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Abstract—Partial differential equations (PDEs) have been used to formulate image processing for several decades. Generally, a PDE
system consists of two components: the governing equation and the boundary condition. In most previous work, both of them are generally
designed by people using mathematical skills. However, in real world visual analysis tasks, such predefined and fixed-form PDEs may
not be able to describe the complex structure of the visual data. More importantly, it is hard to incorporate the labeling information and
the discriminative distribution priors into these PDEs. To address above issues, we propose a new PDE framework, named learning
to diffuse (LTD), to adaptively design the governing equation and the boundary condition of a diffusion PDE system for various vision
tasks on different types of visual data. To our best knowledge, the problems considered in this paper (i.e., saliency detection and object
tracking) have never been addressed by PDE models before. Experimental results on various challenging benchmark databases show
the superiority of LTD against existing state-of-the-art methods for all the tested visual analysis tasks.

Index Terms—Visual diffusion, PDE governed combinatorial optimization, submodularity, saliency detection, object tracking
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1 INTRODUCTION

THE partial differential equation (PDE) is a system involving

unknown functions of multiple variables and their partial

derivatives. In the past several decades, this mathematical tool

has led to an entire new field in image processing and shown its

power for many applications, such as image restoration, smooth-

ing, inpainting, segmentation and multiscale representation. We

refer to the monographs [2], [3] and the references therein

for an overview of these work. The success of PDE based

methods on low-level image processing is mainly because that

the theoretical analyses on these problems have already been

accomplished in areas such as mathematics and physics. For

example, the scale space theory [4] proved that the multiscale

representations of images are indeed solutions of the heat

equation with different time parameters.

In general, conventional PDEs design methodologies can be

roughly divided into two main categories: direct and variational

methods. For direct methods, such as anisotropic diffusion [5]

and curve evolutions [6], [7], [8], PDEs are directly written

down based on some mathematical understandings on the phys-

ical natures (e.g., heat flow) or the geometric properties (e.g.,

curvature) of the problems. In contrast, variational methods,

such as Tikhonov [3] and total variation (TV) [9] functionals,

first define an energy to collect the desired properties of the
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problem and then derive PDEs by the Euler-Lagrange equation

or its associated flows. Though many efforts have been made

in literatures, it is still challenging to utilize above ways to

design PDEs for complex vision tasks. The main reasons can

be attributable to the following three factors.

First, good mathematical skills and deep domain knowl-

edge are required for designing PDEs. This is because for

a given vision problem, we have to choose appropriate PDE

formulation, predict the effect of each derivative term and

check whether the final PDEs can meet our goal. So one

may fail to acquire effective PDEs when there is no enough

intuition for the vision problem. Second, in existing PDEs, the

governing equations are predesigned and just some parameters

will be tuned. Furthermore, the boundary conditions are only

deduced by some simple intuitions (e.g., initial values [4] and

well-posed guarantees [2]). Therefore, it is hard to use these

PDEs to propagate high-level prior knowledge (extracted by

human perception or from training data), which is the core for

many complex visual analysis tasks. Third, modeling supervised

information and discriminant structure is a big challenge to all

existing PDEs because the labels and geometries of training

(or previously processed) data cannot be incorporated into the

generally designed, fixed partial differential system.

Recently, Liu et al. [10], [11] combined fundamental dif-

ferential invariants up to second order as general PDEs and

determined the combination coefficients by training image

pairs for different low-level image processing problems. As

a preliminary investigation, this work partially addressed the

first issue in above discussions, i.e., provided a straightforward

way to design PDEs for image processing. However, due to the

complex evolutional formulation, this system suffers from huge

computational cost and the optimality of its solution cannot be

guaranteed. More importantly, the training mechanism in that

work (i.e., only penalizing differential operators for the govern-

ing equation) makes it difficult to incorporate high level prior
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Fig. 1. The pipelines of LTD for (a) saliency detection and (b) object tracking, respectively. The pink regions illustrate
the core components of LTD framework. The blue regions show how to incorporate different kinds of prior knowledge
into the diffusion learning process. In (a) the priors are collected by human perception for saliency detection, while in (b)
we learn priors from training data for object tracking. We also shows the ground truth (GT for short) salient region and
saliency maps computed by some state-of-the-art saliency detection methods on the bottom row of subfigure (a).

knowledge from human’s perceptions and/or labeled training

data into the PDEs.

The motivation of our study is trying to provide a simple

way to incorporate prior knowledge (from human perception

and/or training data) to design PDE system for real world vision

problems. More precisely, different from the work in [10], [11],

which combines 17 fundamental differential invariants to build

coupled PDEs for low-level image processing, we focus on

providing a unified diffusion learning framework to address

both the generative and discriminative vision problems (the

examples are illustrated in Fig. 1). The key idea in LTD is

to assume that both the governing equation and the boundary

condition of PDEs should be learned from the visual data.

So we propose a PDE governed combinatorial optimization

model to incorporate both the generative and discriminative

criteria for diffusion learning. Then the stable temperature of

our learned diffusion can be used to extract the structure of

the data set. Notably, at least two characteristics of LTD seem
to challenge common wisdoms in building vision PDEs: The
boundary conditions of PDEs are determined using data and
the learned PDEs reveal not only the generative distribution,
but also the discriminative category information. To summarize,

the main contributions of this work are threefold:

1) We provide an anisotropic diffusion system with adaptive

boundary conditions to formulate general visual analysis

tasks. We then develop LTD, a combinatorial optimization

framework, to learn PDEs from data for visual diffusions.

We also prove the submodularity of the system, which

leads to a simple but efficient numerical scheme for LTD.

2) We first introduce a loss function to extract the distri-

bution (generative structure) of the data set for diffusion

design. By further considering the information gain based

regularizer, LTD can also successfully identify the catego-

ry information (discriminative structure) for the diffusion.

Note that such supervised structure has not been captured

by any existing PDE methods before.

3) Both the image based saliency detection and the video

based object tracking problems can be addressed within

LTD framework. To our best knowledge, this work is the

first to use PDEs to solve saliency detection and object

tracking1. Extensive experiments on different benchmark

data sets and comparisons with many state-of-the-art

methods show that both of these problems can be effi-

ciently addressed by LTD.

2 A BRIEF REVIEW OF IMAGE DIFFUSION

In physics, the diffusion equation is a powerful tool to describe

density dynamics of physical transport processes. Koenderink

[13] and Witkin [14] first built the connection between diffusion

equations and multiscale image representations, which enable

us to look at solving the isotropic diffusion as a means of

constructing a linear and space-invariant transformation of the

image. Then Perona and Malik [5] proposed a slight modifica-

tion to the diffusion process by modeling the flux as a function

of edge-strength in the image, thereby giving us “anisotropy”

for image diffusion. The above two pioneer work drew great

interests on image diffusion methods and various diffusion

equations have been considered for image processing problems

in the past decades. For instance, as a specific diffusion equa-

tion, Poisson equation arose in many image processing tasks,

especially gradient domain image analysis (e.g., tone mapping

[15], seamless image editing [16] and image matting [17]).

This is because Poisson equation can be used to modify image

gradients to approximate some given vector fields.

1. Please notice that the object tracking considered in this paper is fundamen-
tally different from the sequence segmentation task, which has been addressed
by variational PDEs [12]. This is because the former aims to track the sate of
the object for a video sequence while the latter is only to segment the image
frame by frame.
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Besides designing PDEs from physical perspective, the varia-

tional PDEs have also been commonly used for image diffusion.

For example, Mumford-Shah (MS) functional [18] is designed

for segmentation and TV functional can be used for restoration.

To cope with the non-convexity in MS model, the work in

[19] established a convex formulation and proved conditions

under which MS can achieve global optimum using that convex

formulation. As for TV, it was initially motivated by the

bounded variation space theory [9] and has been extensively

used in imaging sciences. By considering TV energy within

the compressive sensing framework, very recent studies proved

its guarantees for signal recovery [20].

The above diffusions are performed on regularly distributed

image pixels and the differential operators are locally defined

on a Cartesian grid of the image domain. So these diffusions

can only reflect local interactions on the image. Recently,

nonlocal derivatives have been proposed in the context of image

processing. The corresponding nonlocal PDEs have shown their

efficiency to better preserve fine and repetitive image structure

than local ones. For example, Kindermann et al. [21] inter-

preted the nonlocal means filter and the neighborhoods filter

as nonlocal regularization functionals. Guilboa and Osher [22]

proposed a nonlocal functional, based on weighted differences.

These work can be regarded as the nonlocal analogues of TV

models for image processing.

As stated above, diffusion PDEs have been widely used for

low-level image processing, such as denoising, segmentation,

inpainting and more. However, it is still a challenging task

to formulate complex visual analysis problems (e.g., saliency

detection and object tracking) using existing PDEs. This is

mainly because that modern vision tasks are often defined

on more topologically complex domains. For example, the

visual data are modeled by collections of feature vectors on

irregularly shaped domains (e.g., manifolds). More importantly,

human perceptions and labeling information often play very

important role in these vision tasks. But unfortunately, we

cannot incorporate such priors into conventional PDEs.

3 PRELIMINARIES

3.1 Notations and Definitions
We use lowercase bold letters (e.g., p) to represent vector points

and capital calligraphic ones (e.g., V) to denote sets of points.

|V| is the cardinality of V . For any S ⊂ V , we denote the

complement of S as V\S . 1 is the all one vector. ‖ · ‖ denotes

the �2 norm. Let G = (V, E) be an undirected graph, where

E ⊆ V×V is a finite set of edges. We denote the neighborhood

set of p on G as Np. Suppose f is a real value function on

V . For a given point p ∈ V with neighborhood set Np, we

denote ∇f as the gradient of f and discretize it as ∇f =
[f(p)−f(q1), · · · , f(p)−f(q|Np|)]. Similarly, let v be a vector

field on V and denote vp ∈ R
|Np| as the vector at p. Then

we denote the divergence of v as div(v) and discretize it at

p as div(vp) = 1
2

∑
q∈Np

(vp(q) − vq(p)), where vp(q) is

the vector element corresponding to q ∈ Np
2. Based on above

definitions, we can also discretize the Laplace-Beltrami operator

on the graph, i.e., Δf = div(∇f).

2. Similar discretization scheme is also used for nonlocal total variation [22].

3.2 Problem Statement
In this subsection we outline the problems for which this work is

relevant. That is, we provide a physical viewpoint, named visual

diffusion (VD), to understand and model visual data analysis

tasks. Specifically, for a set of visual elements V (extracted from

images or videos), the goal of VD is to propagate a specific real

value function f(p) : V → R (i.e., temperature) from the most

representative subset S ⊂ V (i.e., heat source) to all the other

nodes to extract the latent intrinsic structure of V . Indeed, the

heat source can be considered as the “basis” of the data set and

the temperatures of other nodes should be understood as their

relevances to the heat source.

Actually, many visual analysis tasks can be (re)formulated as

the problem of VD. For example, in image domain, segmenta-

tion aims to divide an image into different disjoint regions such

that image elements have high similarity within each region and

high contrast between regions. More complex tasks, such as

scene understanding, saliency or object detection, would like

to further identify image regions with specific properties. In

VD framework, all these problems could be considered as a

temperature propagation process. Specifically, for each image

element, we define a temperature function f on it to measure

its specific property (e.g., local similarity, semantic information,

saliency confidence or objectness). Then the problem reduces

to that of simultaneously identifying the most representative
image elements (i.e., heat source S) with respect to the

specific property and propagating the temperature to extract

the relevance between heat source and other image elements.

Finally, the intrinsic structure of the image can be obtained

using propagated temperature. Furthermore, by incorporating

temporal information into the propagation (e.g., propagating

temperatures through the sequence), VD could also be suitable

for video analysis, such as temporal structure (e.g., event and

action) detection, motion segmentation and object tracking.

The fundamental challenge in VD is the “chicken-and-egg”

problem. That is, if the heat source S is already recognized,

propagating the temperature f can be performed by solving

standard PDEs. While, if f has been propagated to all the

nodes in V , the representative subset S then can be directly

identified. So the heart of VD is how to effectively handle the

coupling between the heat source S and the temperature f .

Unfortunately, the existing predefined PDEs with fixed gov-

erning equation and boundary condition cannot simultaneously

obtain S and f , thus may fail to recover the structure of V . In

this work, we would like to develop an adaptive leaning based

PDE framework, named learning to diffuse (LTD), to extend

conventional diffusion equations for the VD problem.

It will be shown in the following that visual analysis prob-

lems on both images (e.g., saliency detection) and videos (e.g.,

object tracking) can be formulated as specific cases of VD and

efficiently addressed by LTD.

4 LEARNING TO DIFFUSE (LTD)
This section first develops a linear elliptic PDE system with

Dirichlet boundary condition to formulate VD and then presents

a combinatorial optimization framework to optimize diffusions

for visual analysis. The necessary numerical and theoretical

analysis for LTD will be addressed at the end of this section.
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4.1 An Anisotropic Diffusion System with Adaptive
Boundary Condition
For given V , our goal is to simultaneously identify the heat

source S and propagate the temperature f on V . In general,

this problem can be mathematically modeled as an evolutionary

PDE system with unknown f and S:

∂f(p, t)

∂t
= F (f,∇f), f(g) = 0, f(p) = sp, p ∈ S, (1)

where g is an environment point with zero temperature (outside

V) and sp is the temperature corresponding to the node p. In

general, the governing equation F in (1) can be any smooth

functions with respect to f and its derivative ∇f . But in

VD framework, our goal is to build a prior guided diffusion

system to address various visual analysis tasks. Therefore, F is

specified as follows. We first introduce an anisotropic diffusion

term div(K∇f), in which K is an inhomogeneous metric tensor

to control the diffusivity. To further incorporate high-level priors

into our diffusions, we define a fidelity term PV\S(f−u), where

u is a map to guide the diffusion (can be learned by either

human perception or collected training data) and PV\S is the

projection on V\S3, i.e.,

PV\S(f − u)(p) =

{
f(p)− u(p), p ∈ V\S,
0, p ∈ S. (2)

Overall, the governing equation is defined as:

F (f,∇f) = div(K∇f) + λPV\S(f − u), (3)

where λ ≥ 0 is a parameter to control the trade-off between

the rate of diffusion and the fidelity to the guidance.

If only caring about the stable situation (i.e., no heat can

be further propagated) of this evolution, we omit time t and

simplify the PDE system as:

F (f,∇f) = 0, f(g) = 0, f(p) = sp, p ∈ S, (4)

which is a linear elliptic system with Dirichlet boundary.

In most conventional PDEs, to simplify the computational

scheme, the boundary condition (i.e., heat source S) is always

predefined and fixed during the diffusion process. But unfortu-

nately, such strategy may significantly reduce the flexibility of

the diffusion system. To address this limitation, in our system

we will also consider f as a set function4 with respect to the

heat source, i.e., f(S) : 2V → R.

4.2 Learning Diffusion by PDE Governed Combinato-
rial Optimization
Our diffusion learning actually consists of two goals: estimating

the stable temperature f and selecting the optimal heat source

S . Now we provide a unified optimization model to jointly solve

these two problems. For the temperature, it is obvious that f can

be directly solved by (4) with selected S . As for the heat source,

our first observation is that due to the significant redundancy

in the data set, not every node in V is equally informative. So

3. Here we do not enforce constraints on S as the temperatures of nodes in
S are specified by the boundary condition for each diffusion.

4. In general, the solution to conventional PDEs with fixed boundary condi-
tion is a continuous function with respect to space and/or time variables. While
the solution to (4) is inherently combinatorial with respect to the heat source.

we first generate a compact and representative subset F ⊂ V
and then choose heat source from F5. Then we present the

following criteria to optimize heat source for our diffusions.

Generative loss: Given F , we tend to select the heat source

from it with the highest stable temperature on V because higher

overall temperature indicates better representative ability of the

heat source. This criterion is formulated by maximizing the

temperature calculated by (4):

L(S) =
∑
p∈V

f(p;S). (5)

In operations research, this objective function can be viewed as

the uncapacitated facility location loss [23], which is to select

a set of potential facilities (i.e., S) and assign customers (i.e.,

V\S) to them in a cost effective and efficient manner (i.e.,

maximum the utility L).

Discriminative regularizer: The discriminative relationships

often play very important role in visual analysis. For example,

with the category information correctly identified from the

training data, it can extract more accurate data structure from

V . However, as all the components of existing PDEs are

fixed, we cannot do this for the conventional diffusion system.

Fortunately, in LTD, this issue can be efficiently addressed by

introducing a discriminative regularizer in the combinatorial

formulation. Actually, given nodes from different categories,

the goal of discriminative PDEs learning is to utilize training

data to help select heat source with homogeneous category label

for a particular diffusion. To do this, for the category c, we

collect a set of training data Tc := {hp, pc(p)}, where hp is

the feature vector and pc(p) is the probability of p belonging

to this category, respectively. By training a regressor on Tc and

applying it to F , we estimate a mapping pc(p) on F to measure

the probability of candidate heat source belonging to the given

category. Then we define two entropies:⎧⎪⎨
⎪⎩

E(F\S) = − ∑
p∈F\S

pc(p) log pc(p),

E(F\S|S) = − ∑
p∈F\S,q∈S

p(p,q) log pt(q|p), (6)

where pt(q|p) is the transition probability (i.e., normalized

affinity) from p ∈ F\S to q ∈ S in the feature space and

p(p,q) = pc(p)pt(q|p). Intuitively, the larger E(F\S) tends

to seek nodes with high probabilities pc for S (i.e., select heat

source belonging to category c). While the smaller E(F\S|S)
makes category c be easily differentiated from others (i.e.,

enhance the discrimination between S and F\S). So we define

our discriminative regularizer as the following information gain:

R(S) = E(F\S)− E(F\S|S). (7)

Based on above analysis, we define H(S) = L(S) + γR(S)
with parameter γ ≥ 0 and formally formulate LTD as the

following PDE governed combinatorial optimization:

max
f,S∈Mn

H(S),

s.t.

{
div(K∇f) + λPV\S(f − u) = 0,
f(g) = 0, f(p) = sp, p ∈ S,

(8)

5. We will use different strategies to define F for particular vision tasks.
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where M
n = {S|S ⊂ F ⊂ V , |S| ≤ n} is a uniform

matroid [24] to enforce that the cardinality of S is no more

than a given number n ≤ |F|. By solving (8), we can identify
the optimal heat source and calculate the stable temperature in
a unified framework for the VD system.

Adaptive penalty: To provide an adaptive way to identify

the number of nodes in heat source and further suppress the

redundancy in F , we define a confidence function w(p) ≥ 0 on

F , in which larger w(p) implies that p has a higher probability

of belonging to F\S and should be suppressed. Therefore, we

maximize another cost function Ĥ(S) = H(S)−W (S) in (8),

where W (S) = ∑
p∈S w(p). Please notice that subtracting the

penalty term W (S) can also be understood as incorporating the

cost of opening facilities into the facility location problem.

4.3 Discretization and Optimization

Now we discuss how to discretize and optimize LTD problem.

Discretization: For each p, let Np = {q1, · · · ,q|Np|−1,g}
be its neighborhood set, where the first |Np|−1 nodes are in the

domain V and the environment point g outside V is connected

to each node [25]. Then we can specify K at p to measure the

variance between p and its neighborhood Np, i.e., we define

an inhomogeneous metric tensor Kp as:

Kp = diag
(
k(p,q1), · · · , k(p,q|Np|−1), zg

)
, (9)

where k(p,q) = exp(−β‖hp−hq‖2) is the Gaussian similarity

(with a strength parameter β) between the features of nodes,

hp is a feature vector at node p, and zg is a small constant

to measure the dissipation conductance at p. Then we can

approximately discretize the PDE formulation as:

f(p) =

⎧⎪⎨
⎪⎩

1
dp+λ

( ∑
q∈Np

Kp(q)f(q) + λu(p)

)
, p ∈ V\S,

sp, p ∈ S,
(10)

where Kp(q) is the diagonal element of Kp corresponding to

q and dp =
∑

q∈Np
Kp(q).

Optimization: It is easy to check that (10) is indeed a linear

system, thus can be easily solved. However, the optimization

of (8) without knowing any further properties can be extremely

difficult (e.g., trivially worst-case exponential time or even

inapproximable [26]). Fortunately, we can prove the following

theory to exploit some good properties (i.e., monotonicity and

submodularity6) for LTD.

Theorem 1: 7 Let f be the stable temperature, H and Ĥ be

the objectives to (8). Then by considering them as set functions

with respect to S , the following assertions hold:

1) f(S) is monotone and submodular.

2) H(S) is monotone and submodular.

3) Ĥ(S) is submodular and Ĥ(∅) = 0.

The monotonicity and submodularity of H together with the

uniform matroid constraint in (8) imply that using a greedy

algorithm to solve (8) yields a (1 − 1/e)-approximation [30].

6. Submodularity is an important property for discrete set function and has
far-reaching applications in operations research, machine learning and computer
vision [23], [27], [28], [29].

7. Please see Appendix for necessary definitions and proofs.

Due to the non-monotone nature, we cannot have the same the-

oretical guarantee for Ĥ . But in practice, by adding the stopping

criterion Ĥ(S ∪ {p}) ≤ Ĥ(S), the maximization process for

Ĥ can be automatically stopped and then the optimal seed set

is obtained accordingly. We have experimentally found that a

greedy algorithm with this stopping criterion is efficient for

maximizing Ĥ in all the tested problems. The complete LTD

optimization framework is summarized in Algorithm 1.

Algorithm 1 The LTD Optimization Framework

Input: Given V and necessary parameters.

Output: Stable f∗ and optimal S∗.
1: Calculate pc and pt for p ∈ F , K and g for p ∈ V .

2: Initialize heat source S ← ∅.
3: while |S| ≤ n do
4: for p ∈ V\S do
5: Solve (10) with S ∪ {p} for f .

6: Obtain the gain ΔH(p) = H(S ∪ {p})−H(S),
or ΔĤ(p) = Ĥ(S ∪ {p})− Ĥ(S).

7: end for
8: p∗ = arg max

p∈V\S
ΔH(p) or arg max

p∈V\S
ΔĤ(p).

9: if Ĥ(S ∪ {p∗}) ≤ Ĥ(S) (only for Ĥ) then
10: Break.

11: end if
12: S ← S ∪ {p∗}.
13: end while
14: Solve (10) with optimal S∗ to obtain stable f∗.

5 LTD FOR VISUAL ANALYSIS
In this section, we consider two example applications of LTD

on images and sequences, respectively.

5.1 LTD on Images for Saliency Detection
We first apply LTD for saliency detection, which is a typical

visual analysis task on the image domain. Given visual scenes,

saliency detection is to find the regions which are most likely

to capture human’s attention. We show that this task can be

formulated as a specific case of VD. That is, we first define the

saliency confidence as a temperature function and assume that

our attention is firstly attracted by some most representative

salient image elements (considered as heat source). Then the

saliency confidence will be propagated from the heat source to

all salient regions on the image. In this view, we define V as

the discrete image domain (i.e., a set of points corresponding to

all image elements) and consider f as the saliency confidence

function on V . Thus detecting salient regions reduces to the

problem of leaning a particular diffusion system for f .

Fig. 1 (a) shows the pipeline of LTD based saliency detector

on an example image. This visual comparison together with

more sufficient experimental results in Section 6.2 show that

by incorporating priors from human perception (e.g., color, lo-

cation and background) for diffusion learning, the PDE (4) with

properly specified governing equation and boundary condition

can successfully model the saliency diffusion, thus achieves

better saliency detection results than state-of-the-art approaches.

In the following, we discuss the details of this process.
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(a) (b) (c)

Fig. 2. Illustration of the shift convex hull strategy in (a)
and connection relationship in (b)-(c). The red and yellow
polygons in (a) denote C and C′, respectively. The red and
yellow regions in (b)-(c) represent Fc and Bc, respectively.
Lines in (c) indicate that all nodes in Bc are connected.

5.1.1 Determining the Governing Equation
For a given image, we generate superpixels8 to build the image

elements set V = {p1, · · · ,p|V|} and define feature vectors

{hp,p ∈ V} as the means of the superpixels in the CIE LAB

color space. The image structure information is extracted as

follows. Suppose the image domain V consists of two parts:

the candidate foreground Fc (salient regions, may also contain

some spurious image elements) and the candidate background

Bc (non-salient regions). We utilize a shift convex hull strategy

to approximately estimate these two subsets from the input

image. Specifically, we use Harris operator [32] to roughly

detect the corners and contour points and estimate a convex

hull C based on these points [33]. Then Fc can be obtained by

collecting nodes inside C. To further identify pure background

nodes, we define an expended hull C′ by adding adjacent nodes

to C. Then Bc is obtained by collecting all nodes outside C′.
Please see Fig. 2 (a) for an example of C and C′.

We construct an undirected graph G = (V, E) to reveal the

connection relationships (i.e., Np for each p) in the image

domain, where E is a set of undirected edges corresponding to

the nodes set V . Specifically, we first connect each node with its

2-ring neighbors to exploit the local spatial relationship (Fig. 2

(b)). Then all the nodes in Bc are connected to each other to

enforce the smoothness of background (Fig. 2 (c)). As there may

exist spurious image elements, we do not further connect nodes

in Fc. Finally, all the nodes are connected to an environment

node g.

Now we are ready to determine the governing equation F .

First, Kp can be calculated by (9) using the graph connection

(i.e., Np) and the features (i.e., hp). To incorporate high-

level priors into the governing equation, u is defined in the

following way. By assuming that the distribution of background

is significantly different from that of foreground, we perform a

simplified diffusion with λ = 0 in (4) to compute a temperature

fb with respect to the background confidence score, where the

boundary is chosen as the union of Bc (with temperature 1) and

an environment node g (with temperature 0). It is easy to check

that the solution to this background diffusion is a harmonic

function, thus fb(p) ∈ [0, 1]9. So the elements in fb can be

viewed as probabilities of nodes belonging to the background.

In this view, we have the probability of a node belonging to

the foreground as uf (p) = 1− fb(p). Then the final guidance

map u is obtained by combining uf with two standard saliency

8. Generally, any edge-preserving superpixel methods can be used and SLIC
algorithm [31] is adopted in this paper to generate image elements.

9. Based on the maximum/minimum principles of harmonic functions.

(a) (b) (c) (d) (e)

Fig. 3. Saliency diffusion with different guidance maps. (a)
input image and GT salient region. (b)-(e) center prior ul,
color prior uc, background diffusion prior uf , final guidance
map u (top) and their corresponding saliency maps (bot-
tom), respectively.

(a) (b) (c) (d) (e) (f)

Fig. 4. Saliency diffusion with different heat source. (a)
input image and GT salient region. (b) Fc (inside red
polygon) and u. (c)-(e) diffusion results using one can-
didate seed in Fc: (c) background (L = 10.6175), (d)
bad foreground (L = 1.6818) and (e) good foreground
(L = 31.7404). (f) optimal seeds (L = 43.8589) and final
saliency map. Here we report L values using the original
saliency maps but normalize them for visual comparison.

priors, namely the color and center maps (denoted by uc and

ul, respectively) from [34], using multiplication [35]:

u(p) = uf (p)× uc(p)× ul(p). (11)

5.1.2 Selecting the Boundary Condition
Due to the following two reasons, we do not use all nodes in

Fc as heat source. First, the convex hull may not adequately

suppress background nodes in Fc (Fig. 4 (c)). Second and more

importantly, it is observed that the heat source with extremely

high local contrast to its neighbors (e.g., nodes near object

boundary and bright or dark nodes on the object) may also

lead to a bad saliency map (Fig. 4 (d)). So it is necessary to

select the most representative foreground nodes in Fc to define

the boundary conditions.

The goal of our diffusion system is to propagate the tem-

perature of heat source S to the whole image domain V . So

here we only maximize the loss L (i.e., the sum of scores f
with respect to all image elements in V) when the saliency

diffusion is stable, that is, we solve the discrete optimization

problem (8) with γ = 0. As the saliency confidence can be

considered as the relevances between nodes and the salient heat

source, the maximum criterion in (8) naturally tends to choose

heat source in relatively larger connected subgraphs (thus is
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more representative). Therefore, the nodes in Fc with high

local contrast (i.e., less connections and paths to other nodes)

will be removed from S . One may concern that incorporating

background nodes will also lead to a large L as they may

connect to nodes outside Fc. Fortunately, our guidance map

u can enforce very small saliency scores (in most case near

zero) in background regions (u in Fig. 4 (b)). So background

nodes in Fc still result in a relatively small L value and cannot

be included in S (Fig. 4 (c)). Here we also use u to define the

scores of saliency seeds, i.e., sp = u(p), for p ∈ S .

In general, the performance of (8) is depend on the maximum

number of heat source (i.e., n). By specifying W (S) in (8),

we provide an adaptive way to identify n and further suppress

background nodes in Fc. Specifically, we define w(p) = 1/(ε+
u(p)2) on Fc, where ε is a small positive constant. Here the

larger w(p) implies that p has a higher probability of belonging

to the background and should be suppressed. Then we maximize

the loss function L̂(S) = L(S)−W (S) in (8), where W (S) =∑
p∈S w(p).

5.2 LTD on Sequences for Object Tracking

Now we address object tracking using LTD. It is to illustrate

that LTD can also be used for sequential visual analysis. Object

tracking is one of the most fundamental components in video

analysis. Given the initialized object, the goal of tracking is to

estimate the states of the target in the subsequent frames. We

consider this problem as the task of distinguishing the target

object from the surrounding background (i.e., binary classifica-

tion) in Particle filter framework [36]. Utilizing this viewpoint,

we can formulate object tracking as jointly performing temporal

and spatial VDs on the sequence. Specifically, we define the

observation likelihood as a temperature and propagate it from

previously processed (i.e., training) frames to the current frame

to establish the object probability (i.e., priors). We also estimate

the candidate heat source using the location of the tracked

object in the last frame. Then the final object confidence can be

calculated by a prior guided propagation on the current frame.

Fig. 1 (b) illustrates the pipeline of the LTD based tracker. It can

be seen that besides the temperature based generative loss L, we

also incorporate prior knowledge learned from training data into

the optimization model (8) (i.e., discriminative regularization R)

to enforce discriminative constraints for the diffusions.

Specifically, let Y1:t−1 = {Y1, · · · ,Yt−1} be the tracked

objects from the first to the (t− 1)-th frame, Yt be a candidate

object at time t and xt be the state variable describing the affine

motion parameters of Yt, respectively. Then we can process xt

with the following probabilities:

p(xt|Y1:t) ∝ p(Yt|xt)

∫
p(xt|xt−1)p(xt−1|Y1:t−1)dxt−1,

(12)

where Y1:t = {Y1:t−1,Yt}, p(xt|xt−1) denotes the state

transition distribution and p(Yt|xt) estimates the likelihood of

observing Yt at state xt. So the optimal state of the target

at time t is obtained by the maximum-a-posteriori (MAP)

estimation over m candidates:

xt = argmax
xi
t

p(Yi
t |xi

t)p(x
i
t|xt−1), i = 1, · · · ,m, (13)

where xi
t indicates the i-th candidate state and Yi

t is the target

image region predicated by xi
t. Here p(xi

t|xt−1) can be simply

formulated by random walks. So object tracking reduces to the

problem of calculating the observation likelihood p(Yi
t |xi

t).

5.2.1 Discriminative Object Representation
To setup our tracking system, we first learn a discriminative

object representation from a set of d initial frames. For the

target state xt at the t-th training frame, we denote its tracking

window as A(xt). In the following, we will use |A(xt)| to

denote its area size. We also define an additional square window

A′(xt) at the location of the target with larger area size, i.e.,

A′(xt) = δA(xt), where δ > 1 is a magnifying parameter. In

this paper, we always set δ = 1.5 to guarantee that A′(xt) can

cover the entire target in the last frame and include sufficient

background for better discrimination. It is illustrated in Fig. 1

(b) that the surrounding window and the tracking window for

the target are denoted as yellow and red rectangles both with

solid lines, respectively. We oversegment the surrounding region

A′(xt) to build a set of image elements Vt = {p1, · · · ,p|Vt|}.
For each superpixel p ∈ Vt, the corresponding feature vector hp

is defined as a normalized histogram in RGB color space. Then

we define an object representation for training image elements

V̄ = {V1, · · · ,Vd} as follows:

pc(p) = |A(p) ∩ A(xt)|/|A(p)|, ∀p ∈ V̄, (14)

where A(p) denotes the area covered by superpixel p on the

frame and |A(p)∩A(xt)| is thus the area size of p overlapping

the target at the t-th training frame. It can be observed that

pc has the property that the larger value indicates the higher

confidence to assign p to the target. Then we define our training

data for the target object as Tc = {hp, pc(p)|p ∈ V̄}.

5.2.2 Object Tracking via Diffusion on the Video
When the t-th test frame arrives, we also extract its surrounding

region A′(xt) centered at the location of the tracked target in

the (t− 1)-th frame (i.e., A(xt−1)) and oversegment A′(xt) to

define the image elements Vt. Then we perform a simple linear

support vector regression (SVR) [37] on Tc and apply it to Vt.
Now we can define the candidate target at t-th frame (denoted

as F t
c) using the regressed confidence map. That is, we collect

nodes in a small square region located at the center of A′(xt)
(i.e., the candidate foreground in Fig. 1 (b)) with pc greater

than zero as F t
c . We also define the candidate background Bt

c as

nodes on the boundary ofA′(xt) (i.e., the candidate background

in Fig. 1 (b)). To enforce the sequential structure into the current

frame, we also include the boundary nodes of the surrounding

regions {A′(x1), · · · ,A′(xd)} in the training frames to Bt
c (i.e.,

the left of the blue region in Fig. 1 (b)). Different from LTD on

the image domain (presented in Section 5.1), which only needs

to define a single graph, here we construct two different graphs

for the sequence. First, to reveal sequential relationships, we

define a graph Gs by connecting k nearest neighbors of each

node in RGB color space for V̄ ∪ Vt. Meanwhile, to collect

spatial information at the current frame, we build a graph Gc

for nodes in Vt.
Based on the regressed confidence map pc, we define the

temperature of heat source St ⊂ F t
c (i.e., sp = pc(p) for p ∈
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St). Also, the discriminant penalty R(St) is defined by pc using

(7). Then we perform LTD on Gc to learn the foreground (i.e.,

object) confidence f for Vt (i.e., the pink region in Fig. 1 (b)).

To adaptively determine the number of heat source in (8), we

can also use pc to define W by the same formulation as that in

Section 5.1.210.

5.2.3 Observation Model
Intuitively, we may define the observation model for candidate

Yi
t ⊂ Vt as p(Yi

t |xi
t) =

∑
p∈Yi

t
f(p). But unfortunately, due to

the following two reasons, such simple strategy may not work

well in practice. First, until now the diffusion is only performed

on the current frame, thus there is no sequential information

used in the observation model. Moreover, the calculated f is

in the range [0, 1]. So the MAP estimation will always tend

to find the one with the larger area as the target object, which

is definitely not the case in most frames. For example, it can

be seen in Fig. 5 (c) that the state estimated by f (i.e., green

rectangle) improperly includes the top left player, which is not

our target object.

To address above issues, we further define a temperature fb to

measure the confidence of nodes belonging to the background

and set fb(p) = 1 for p ∈ Bt
c. Then we can perform a

diffusion on Gs to propagate fb from Bt
c to the other nodes.

In this way, we achieve a background confidence map fb on

Vt (illustrated at the bottom right of the blue region in Fig. 1

(b)). It is also clear that simply calculating the confidence

map by fb (e.g., define uf = 1 − fb) still cannot correctly

identify our target (see the blue rectangle in Fig. 5 (d)). So

we try to combine the foreground and background confidences

for the final observation model. One possible idea is to utilize

the multiplication strategy (i.e., calculating the confidence by

f × uf ), which has been used for saliency detection. However,

such confidence without negative components will still make

us choose object with larger area size (see the yellow rectangle

in Fig. 5 (e)). So we would like to define a confidence map,

in which the target region should have high positive value,

while the background region must have high negative value. To

achieve this goal, we define a signed confidence map by f−fb,

which is in the range [−1, 1]. It can be seen in Fig. 5 (f) that

such signed confidence can successfully identify the target from

complex background, thus lead to the optimal tracking window

(i.e., the red rectangle).

For each candidate state xi
t, we normalize its tracking win-

dow into canonical size (denoted as Â(xi
t))

11. Let v(x, y) be

the value at location (x, y) on Â(xi
t). Then we accumulate v

to obtain the confidence:

c(xi
t) = a(xi

t,xt−1)
∑

(x,y)∈Â(xi
t)

v(x, y), (15)

where a(xi
t,xt−1) = |A(xi

t)|/|A(xt−1)| is an adaptive scale

weight. It is easy to check that this confidence value does not

take scale change into account. Finally, we normalize c(xi
t)

into [0, 1] to compute the likelihood p(Yi
t |xi

t) for all candidate

targets {xi
t, i = 1 · · · ,m}.

10. Here note that we do not introduce guidance map for tracking.

11. The canonical size for the t-th frame is defined as the size of the tracked
target in the (t− 1)-th frame.

(a) (b) (c) (d) (e) (f)

Fig. 5. Confidence maps calculated by different strategies.
(a) A new frame at time t and the surrounding window
C′(xt). (b) Zoomed-in surrounding window and different
candidate tracking windows (rectangles with dotted and
solid lines). (c)-(f) are confidence maps defined by f , uf ,
f ×uf and f −fb, respectively. The corresponding tracking
windows are also plotted on these maps.

6 EXPERIMENTS

This section presents the evaluation of LTD for visual analysis.

We first perform a simple image segmentation task to verify and

compare the mechanism of our LTD model against conventional

PDEs. We then apply LTD on image domain for saliency

detection. Based on LTD saliency detection results, we further

show that the performance of other vision tasks (e.g., image

retargeting) can also be improved. Finally, we test LTD on

videos for object tracking. Please notice that neither saliency

detection nor object tracking has been addressed by PDEs. In

each task, we compare the performance of LTD against many

state-of-the-art methods on different benchmark data sets. In

this paper, all experiments are run on the same PC with an

Intel Core i7-3770 3.4GHz CPU that has 4 cores and 16GB

memory, running Windows 7 (64-bit) and Matlab (Version

8.2). We also suggest readers to refer to Appendix for the

evaluation methodology and more comprehensive experimental

results. Please notice that this work is to develop a theoretical

framework with insights for various vision tasks, not to provide

a system to achieve best performance in each problem.

6.1 Image Segmentation (Model Verification)
We first design a simple image segmentation experiment to

verify the mechanism of LTD and demonstrate the superiority of

our framework over conventional PDEs for image analysis. For

a given test image, we first show the results of two conventional

image diffusion based PDEs (i.e., level set [38] and active

contour [39]) on the bottom left of Fig. 6. It can be seen that

the evolution of level set is very sensitive to the textures in

the background. Though active contour diffusion can reduce

the influence from background, parts of the foreground are not

correctly segmented.

For LTD, we first consider the unsupervised loss L. It is

shown in the pink region of Fig. 6 (denoted as “L”) that LTD

with L can segment both two cows from the background. How-

ever, such strategy cannot absolutely remove the background12.

To verify the mechanism of the supervised LTD formulation,

we introduce the information gain based regularizer R to the

object function. Then we collect another image (shares similar

object information with the test one) and manually label the

foreground/background to generate our training image pairs (the

12. Please notice that actually the guidance map defined in Section 5.1.2 can
easily address this problem. However, as the goal of this experiment is to verify
our objective functions, here we do not introduce such guidance map for LTD.
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rightmost column in Fig. 6). Here we generate two different

label masks for either the two cows or a single cow and the

corresponding discriminative regularizer (defined by (7)) are

denoted as R2 and R1, respectively. By incorporating super-

vised information to LTD (respectively denoted as “L+R2” and

“L + R1”), we can successfully segment the image following

the priors learned from training data. Finally, we introduce an

adaptive penalty W to the object function. The third column in

the blue region of Fig. 6 illustrates that LTD with W (denoted

as “L + R1 + W ”) automatically chooses one node as heat

source (we set the maximum number of nodes in heat souse

as 3 in this experiment) and achieves the same segmentation

results as that by “L + R1”. In fact, this experiment verified

that our LTD can successfully incorporate discriminative label

information from training data for diffusion learning.

6.2 Saliency Detection (LTD on Images)
In this subsection, we consider saliency detection and perform

experiments on four benchmark image sets which are generated

from three public databases, i.e., MSRA [40], ECSSD [41]

and Berkeley [42]. We first conduct experiments on the widely

used subset of MSRA with 1000 images, which is provided

by [43] (MRSA-1000). Then the comparison is performed on

the whole MSRA database with 5000 images (MSRA-5000).

We also evaluate saliency detection performance on the recently

released ECSSD database with 1000 images, which includes

many semantically meaningful but structurally complex images

for evaluation. Finally, we test algorithms on the 300 chal-

lenging images in the Berkeley image set. Here the number of

superpixels is set to 200 for all the test images. We compare our

LTD method with 19 state-of-the-art saliency detectors, such

as BL [44], UFO [35], IT [45], AC [46], CA [47], CB [48],

FT [43], GB [49], GS [50], LC [51], LR [34], MZ [52], RC [53],

SER [54], SF [55], SR [56], SM [28], SVO [57], and XIE [33].

For quantitative comparison, we report the precision, recall and

F-measure values for the three image sets, respectively. We also

present ground truth (GT) salient regions and the saliency maps

for compared methods.

Qualitative results: We first show example saliency maps

computed by some typical saliency detectors in Fig. 7. As eye

fixation prediction based methods (e.g., IT and GB) can only

identify center-surround differences but miss most of the object

information, here we do not show their results. The simple low-

rank assumption in LR may be invalid when images contain

complex structures. RC explores superpixels to highlight the

object more uniformly, but the complex background always

challenges such methods [47], [49], [53]. In SM, regions inside

a salient object which share a similar color with the background

will be regarded as part of the background. As a result, they

may share the same saliency value with the background region.

In contrast, our method can successfully highlight the salient

regions and preserve the boundaries of objects, thus producing

results that are much closer to GT.

Quantitative results: The quantitative comparisons between

our method and other state-of-the-art approaches are performed

on MSRA-1000, MSRA-5000, ECSSD and Berkeley, respec-

tively. The average precision, recall, and F-measure values are

computed in the same way as in [43], [53], [33], [28]. The

precision-recall curves of all 19 methods are presented in Fig. 8.

The average precision, recall and F-measure values using an

adaptive threshold [43] are shown in Fig. 9. The center-surround

contrast based methods, such as IT, GB and CA, can only detect

parts of boundaries of salient objects. Using superpixels, recent

approaches, such as CB and RC, are capable of detecting salient

objects. But they usually fail to suppress background regions

and also lead to lower precision-recall curves. In Fig. 8, we

observe that GS shares a similar precision with ours when the

recall is larger than 0.96. However, the geodesic distance to

boundary strategy in that method tends to recognize background

parts as salient regions when their colors are significantly

different from the boundary. So in most cases, their precision

is much lower than ours at the same recall level. It can be seen

that overall our LTD saliency detector performs well on most

of these challenging image sets and only the recently proposed

BL algorithm is comparable to LTD.

These results also verify that the proposed learning strategy

can successfully incorporate both bottom-up and top-down

information into saliency diffusion. We also report the CPU

time of several saliency detectors in Table 1. We observed that

the methods with C/C++ implementation (e.g., LC, RC and

FT, denoted as “C”) achieve a fast speed. Due to the simple

formulations, the speed of the eye fixation prediction methods

(e.g., IT and SR, denoted as “M”) are also fast even with

the MATLAB implementation. However, their performance

are worse than the object based saliency detectors. Overall,

LTD is the fastest detector among methods with MATLAB

implementation, including C/C++ library (denoted as “M&C”).

6.3 Image Retargeting (Saliency Driven Application)
In this subsection, we evaluate LTD on saliency driven visual

analysis problems. To address this issue, we consider the image

retargeting task, which is to resize an image by expanding

or shrinking the non-informative regions. It is easy to check

that retargeting algorithm relies on the availability of saliency

map which is used to specify relative importance across image

parts. We perform seam carving retargeting technique [58] with

saliency maps from CA, RC and LTD on example images. It

can be seen from Fig. 10 that our LTD helps produce better

retargeting results than CA and RC. This is because image

retargeting requires that the entire salient objects should be

uniformly highlighted. In Fig. 11, we observe that CA saliency

maps only highlight the object boundaries and RC saliency

maps fail to distinguish the object and the background. In

contrast, LTD can provide more accurate and smooth saliency

maps, thus is more suitable for retargeting application.

6.4 Object Tracking (LTD on Sequences)
To test the performance of LTD on sequential data (e.g.,

videos), we consider the task of object tracking and evaluate

our LTD based tracker (proposed in Section 5.2) against other

19 state-of-the-art tracking methods, i.e., DSST [59], TLD [60],

ASLA [61], CXT [62], VTD [63], CSK [64], DFT [65],

L1APG [66], MTT [67], OAB [68], LOT [69], MIL [70],

IVT [36], Frag [71], SPT [72], ORIA [73], CT [74], VR-

V [75] and SPOT [76], on the tracking benchmark [77] with 50

challenging video sequences. Here the number of superpixels
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(a)
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Fig. 6. Comparisons between conventional PDEs (bottom left) and LTD on image segmentation. The results of LTD
with unsupervised and supervised losses are presented on the pink and blue regions, respectively. We also use dotted
rectangles with different colors to distinguish step results of LTD: (a) heat source determined by different objective
functions (red), (b) stable temperature of learned diffusion systems (yellow), and (c) final segmentation results (green).
The training images with different labels are also illustrated on the rightmost.

Input GT LTD UFO CB LR XIE SM RC CA

Fig. 7. Qualitative comparisons on images from MSRA (top), ECSSD (middle) and Berkeley (bottom) databases.
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Fig. 8. The average precision-recall curves.
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Fig. 9. The average precisions, recalls and F-measures using adaptive thresholding.

TABLE 1
Average running time (seconds per image) for different methods on MSRA-1000 database.

Method LTD UFO CB XIE LR LC SR SM RC FT GB CA SER AC IT
Code M&C M&C M&C M M&C C M M&C C C M&C M&C M M M

Time (s) 0.38 7.69 0.63 95.91 12.42 0.012 0.02 5.21 0.027 0.011 0.61 33.85 1.88 58.35 0.18

Input LTD CA RC Input LTD CA RC Input LTD CA RC

Fig. 10. Image retargeting results of seam carving [58] with CA, RC and LTD.

GT LTD CA RC GT LTD CA RC GT LTD CA RC

Fig. 11. GT and saliency maps of CA, RC and LTD for input images in Fig. 10.

is set to 250. For k nearest neighbor graph, we set k = 10.

The number of particles is set to 600 for each frame. The

number of initial training frames is set to 4 and the observation

probabilities are updated every 25 frames.

TABLE 3
Average FPS for particle filter based trackers on 50 videos

in the benchmark [77].

Method LTD IVT ASLA L1APG MTT SPT
Code M&C M&C M&C M&C M M&C
FPS 3.0 16.0 1.8 2.3 0.7 0.5

Qualitative results: For better readability, we first demon-

strate qualitative results of LTD together with 11 trackers on 6

representative videos. In Fig. 12 (a)-(c), we show the perfor-

mance of different trackers in terms of illumination variation,

deformation, out-of-plane rotation and background clutters even

when the target objects undergo severe occlusion. It can be

seen that IVT and L1APG drift away from the target when it

undergoes non-rigid shape deformation and large pose change.

MTT, ASLA and CXT also do not accurately locate the target

all the time. In contrast, our LTD tracker performs well on

all these sequences. This is mainly because that LTD is able

to exploit both the target and the background appearance thus

can alleviate influence from background pixels. Moreover, as

we define features in the color space rather than modeling the

holistic appearance of objects, LTD is not sensitive to the shape

changes, thus can generate the most accurate results. Fig. 12

(d)-(f) show representative results on 3 video sequences which

highlight other challenging factors (e.g., out-of-view, motion

blur, fast motion and scale variation). It can be seen that our

tracker also performs well in these cases.
We observe that SPOT achieves very good performance

on “Tiger2” sequence (in Fig. 12 (f)) and the quantitative

results are even slightly better than LTD (see Table 2). But

unfortunately, it cannot achieve good results (even fail at the

beginning of some sequences) on other 5 test videos. This is

possibly because SPOT may not handle severe occlusions in

Fig. 12 (a)-(c) or the small size of the object in Fig. 12 (d)-(e).
Quantitative results: To assess quantitative performances

of these trackers, we first report the overlap rate (OR) and

center location error (CLE) in Table 2 for 6 example videos.

To further show the overall performances on the whole tracking

benchmark, we follow evaluation protocols in [77] to plot

the success and precision of all the 19 trackers on 50 video

sequences in Fig. 13. The average performance scores are also

reported in legends of Fig. 13. The average precision value at

threshold 20 pixels for each method is shown in the legend

of the precision plot. The legend of the success plot contains

the area-under-curve (AUC) score for each tracker. It can be
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TABLE 2
Average OR (top, higher is better) and CLE (bottom, lower is better) for 6 example videos. The best and the second

best results are shown in bold and underline fonts, respectively.

Sequence LTD SPT TLD ASLA OAB VTD MTT L1APG CXT Frag IVT SPOT

Basketball
0.74 0.68 0.02 0.38 0.03 0.73 0.19 0.23 0.02 0.62 0.11 0.01
8.11 18.09 213.86 82.63 204.84 5.62 106.80 137.53 214.57 13.02 107.11 169.86

Bolt
0.61 0.56 0.16 0.01 0.04 0.37 0.01 0.01 0.02 0.13 0.01 0.01
7.67 8.59 90.92 374.74 253.76 25.16 408.61 408.41 385.49 183.38 397.05 191.11

Jogging
0.70 0.61 0.66 0.14 0.42 0.13 0.13 0.15 0.13 0.48 0.14 0.20
7.72 8.92 13.56 169.86 36.78 122.19 157.12 145.85 139.7 37.54 138.22 72.23

Freeman4
0.51 0.08 0.22 0.13 0.11 0.16 0.22 0.34 0.17 0.14 0.15 0.01
7.59 70.95 39.18 70.24 133.38 61.68 23.55 22.12 65.64 72.27 43.04 108.70

Skiing
0.48 0.11 0.07 0.09 0.08 0.07 0.09 0.07 0.09 0.03 0.08 0.02
6.62 259.82 142.83 266.61 192.54 263.27 256.42 265.87 153.13 270.01 272.36 260.00

Tiger2
0.55 0.15 0.26 0.14 0.15 0.30 0.29 0.24 0.36 0.12 0.09 0.57
19.49 99.74 36.17 84.69 251.97 40.87 48.75 65.16 41.44 113.54 102.47 17.91

(a) Basketball

(b) Bolt

(c) Jogging

(d) Freeman4

(e) Skiing

(f) Tiger2

LTD TLD ASLA OAB 
MTT 

VTD 
L1APG CXT Frag IVT 
SPT 

SPOT 

Fig. 12. Sampled tracking results on 6 example videos.
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Fig. 13. The success and precision plots over all 50 videos.

observed that our LTD achieves very favorable performance

and only the recently proposed DSST tracker performs better

than it on this challenging benchmark.

Finally, we compare the speed (i.e., frames per second, FPS)

of all particle filter based trackers (i.e., IVT, ASLA, L1APG,

MTT, SPT and our LTD) over 50 videos in Table 3. It can

be seen that IVT is much faster than other particle filter based

trackers as it only involves a simple subspace updating process

on each frame. Our LTD is the second fastest among the

compared trackers.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel PDE learning framework,

called learning to diffuse (LTD), for visual analysis. Within the

framework, we extract both the generative data distribution and

the discriminative category information for diffusion learning.

We verify the proposed model by solving two challenging visual

analysis tasks (i.e., saliency detection and object tracking).

To our best knowledge, neither of these problems has ever

been addressed by PDE based methods before. Comprehensive

experimental comparisons with 19 saliency detectors on 4

saliency databases and 19 trackers on 50 tracking benchmark

videos demonstrate the efficiencies and effectiveness of LTD on

both saliency detection and object tracking.

Our LTD based strategies for particular vision tasks are still

rudimentary and several aspects can be improved in the future.

First, in saliency detection, the human perceptions (i.e., center

and color priors) work well for most test images. But the

guidance may occasionally fail to control the visual diffusion

when these perceptions are in conflict with the salient structure.

For example, as the center prior based guidance cannot highlight

saliency around the image boundary, LTD may detect incorrect

salient regions (e.g., LTD-1 in Fig. 14). Though redesigned

guidance for this image can improve the performance of LTD

(e.g., LTD-2 in Fig. 14), we believe more efforts should be

made for adaptive guidance learning in real world scenarios.

Second, for object tracking, LTD is currently performed in

RGB color space. The bottom row of Fig. 14 illustrated that the

tracking results on “Tiger2” sequence can be improved if we

incorporate histogram-of-oriented-gradient (HOG) feature [78]

into LTD framework. Accordingly, the OR and CLE scores are

respectively improved from 0.55 and 19.49 to 0.60 and 16.35

on this sequence. It can be seen that LTD with HOG is actually
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Input GT LTD-1 LTD-2

LTD and LTD with HOG

Fig. 14. Failed examples of LTD in saliency detection (top)
and object tracking (bottom) and possible improvements.
We obtain LTD-1 using the guidance defined by (11) and
LTD-2 using a new guidance defined by û = f̂b×uc, where
f̂b is calculated by background diffusion with a pre-selected
boundary condition and uc is the color prior. The tracking
results of LTD and LTD with HOG are denoted by red and
green boxes, respectively.

better than the HOG based SPOT tracker, whose OR and CLE

are 0.57 and 17.91, respectively. This experiment suggests that

the properly designed feature space could give rise to better

performance for some particular data and tasks. Therefore, more

investigations on feature engineering are necessary when we uti-

lize LTD for more complex vision problems. Third, we observed

that scaling techniques (e.g., multi-scale boosting [44] and scale

pyramid [59]) achieved good performances in the experimental

comparisons. This suggests us to extend LTD for multi-scale

diffusions learning to further improve the performance.
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