule I (b), flipping rule II (c) and rotation rule (d). Upper row shows tiling polygons (flipped ones are in
yellow) and lower row is the resulting tiling of the swan shape. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. Morphing. Starting from S1 and M , the optimized shapes T1 and T2 are
obtained by morphing between M and S2 .

Fig. 5. Alignment of M and S2 based on shape correspondence (a); Frame
polygons of M and S2 [34] (b, c, in red); Morphing result T2 (d). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Shape matching. Matching S1 to a tile is straightforward
as foreground quadrilaterals tiles are created by sampling four
points in S1. Therefore S1 and its tile simply match at those four
points.

We denote the enclosed space between the four tiled shapes
(S1) by M . The contour of M is extracted by connecting the tiling
vertices in the pattern. For each tiling rule, we have a different
order to preserve a consistent counterclockwise contour order
(see Fig. 3).

Given the contour of M , we compute a best matching of S2
to M . If a database is given, our method retrieves a subset of top
candidates according to their matching energy to M , and the user
selects the most adequate shape as S2.

To calculate the matching between two contours, we use
the triangle-area representation (TAR) and measure with it the

similarity between matching points on the shapes contours [35].
This representation is effective in capturing both local and global
characteristics of a shape, invariant to translation, rotation, and
scaling, and robust against noise and moderate amounts of ar-
ticulation. In the matching stage, we employ a dynamic space
warping (DSW) algorithm to search efficiently for the optimal
(least cost) correspondence between the points of two shapes.

To accelerate the whole shape retrieval process, we introduce
a fast-reject filtering stage to avoid the costly similarity compu-
tation for too distinct shapes in the database. We use a 2D shape
compactness — isoperimetric quotient signature, as our fast reject
filter. It is defined as the ratio between the shape area and that
of the circle having the same perimeter.

Shape morphing. Starting from the initial tiling configuration
defined by the four tiles of S1 and the enclosed shape M , our aim
is to find an optimal transformation of S1 and M into transformed
shapes T1 and T2 with the objectives that they are as close as
possible to S1 and S2 thus preserving their visual appearance (see
Fig. 4).

We formulate the objective function to measure the visual
quality of the transformed shapes T1 and T2 as follows:

Esim(T1, T2) = λF (T1, S1) + (1 − λ)F (T2, S2) (1)

where λ allows weighing each shape deformation independently.
In our experiments λ = 0.5, however if required could give higher
priority to S1 over S2 thus increasing λ. F measures the degree of
deformation from S to T and is defined as:

F (T , S) = ϕ(T , S) + Insec(T , S) − ω′(T , S) (2)

where ω(T , S) is a shape similarity function based on TAR descrip-
tors [35]. ϕ(T , S) is the area function defined as:

ϕ(T , S) = (Area(T ∪ S) − Area(T ∩ S))/Area(T ∪ S), (3)

Insec(T , S) is a score that penalizes self-intersections in T or S
with a high score in the range [1 − 2].

To minimize Esim(λ, T1, T2) and maintain the coupling of T1 and
T2, we perform shape morphing between M and S2. The shape T1
is defined from the distortion of T2 (specifically the tiling points)
and the overall quadrilateral tiling pattern.

We employ the method of [34] to compute shape morphing,
which is a two-level hierarchical interpolation algorithm. First, M
and S2 should be aligned together based on the correspondence
obtained from the shape matching stage (Fig. 5a). We compute
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Fig. 6. Mesh difference. Input pattern contour overlayed on the mesh (a).
Boolean difference between a triangle and the input contour (b) and the resulting
constrained Delaunay triangulation remeshing the intersection region (c).

the frame polygons of M and S2 from the tiling vertices and fea-
ture points. Thus, we iteratively morph into intermediate shapes,
to obtain the optimized result of T1 and T2 (Fig. 5b–c).

Note that the four tiling vertices stay fixed through the mor-
phing process thus ensuring the connectivity of tiles in the final
tiling. This is essential for printability requirements in the 3D
manufacturing process.

4.3. 3D printable tilings

In the final step, we transfer our 2D dual tiling into a struc-
turally sound 3D texture structure. For given a 3D model, we
first compute its parametrization onto a 2D plane. Then, we
compute a boolean difference between our tiling pattern and
the two-dimensional triangular mesh. We generate the hollow
parts corresponding the secondary shape in the tiling and recon-
struct the surface. Finally we perform structural optimization to
conform to printability requirements and obtain the target model.

Mesh parametrization and boolean difference. To map the
input 3D mesh model onto a 2D parameter domain, we use
the as-rigid-as-possible parametrization approach [36] since it
preserves proportions of the tessellation structure and minimizes
distortions.

We then overlay the 2D tiling pattern onto the parameterized
mesh and compute the cutout difference between the surface
mesh and the tiling pattern contour. We remove these cutouts
and remesh the remaining surface mesh utilizing a constrained
Delaunay triangulation (Fig. 6).

In the original tiling scheme, tilings connect to each other
by tiling vertices that are not structurally stable for printability.
We enhance stability by dilating contours, thus thickening the
connectors between these contours. The conversion from points
to connectors transform the hollow pattern into isolated compo-
nents, which can be easily subtracted using the boolean difference
to obtain a planar tiling of the triangular mesh.

Note that during the parametrization of closed shapes, they
are cut into planar disk topologies yielding seams in the tiling
pattern along these cuts. The parametrization of high genus mod-
els requires multiple cuts. Our parametrization technique aims
at positioning these cuts in non-salient regions like the back or
bottom of the model.

3D printability and structural enhancement. We map back
the planar triangular mesh to three-dimensional space to obtain
a 3D dual-tile shell model M (i.e., a thick surface in 3D). Thus, M
is extruded by extruding each vertex along its normal direction
(both positive and negative) by a default offset defining the shell
thickness (in highly curved areas, self-intersections may occur
when extruding the 3D shell model). The initial solid model MS
is generated using Poisson surface reconstruction [37]. In all our
experiments, the initial thickness is set to 1.2 mm to satisfy
printing constraints.

To enhance the stability of the physical model, structural op-
timization is performed. First, we perform structural analysis via

Fig. 7. Structural optimization. Top row, tiling vertices are enlarged in width
for structural soundness. Bottom row shows iterations of local thickness
optimization and the resulting stress distributions on the bunny model.

Fig. 8. Given a dove shape (top left) as input, our system generates the top five
dihedral tiling results. The matched shapes from the dataset are also listed at
the top. The first result (top middle) takes the same shape as the dual.

finite element methods (FEM) on MS and obtain the von Mises
stress for each element. To simulate stress, we fix the bottom part
of the model and apply uniform pressure on the model. We use
tetrahedral element here and employ the commercial software
ABAQUS for stress analysis.

By default, we consider forces that are applied from all direc-
tions; however, specific strength requirements like pressing and
holding may be easily incorporated in our optimization. E.g., in
the bunny model in Fig. 7, we fix the bottom of the bunny and
perform a 1000 N downward force on its back.

We perform a two-step optimization scheme to increase
strength. First, we enforce connectivity between the weak part
and its solid neighborhood through increasing the area of connec-
tors. Next, we increase the thickness of the model for each weak
surface vertex. We iteratively solve the optimization problem
with the following objective function:

argminV(MS(R(x),D(v))) s.t. SF (MS,F) < χ (4)

where V(·) is the total volume of the foreground solid space, R(x)
is the solid neighborhood of each tiling vertex x, D(v) indicates
the thickness for each vertex v on the mesh surface, SF (MS,F) is
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Fig. 9. Various dual-shape tiling patterns generated by our system.

Fig. 10. Comparison between the results of [21] (upper row) and our results
(lower row). In our results, the turtles and rabbits are connected, respectively.

Fig. 11. A failure example. Left: two input shapes, dove (as in Fig. 8) and dog.
Middle: the resulted deformed patterns. Right: the tessellation result.

the stress field computed from foreground solid model MS under
the external forces F , and χ is the yielding value for the material
(χ = 20 MPa for PLA in our experiments).

During the optimization, we first locally dilate the contour of
the primary (solid) shapes in the weak areas to increase the con-
nection area of the tiling vertices by a step size, until reaching the
upper bound. The upper bound in connection area enlargement is
1% of the 3D shape’s diagonal length. Then we increase the local
thickness for the weak regions. We iteratively perform the two
structural optimization steps, as shown in Fig. 7.

5. Results and discussions

We implemented our method and tested it on an Intel R⃝

CoreTM i7-7700K CPU @ 3.6 GHz and 16 GB RAM. We have also
created a database of shapes to allow the user to retrieve and
select the best matching dual shapes for a user-defined primary
shape. Our dataset is based on the MPEG-7 dataset [38], which
we have enriched with additional images from the Internet. The
dataset consists of 500 shapes, each represented by its polygonal
contour.

Performance. Given one shape, our system suggests dual shapes
for which the tiling best preserves visual appearance such that the
users can select for further design (Fig. 8). This works better than
asking the user to predefine two input shapes as it might need
high artistic background.

Given a pair of shapes, it takes approximately 20 s to generate
a tiling pattern. If a choice of best matching dual shapes is
requested, shape retrieval for best matching candidates is a time-
consuming query and scales linearly with the database size. In
our experiments, querying our database of 500 shapes for a best
matching dual shape for a given primary shape takes 30 min using
the fast reject filtering. Fig. 9 lists some of the dihedral tiling
patterns generated by our system.

Our method focuses on the shape geometry (i.e., the shape
contour) as a means to preserve visual appearance. We compare
our method dual tiling visual quality with [21]. We show in Fig. 10
a gradual deformation (transmutation) to achieve the sky-and-
water pattern of [21]. The comparison shows that our method
better preserves the contour geometry and thus the shape visual
appearance and quality.

We note that given two arbitrary input shapes, the results may
be less meaningful due to large deformations in the simultaneous
optimization. Refer to Fig. 11. Thus, we recommend the users to
assign one shape as the input and trust the dataset to obtain a set
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Fig. 12. Applying our printable Escher dual-shape tilings onto the 3D kitten.

of reasonable results. We also remark that the given shape cannot
be a convex polygon.

3D Fabrication and Applications. We apply our dihedral tiling
to the generation of customized 3D shape textures that can be
3D printed. Fig. 12 shows several 3D models with our dual shape
textures.

Given the meaningful partitions of solid and hollow spaces, the
dual patterns produce interesting light and shadow effects, which
imply a great potential for designing customized lampshades.
Fig. 13 shows 3D models textured with our dual shape Escher
tiling. They are fabricated by an SLA-based printer and projected
with custom lights to demonstrate the solid and hollow dual
pattern effects. SLA or FDM based 3D printing for the decorative
3D models may require support structures. We did remove the

Table 1
Statistics of fabricated results (Fig. 13 from left to right). The size is represented
as (length, width, height). Row #Tiles lists the number of hollowing tiles for
each model.
Parameters Kitten#1 Kitten#2 Bunny Sphere

Size (cm) (8,12.2,7.5) (7,6.7,10.8) (10,8,10) (10,10,10)
Volume (cm3) 22.6 14.3 17.5 35
#Tiles 167 106 117 146

Fig. 14. Upper row: The swan and lily shapes are 3D printed in one piece,
separately. Both pieces can combine together with full cover of the space. Lower
row: The dual shapes are jointly fabricated by digital cutting and later separated
into two connected pieces (camel and dog).

support materials for the four models manually, which is a bit
tedious. Hence, we recommend dual-nozzle 3D printers with sol-
uble support material, or powder-based 3D printing techniques
such as SLS and Binder Jetting. Table 1 summarizes the statistics
for the fabricated results.

We can also relax the mutual surrounding constraints for each
tile, such that each element has connections with two neighbors
that belong to the same shape type. Thus, both patterns can
be fabricated in one connected piece, as shown in Fig. 14. This
significantly speeds up the printing process of the dual tiles and
allows for efficient utilization of the manufacturing process.

The interaction between the dual shapes and structures makes
ground for novel applications. We demonstrate further applica-
tions along this path by adding joints to the connectors of some
of the dual shapes. For example, given the swan-and-lily patterns,
we add one rotation hinge (Fig. 15) to horizontal lily tiles. This
allows the lily pattern to rotate with one degree of freedom
simulating the behavior of window blinds. Blocking and control

Fig. 13. 3D printed models textured by our dual-shape tiling. A light source emanates through the hollow tiles in the pattern.
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Fig. 15. Top: Two joints in our experiments. Left: Hinge joint; Right: Ball joint.
Bottom: 3D printed dual shape tiles with ball joints allows a large degree of
freedom and thus a variety of deformations.

of light using our 3D manufactured custom Escher blinds are
demonstrated in Fig. 16.

We also add ball joints to our tiles (Fig. 15). A ball joint allows
a limited range of smooth movement in all directions, and thus
brings a larger degree of freedom for the patterns. Such joints
are all support-free and can be 3D printed in one piece without
postprocessing or meticulous assembly. Both models in Figs. 15
and 16 are fabricated by a standard desktop FDM-based printer.

Due to their controllability and continuous tessellation of
the plane, dihedral tessellations are also natural candidates for
halftoning. Since the tessellation structure is fixed, we control the
halftoning amount by the tile scale parameter. Thus, we dilate
tiles at different scales by controlling the distance between the
center of the tile and the contour line of the target shape. The
resulting halftone patterns are shown in Fig. 17.

6. Conclusions

In this paper, we present a novel approach to model and
fabricate Escher dual-shape tilings from user-defined shapes. To
conform with 3D printability requirements, our tiling computa-
tion accounts for strength and connectivity. A key feature of our
method is that the dual shape patterns utilize both solid and
hollow spaces. Thus, one shape is mapped to solid structure and
the second shape is mapped to hollow background, optimizing
both spaces simultaneously. The interaction between the dual
shapes makes ground for novel applications. We demonstrate the
applicability of our method to 3D textures with light shading,
window blinds, deformable surfaces, etc.

Limitations. The current approach has several limitations.
First, our technique utilizes a 2D parametrization of the 3D shapes
in the computation of 3D printable dual tiles. In the case of
complex topologies, parametrization may result in significant
seams that affect the visual quality of our models. Although the
seams are limited to less salient parts such as the bottom of
the bunny, distortions due to the parametrization are sometimes
inevitable, like the bunny’s ears. Nevertheless, the problem of
parametrization is orthogonal to our focus on fabricable dual
Escher tiles. Second, the structural enhancement basically follows
standard techniques. It would be more effective to integrate the
structural optimization with the tile design framework. Thirdly,
the types of tiling rules are relatively limited, yielding simplistic
patterns. There are certainly more complex tiling rules that can be
used to generate dense tessellations. Fourthly, the quality of the
results strongly depends on the input shapes. If the user inputs
some complex or special shapes, it may not be able to generate
appropriate dense results. The last is that the interaction between
different tiles due to joints positioning may yield collisions.

Future work. A natural future work direction is to incorpo-
rate parametrization and periodic dual tessellations in a unified
optimization framework. Thus, we consider seams generations
and the tiles periodic nature conjointly. This will allow posi-
tioning seams with minimal interference to the tiles periodicity.
We would also integrate the strength enhancement with tiling
design and consider optimizing the shape at a semantic level.
Another possibility for future work is to explore more complex
tiling configuration and to allow tiling with better appearance
preservation. We are also excited by exploring novel applications
for tiles with different joints. In general, generating exciting tiling
deformations considering cloth deformations, wrinkles, and other
different dynamic effects is a promising idea.
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Fig. 16. The decorative window blinds made by adding hinges along horizontal tiles. Left to right, controlling the amount of light passing through by rotating the
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Fig. 17. Dual-shape tiles Halftoning.

References

[1] Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand:
balancing shapes for 3D fabrication. ACM Trans Graph 2013;32(4):1. http:
//dx.doi.org/10.1145/2461912.2461957.

[2] Bächer M, Whiting E, Bickel B, Sorkine-Hornung O. Spin-it: optimizing mo-
ment of inertia for spinnable objects. ACM Trans Graph 2014;33(4):1–10.
http://dx.doi.org/10.1145/2601097.2601157.

[3] Bo Z, Lu L, Sharf A, Xia Y, Deussen O, Chen B. Printable 3D trees. Comput
Graph Forum 2017;36(7):29–40. http://dx.doi.org/10.1111/cgf.13269.

[4] Schumacher C, Thomaszewski B, Gross M. Stenciling: Designing
structurally-sound surfaces with decorative patterns. Comput Graph
Forum 2016;35(5):101–10. http://dx.doi.org/10.1111/cgf.12967.

[5] Umetani N, Panotopoulou A, Schmidt R, Whiting E. Printone: Interactive
resonance simulation for free-form print-wind instrument design. ACM
Trans Graph 2016;35(6):184:1–184:14.

[6] Zhao H, Lu L, Wei Y, Lischinski D, Sharf A, Cohen-Or D, et al. Printed
perforated lampshades for continuous projective images. ACM Trans Graph
2016;35(5):154:1–154:11. http://dx.doi.org/10.1145/2907049, URL http://
doi.acm.org/10.1145/2907049.

[7] Mitra NJ, Pauly M. Shadow art. ACM Trans Graph 2009;28(5):156:1–
7. http://dx.doi.org/10.1145/1618452.1618502, URL http://doi.acm.org/10.
1145/1618452.1618502.

[8] Peng H, Lu L, Liu L, Sharf A, Chen B. Fabricating QR codes on 3D objects
using self-shadows. Comput Aided Des 2019;114:91–100. http://dx.doi.org/
10.1016/j.cad.2019.05.029.

[9] Shugrina M, Shamir A, Matusik W. Fab forms: customizable objects
for fabrication with validity and geometry caching. ACM Trans Graph
2015;34(4):100:1–100:12. http://dx.doi.org/10.1145/2766994.

[10] Schattschneider D. M.C. Escher: Visions of symmetry. W.H. Freeman; 1990.
[11] Chen W, Ma Y, Lefebvre S, Xin S, Martínez J, Wang W. Fabricable tile

decors. ACM Trans Graph 2017;36(6):175:1–175:15.
[12] Dress AW. The 37 combinatorial types of regular\heaven and hell’’ patterns

in the euclidean plane. In: MC Escher: Art and science. 1986, p. 35–43.
[13] Grünbaum B, Shephard GC. Tilings and patterns. Freeman; 1987.

[14] Kaplan CS, Salesin DH. Escherization. In: Proceedings of the 27th annual
conference on computer graphics and interactive techniques. SIGGRAPH
’00, New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.; 2000,
p. 499–510.

[15] Kaplan CS, Salesin DH. Dihedral escherization. In: Proceedings of graph-
ics interface 2004. GI ’04, Canadian Human-Computer Communications
Society; 2004, p. 255–62.

[16] Yen J, Séquin C. Escher sphere construction kit. In: Proceedings of the 2001
symposium on interactive 3d graphics. I3D ’01, New York, NY, USA: ACM;
2001, p. 95–8.

[17] Howison M, Séquin CH. CAD tools for creating space-filling 3D escher tiles.
Comput-Aided Des Appl 2009;6:737–48.

[18] Sugihara K. Computer-aided generation of escher-like sky and water
tiling patterns. J Math Arts 2009;3(4):195–207. http://dx.doi.org/10.1080/
17513470903185626.

[19] Koizumi H, Sugihara K. Maximum eigenvalue problem for escherization.
Graphs Combin 2011;27(3):431–9.

[20] Ono S, Kisanuki M, Machii H, Mizuno K. Creation support for escher-like
tiling patterns by interactive genetic algorithms. In: SIGGRAPH Asia 2014
posters. SA ’14, New York, NY, USA: ACM; 2014, p. 9:1.

[21] Lin S, Morace CC, Lin C, Hsu L, Lee T. Generation of escher arts with
dual perception. IEEE Trans Vis Comput Graph 2018;24(2):1103–13. http:
//dx.doi.org/10.1109/TVCG.2017.2660488.

[22] Zhou S, Jiang C, Lefebvre S. Topology-constrained synthesis of vector
patterns. ACM Trans Graph 2014;33(6):215:1–215:11. http://dx.doi.org/10.
1145/2661229.2661238.

[23] Dumas J, Lu A, Lefebvre S, Wu J, Dick C. By-example synthesis of
structurally sound patterns. ACM Trans Graph 2015;34(4):137:1–137:12.
http://dx.doi.org/10.1145/2766984.

[24] Martínez J, Dumas J, Lefebvre S, Wei L-Y. Structure and appear-
ance optimization for controllable shape design. ACM Trans Graph
2015;34(6):229:1–229:11. http://dx.doi.org/10.1145/2816795.2818101.

[25] Chen W, Zhang X, Xin S, Xia Y, Lefebvre S, Wang W. Synthesis of filigrees
for digital fabrication. ACM Trans Graph 2016;35(4):98:1–98:13.

[26] Zehnder J, Coros S, Thomaszewski B. Designing structurally-sound
ornamental curve networks. ACM Trans Graph 2016;35(4):99:1–99:10.

http://dx.doi.org/10.1145/2461912.2461957
http://dx.doi.org/10.1145/2461912.2461957
http://dx.doi.org/10.1145/2461912.2461957
http://dx.doi.org/10.1145/2601097.2601157
http://dx.doi.org/10.1111/cgf.13269
http://dx.doi.org/10.1111/cgf.12967
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb5
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb5
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb5
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb5
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb5
http://dx.doi.org/10.1145/2907049
http://doi.acm.org/10.1145/2907049
http://doi.acm.org/10.1145/2907049
http://doi.acm.org/10.1145/2907049
http://dx.doi.org/10.1145/1618452.1618502
http://doi.acm.org/10.1145/1618452.1618502
http://doi.acm.org/10.1145/1618452.1618502
http://doi.acm.org/10.1145/1618452.1618502
http://dx.doi.org/10.1016/j.cad.2019.05.029
http://dx.doi.org/10.1016/j.cad.2019.05.029
http://dx.doi.org/10.1016/j.cad.2019.05.029
http://dx.doi.org/10.1145/2766994
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb10
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb11
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb11
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb11
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb12
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb12
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb12
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb13
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb14
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb14
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb14
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb14
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb14
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb14
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb14
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb15
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb15
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb15
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb15
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb15
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb16
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb16
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb16
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb16
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb16
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb17
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb17
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb17
http://dx.doi.org/10.1080/17513470903185626
http://dx.doi.org/10.1080/17513470903185626
http://dx.doi.org/10.1080/17513470903185626
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb19
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb19
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb19
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb20
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb20
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb20
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb20
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb20
http://dx.doi.org/10.1109/TVCG.2017.2660488
http://dx.doi.org/10.1109/TVCG.2017.2660488
http://dx.doi.org/10.1109/TVCG.2017.2660488
http://dx.doi.org/10.1145/2661229.2661238
http://dx.doi.org/10.1145/2661229.2661238
http://dx.doi.org/10.1145/2661229.2661238
http://dx.doi.org/10.1145/2766984
http://dx.doi.org/10.1145/2816795.2818101
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb25
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb25
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb25
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb26
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb26
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb26


10 X. Liu, L. Lu, A. Sharf et al. / Computer-Aided Design 127 (2020) 102853

[27] Schüller C, Poranne R, Sorkine-Hornung O. Shape representation by
zippables. ACM Trans Graph 2018;37(4):78:1–78:13. http://dx.doi.org/10.
1145/3197517.3201347.

[28] Silvers R. Photomosaics. New York, NY, USA: Henry Holt and Co., Inc.;
1997.

[29] Hausner A. Simulating decorative mosaics. In: Proceedings of the 28th
annual conference on computer graphics and interactive techniques
- SIGGRAPH 2001. ACM Press; 2001, http://dx.doi.org/10.1145/383259.
383327.

[30] Milenkovic V, Daniels K. Translational polygon containment and min-
imal enclosure using mathematical programming. Int Trans Oper Res
1999;6(5):525–54. http://dx.doi.org/10.1111/j.1475-3995.1999.tb00171.x.

[31] Kim J, Pellacini F. Jigsaw image mosaics. ACM Trans Graph 2002;21(3).
http://dx.doi.org/10.1145/566654.566633.

[32] Hu W, Chen Z, Pan H, Yu Y, Grinspun E, Wang W. Surface mosaic synthesis
with irregular tiles. IEEE Trans Vis Comput Graph 2016;22(3):1302–13.
http://dx.doi.org/10.1109/tvcg.2015.2498620.

[33] Kwan KC, Sinn LT, Han C, Wong T-T, Fu C-W. Pyramid of ar-
clength descriptor for generating collage of shapes. ACM Trans Graph
2016;35(6):229:1–229:12. http://dx.doi.org/10.1145/2980179.2980234.

[34] Yang W, Feng J. 2d shape morphing via automatic feature matching and
hierarchical interpolation. Comput Graph 2009;33(3):414–23. http://dx.doi.
org/10.1016/j.cag.2009.03.007.

[35] Alajlan N, Kamel M, Freeman G. Geometry-based image retrieval in binary
image databases. IEEE Trans Pattern Anal Mach Intell 2008;30(6):1003–13.
http://dx.doi.org/10.1109/tpami.2008.37.

[36] Liu L, Zhang L, Xu Y, Gotsman C, Gortler SJ. A local/global approach
to mesh parameterization. Comput Graph Forum 2008;27(5):1495–504.
http://dx.doi.org/10.1111/j.1467-8659.2008.01290.x.

[37] Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM Trans
Graph 2013;32(3):1–13. http://dx.doi.org/10.1145/2487228.2487237.

[38] Ralph R. MPEG-7 data set, http://www.dabi.temple.edu/~shape/MPEG7/
dataset.html.

http://dx.doi.org/10.1145/3197517.3201347
http://dx.doi.org/10.1145/3197517.3201347
http://dx.doi.org/10.1145/3197517.3201347
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb28
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb28
http://refhub.elsevier.com/S0010-4485(20)30046-4/sb28
http://dx.doi.org/10.1145/383259.383327
http://dx.doi.org/10.1145/383259.383327
http://dx.doi.org/10.1145/383259.383327
http://dx.doi.org/10.1111/j.1475-3995.1999.tb00171.x
http://dx.doi.org/10.1145/566654.566633
http://dx.doi.org/10.1109/tvcg.2015.2498620
http://dx.doi.org/10.1145/2980179.2980234
http://dx.doi.org/10.1016/j.cag.2009.03.007
http://dx.doi.org/10.1016/j.cag.2009.03.007
http://dx.doi.org/10.1016/j.cag.2009.03.007
http://dx.doi.org/10.1109/tpami.2008.37
http://dx.doi.org/10.1111/j.1467-8659.2008.01290.x
http://dx.doi.org/10.1145/2487228.2487237
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html

	Fabricable dihedral Escher tessellations
	Introduction
	Related work
	Escher tilings
	Fabricable tilings
	Mosaics tiles and packing

	Overview
	Technical details
	Dihedral tiling generation
	Shape matching and morphing
	3D printable tilings

	Results and discussions
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


