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Abstract—Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often

comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is

important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to

scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including

properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system.

Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis

approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity

measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral

lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides

multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels

of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is

effective in identifying trends and anomalies of the systems.

Index Terms—Cloud computing, multidimensional data, performance visualization, visual analytics
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1 INTRODUCTION

BIG Data analytics and discovery relies on efficient cloud
computing facilities. Like many high-performance com-

puting systems, a cloud computing service consists of a
large number of internetworked machines. But whereas
most high-performance computation is task-oriented (e.g.,
explicitly allocate n nodes to task k exclusively for a time
period), cloud computers are more service-oriented (e.g.,
run an ongoing service continually and add/remove com-
pute nodes dynamically). In order to maximize the effi-
ciency of such a cloud service, it is important to monitor the
compute nodes’ usage and behavior for identifying services
that are over/under-allocated, potentially inefficient serv-
ices that could be optimized, or outlying services or nodes
that are misbehaving or failing. In addition, the privacy of
the users should also be respected.

To optimize the overall cloud computing efficiency, one
essential task is to find similar behavior at differing points
in time (e.g., two different runs of the same application
under different configurations). To this end, many
approaches focus on correlating particular behaviors,
regardless of when it occurred. However, similar to many
other real-time or streaming applications, cloud computer
performance monitoring needs to preserve synchronicity or
chronology, as it is interested in concurrent or subsequent

behavior. Specifically, some of the main objectives are to
identify group behaviors or outlying behaviors as quickly
as possible, such as detecting compute node failures, ineffi-
cient use of system resources, or even malicious or suspi-
cious behaviors.

This can be done by tracking general usage metrics, such
as CPU load, network load, memory usage, disk read/write
load, etc. But these individual metrics can all be very noisy
(i.e., has high variance), and the system is in constant flux.
The high frequency patterns make traditional line charts
nigh unreadable if all lines are plotted at once. Smoothing
the data can alleviate this problem, at the expense of
sacrificing high variance patterns, though high variance pat-
terns are frequently important to the analysts.

In time critical situations, it is important for a visual sys-
tem to very succinctly convey such overall trends whilst
preserving time as a dimension. In particular, it is more
important to summarize this than to present individual
dimensions. While traditional line charts generally suffice
for a single dimension at a time, associations between differ-
ent plots can be difficult or even impossible.

Here, we present an effective visual analytic design for
characterizing the evolution of cloud computing activities,
based on comparing entities’ behavioral similarity over
time. We employ windowed signal processing techniques
to smooth and summarize noisy behaviors. Then, we use
these statistics to derive a force-directed line chart, where
lines corresponding to similarly behaving compute nodes
are bundled together, and differing behaviors repel each
other. This reduces the complex, multidimensional time-
series into a simple, intuitive representation of the evolution
of these behaviors over time. Since the tasks on such a sys-
tem are typically parallelized to be running identical code,
nodes that are working on the same task would generally
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exhibit very similar behavior, and thus be bundled together
in our similarity line chart. On the other hand, outlying
behaviors become quite apparent, as a misbehaving node
would separate itself from the rest of the lines. The resulting
picture gives the user a high level summary of the system’s
utilization. This view is combined with several other more
conventional views to manage and explore the data, allow-
ing for efficient exploration of large and complex perfor-
mance data sets. The result is an interactive visual analysis
tool that can effectively help maintain and optimize large-
scale cloud computing services.

2 RELATED WORK

The analysis of time-varying, multidimensional data [1] is
an important topic in many fields of research, including
data mining [2], visual analytics [3], and GIScience [4]. Most
of these focus on detecting trends in time varying trajecto-
ries, such as stops or interactions between trajectories.
Many of them also focus on aggregating trajectories to pro-
duce summaries. The ability to explore such datasets inter-
actively at different resolutions is key to gaining deep
insight into them. Jaja et al. [5] develop indexing techniques
and search algorithms to efficiently handle temporal range
value querying of multidimensional time-varying data.
Another proposed method to visualize multidimensional
time-varying data is through the estimation of symbolic
sequences that are based on both the spatial and temporal
attributes of the data [6]. These symbolic sequences reduce
the loss of data and at the same time are used for various
supervised and unsupervised data-mining tasks. [7] aims at
efficient analysis of similar trajectories based on the Longest
Common Subsequence (LCSS) model. This in turn increases
the robustness of the systems against noisy data making it
applicable to real world data like GPS tracking, wireless
applications, video tracking [8] and motion capture [9].
Franciosi and Menconi [10] use entropy and statistical
linguistic techniques to analyse multi-dimensional time-
varying data. Similar to [6], the data is first translated into a
multi dimensional symbolic sequence and markers are then
defined to encode the characteristics of the time series. The
trend of the data is then derived from its entropy with
respect to a moving window analysis.

There are several other papers that have contributed
towards temporal pattern search. Fails et al. [3] design a
visual interface for finding temporal patterns in multivari-
ate temporal data. This approach was employed in [11] for
searching similar temporal patterns in clinical history.
While [3] and [11] did not have automated methodologies
for the mining procedure, [12] employed automated FPM
algorithms to the sequences returned by a visual query to
automatically view the mined results. Mining of multidi-
mensional time-series helps to understand causal relation-
ships in time-varying data. Mohammad and Nishida [13]
propose that causal relations in time-varying data can be
unearthed by analyzing meaningful events in time series
rather than the raw data itself. In order to do this, they use
the RSST (Robust Singular Spectrum Transform) algorithm
to identify these points in the time series. The Granger-
causality test is then applied to validate the occurrences of
the basic events. When the proposed model was applied to

mine records of a real world application, the causality
graphs proved very helpful in representing underlying rela-
tions between the cause and effect of the dataset.

Many tools exist that can collect low-level trace data from
large parallel systems, recording event-level details of paral-
lel processes [14], [15], [16]. A number of visualization tech-
niques have been developed for analysis of such trace data.
Often, they employ interactive timelines with line or point
plots [17], [18]. Others use animation to represent time [19].
And others use network representations to summarize com-
munication patterns/trends [20]. But these approaches pri-
marily rely on trace-level data, which is unfeasible to collect
constantly for an entire system.

Profile level data on the other hand, summarizes the data
at a higher level, such as per-process or per-function values
averaged over timesteps. ParaProf [21] is an example of a
visual system that is designed to study such profile informa-
tion. Real-time dashboards and other monitoring systems
have to rely on profile data because the low level informa-
tion would be overwhelming. Virtue [22] is one such real-
time visualization system which uses immersive 3D techni-
ques to monitor the current state of a system geographically.
But these approaches generally only look at one data dimen-
sion at a time.

The idea of plotting dimensionless lines over time to
exhibit behavior has also been explored in the past. Story-
lines [23], [24], [25], [26] are a popular discrete form of this,
where cluster membership is shown directly by line bun-
dling. However, for the kind of data we are discussing, such
a discrete representation of group membership could
reduce the fidelity of the input data, as the results would
depend on a clustering algorithm. Analog variants of this
kind of approach have also been shown to be effective for
movement trace data [27]. In this work, the authors
employed a dimensional reduction projection to generate
the behavioral line summary. However, this approach only
works well if the whole dataset range is available at once,
and is rigid with its layout, making it less suitable for noisy,
highly dynamic, or streaming data.

A force-directed layout [28], [29] of data is adopted in
many visualization designs. Besides offering an aestheti-
cally pleasing visualization of the data, the force-direct lay-
out may bring out essential structures in the data. In [30],
network data is derived from high dimensional data and
visualized with a force-directed layout to guide the follow-
ing parallel coordinate visualization for assessing the corre-
lation in the data. In [31], multidimensional weather data is
first represented as a weighted complete graph and then
visualized by laying out the graph based on a force model
to reveal the overall relationship between the dimensions,
from which the user can further explore the details using
other visualization techniques. Our approach also offers an
overview of the data based on a force-directed method to
guide the following visual exploration of selected data sub-
sets. Unlike most visualization works which employ 2D lay-
outs, our work uses 1D layout.

3 SYSTEM DESIGN & METHODOLOGY

At most cloud computing facilities, the state and perfor-
mance of devices and computing are typically monitored
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through simple dashboards which small multiples of
individual metrics, or a Gantt chart, which plots one met-
ric over time for all processing units’ activities as rectan-
gles or as a heat map over a chosen time period. For
large-scale computing, neither of these approaches are
visually scalable to large numbers of process or multiple
metrics, hampering analysts’ ability to explore and find
connections among all nodes. Rather than trying to pres-
ent all the low level data directly, we found it better to
visually organize nodes according to higher level behav-
iors of interest, which allows the analysts to comprehen-
sively group processes of a similar behavior, and more
quickly identify, track down and understand the cause or
impact of anomalous behavior.

To analyze large complex data, our system is comprised
of multiple, tightly linked views as shown in Fig. 1. The
core technique of our approach is a behavioral plot, which
plots similarity between entities as closeness between the
lines, comparable to storyline visualizations [26]. There is
an underlying analytic process required to generate this
plot, as summarized in Fig. 3. The user selects a range of
time to load, which is pulled from a database. The underly-
ing data can be represented per dimension as sets of 1D
time series. These time series are then transformed into 2D
traces in a statistical space, consisting of the windowed
mean and standard deviation of each series over time. The
traces in this space are now smooth enough to be compared
against each other, so for each time step, we use a euclidean
metric to summarize the distance between entities, and
compute 1D forces between entities at each time step to lay
out lines in a new, behavioral plot.

The vertical axis of this behavioral plot is thus dimen-
sionless, and the horizontal axis is time. Reading this plot is
not a matter of reading individual lines on their own, but
rather observing their interactions in the context of the other

lines. For instance, a single line distinct from the rest of the
lines is exhibiting outlier behavior (Fig. 4a), whereas a bun-
dle of lines would be an example of a cluster of very similar
behavior (Fig. 4b). As entities behaviors change, they often
join existing bundles (Fig. 4c), leave them (Fig. 4d), or even
shift immediately between two groups of behaviors
(Fig. 4e). Sometimes an entire bundle of entities change
behavior suddenly, resulting in a sharp corner in the plot
(Fig. 4f). Sometimes entire bundles split in half (Fig. 4g).
This could be indicative of one job finishing only to be
replaced by two smaller jobs. And lastly, some behaviors
are just unpredictable (Fig. 4h), which could indicate an
anomalous event that affected a particular entity.

We also expose each step in the transformation process
as auxilliary views, so that the user can investigate the prov-
enance of an observed behavioral pattern. Each view
focuses on a different aspect of the data, at different levels
of detail. Selection or brushing in any view is linked to the
display of data in the other views, allowing for dataset
exploration. As each timestep is transformed and layed out
incrementally using temporally local data, the approach is
also apt for supporting streaming data.

3.1 Stacked Graph Timeline

The stacked graph timeline (shown in Fig. 5) is a broad
overview of the data, and the first visualization the user
sees upon loading a data set. It shows metrics aggregated
across the entire cloud machine over time. Each layer of the
graph represents one metric, which is normalized and col-
ored according to Fig. 2.

From this graph, the user can perceive some macro pat-
terns over time such as a spike or a valley, which may indi-
cate anomalies or bottlenecks within the cloud computing
system. While this view is relatively simple, it effectively
brings the user’s attention to interesting time ranges in the

Fig. 1. The three main views of the visual analytics system. The timeline view at bottom summarizes the aggregate behavior of the entire cloud com-
puter per dimension over time. When a time range is selected, the system generates a behavioral similarity line plot (top left), where each line is an
individual compute node. These lines are bundled according to their similarity, so that similar nodes group together and anomalous nodes separate
out. Individual line bundles can be selected via brushing, and their properties can be inspected in detail (top right). Color legends are shown in Fig. 2.
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dataset, impelling the user to conduct further analyses
together with other linked views.

3.2 Traditional Scatter/Line Plots

At the other extreme is a detailed view of one dimension
over time. While traditionally, such time varying data is
represented as line plots, the temporal resolution of the data
we were investigating do not scale well in line plot repre-
sentations, particularly when there are lines with high vari-
ance. For example, in Fig. 6a, the selected entity’s line is
relatively stable, but in Fig. 6b, the selected entity exhibits a
large amount of variance, and simply drawing the one line
obscures most of the plot. Because of this, our system does
not render all the lines at once. Rather, we render the data
points in a scatter plot fashion, and only connect the points
of a user-selected entity. That, combined with the limitation
that such a plot only shows one dimension at a time, makes
this representation only acceptable for detailed inspection.
Various lensing and interactive fish-eye distortion techni-
ques are also utilized, but they were not found to be suffi-
cient to handle such convoluted data alone. However, even
in data entities with high variance, regular cyclic patterns
were observable, which led us to investigate the applicabil-
ity of signal processing techniques.

3.3 Statistical Plots

One common technique in signal processing for dealing
with noisy, but trending data is to smooth it out by sam-
pling local means or medians. However, smoothing the

data sufficiently enough to show trends sacrifices the infor-
mation pertaining to the noisiness itself. To counter this, we
consider not only local means but also local standard devia-
tions. That is, for each entity i, dimension d, and time t we
consider a sliding window of t� a. In order to avoid sharp
jumps as data points enter or exit the window, we compute
a gaussian kernel, as is generally considered appropriate for
temporal sampling [32]. That is, for a set of data Di; d; t we
compute the weighted mean mi;dðtÞ and standard deviation

si;dðtÞ as:

mi;dðtÞ ¼
Pa

k¼�a Di;d;tþk � wðt; kÞPa
k¼�a wðt; kÞ

si;dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa

k¼�aðD2
i;d;tþk � m2

i;xðtÞÞ � wðt; kÞPa
k¼�a wðt; kÞ

s
;

where

wðt; kÞ ¼ e
�ðt�kÞ2

k2 :

Once these values are computed, it is possible to plot m ver-
sus s as a line plot (Fig. 7) and clusters readily become
apparent. However, such a representation loses the context
of time, as it becomes impossible to differentiate if two enti-
ties actually crossed paths or not. Such a view is also still
limited to one input dimension at a time.

3.4 Behavioral Similarity Plots

While the statistical process can clean up one dimension at a
time, our objective is to handle multiple dimensions. In

Fig. 2. Color legends for the stacked graph and brushing selection.

Fig. 3. The overall process of computing behavioral similarity lines for a
collection of entities with time-varying metrics. A time range is selected
from the timeline view, which depicts overall aggregates over all entities.
Each node’s time series could traditionally be rendered as individual
lines per dimension. These plots can be very noisy, but windowed signal
processing metrics map the entities to a 2D statistical space, where simi-
larly behaving entities are consistantly placed. By considering distances
in this statistical space, we can compute forces between entities at each
time step, and use these forces to lay out a smooth line plot over time.

Fig. 4. Example behavioral line patterns. The y axis is dimensionless, so
understanding of the plot comes from observing the lines positioning
and interaction relative to each other. While the meaning of the patterns
that these lines form can be domain dependant, there are a number of
common patterns that are fairly general. Lines can either be independent
or in a group of other lines. They can join, leave, or switch between
groups dynamically. Large groups of lines can change behavior together.
And odd or anomalous behavior stands out.

Fig. 5. The stacked graph timeline. The x axis is time, and the height of
each layer is the average value of the represented metric over a period
of time. This particular data set contains 4 hours of logs.
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order to combine all the desired dimensions, we compute a
similarity metric S as:

Sij ¼
Xn
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mm;i � mm;j

mm;max � mm;min

� �2

þ sm;i � sm;j

sm;max � sm;min

� �2
s0

@
1
A

�1

between every two nodes i; j over time via the aforemen-
tioned localised statistics for each timestep. n is the number
of user-selected dimensions. The user can control which
dimensions to include or exclude. Currently, we normalize
the data in each dimension, and employ a standard euclid-
ean metric. This is appropriate because we want to group
entities with both similar m and s, and separate nodes that
differer in either. We accumulate euclidean distance of all
the selected metrics m to derive the overall similarity. We
then use this similarity matrix as input to a force directed
calculation:

Fa ¼ k1 � Sij � d

Fr ¼
k2 � 1� Sij

� �
d

in order to generate a behavioral similarity timeline plot.
Here, Fa is the attractive force (Hooke’s law), and Fr is the
repulsive force (Coulomb’s law). Coefficients k1 and k2 are
chosen to guarantee that two nodes have very similar Fa

and Fr when they reach the minimum distance dmin.
We compute a 1D force-directed layout for each time-

step,and use this to lay out a behavioral line for each
compute node. Similar behaviors bundle together,
while outliers diverge. Like many force-directed
approaches, we employ an iterative calculation based on
Fruchterman-Reingold [29]. For the first timestep, the ini-
tial line heights are randomized. While this means the
plots are not necessarily deterministic, the end results
tend to look similar enough, without the need for more
complex initialization. However, subsequent time-steps
are initialized by reusing the previous time-steps’ layout.
This offers a good amount of stability to the layout, and
also reduces the number of iterations that are needed. In
order to further increase stability and account for gradual
differences between the timesteps, we found it helpful to

apply standardization to scale each time step, which is
defined by subtracting the mean value and dividing by
the standard deviation. This primarily helps keep the plot
centered over time, and compensates for the drift due to
extra iterations of force directed computation in later time
steps. Excessively iterating the initial timestep could also
potentially solve this drift problem, but would require
greatly increased computation time.

The upper left view in Fig. 1 is an example of such a plot.
The same view appears in Fig. 11. The y axis in this view is
computed according to the similarity of the entities in each
timestep. Thus, in this view, lines that run close together
indicate entities that were similar in behavior over a certain
period of time, such as compute nodes running identical
code and working on the same task. Lines that branch off
indicate anomalous entities, such as compute nodes that
may be under/over-utilized for instance. In this manner,
this view provides a succinct summary of the behavioral
patterns across the whole system for a range of time. It can
also indicate regions of the data that warrant further investi-
gation in the detailed views.

As the number of lines grows, such behavioral line plots
often create visual clutter, i.e., lines tend to overlap with
one another. In order to improve the scalability and usabil-
ity of such visualization, we provide a magnifying lens for
the user to untangle the clutter. As shown in Fig. 8a, we can
hardly see any detail inside the line bundle. With the magni-
fying lens (Fig. 8b), lines are spread out and thus can be bet-
ter distinguished, also making it possible to select lines
from a bundle.

3.5 Detail Plots

The behavioral lines abstract away all the original dimen-
sional information. However, when the user finds interest-
ing patterns or outliers in the behavioral lines, the system
should enable investigation into the detailed data. While
na€ıvely rendering the raw data is not that effective, we can
plot the smoothed statistical lines over time to depict the

Fig. 6. Even plotting one dimension of the data over time can be prob-
lematic when the data is noisy. In some cases, the data is fairly stable
and traditional line plots would work (a). However, in many cases, the
lines themselves are quite noisy (b). While drawing all the lines would be
useless, rendering as points can provide context, and individual traces
drawn on top for detailed analysis. Fig. 7. Signal processing techniques can extract structure from the noisy

data. Here we plot the windowed mean (on y) versus a windowed stan-
dard deviation (on x) of one data dimension as a line for each entity. Very
clear clusters are visible along the left of the plot (low variance), while
noisier clusters and outliers are to the right. Colors used here encode
nothing but are used to distinguish lines.
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underlying multidimensional time series. To this effect, we
implemented a small multiples view that plots the smoothed
mean curve in each dimension for each selected group of
compute nodes. That is, for each selection in the behavioral
lines view, we populate a column of detail views, plotting
the statistics over time for the corresponding row’s
dimension.

In order to visualize these statistics, we borrow techni-
ques from uncertainty visualization [33]. Rather than just
plotting the raw data or the smoothed mean curve, we
plot the semitransparent range ½mi;dðtÞ � si;dðtÞ; mi;dðtÞ �
si;dðtÞ� over time for each selected node i. This can be
seen in Fig. 9, where one of these plots is blown up for
closer view.

4 CASE STUDIES

Here, we demonstrate visual analysis of performance pro-
file data collected from two live cloud systems. One set of
data is collected from a system with 476 nodes over a period
of 2 weeks, at a 10 second resolution. The other dataset is
high-resolution obtained from a system of around 70 com-
pute nodes, sampled at 2 second resolution for 2 periods of
time: a 4 hour period and a 24 hour period. The metrics
used in these datasets are shown in Table 1, and are colored
according to the color map in Fig. 2.

Fig. 10a shows the full time range of the same collected
dataset used in Fig. 1. In this dataset, there are a number
of interesting behaviors. The system is quite uniform at
first, then the lines are split into two main behavioral
clusters (the red one and the yellow one). From the
detailed view, it is found that the strong split is because

the compute nodes corresponding to the red lines surge
in CPU, I/O, and memory usage about 10 hours before
the yellow ones. Once the nodes corresponding to the yel-
low lines join in, there is a point where the two clusters
almost rejoin, before remaining mostly distinct. This
could indicate that the yellow nodes have a different sys-
tem configuration, which allowed them to catch up and
then surpass the red nodes. Also, we can easily find out
two abnormal nodes (the cyan one and the green one),
they are away from all other lines because their CPU utili-
zation is much lower than others, as we can see from the
detailed view. However, their standard deviations are rel-
atively small, so we refer to the statistical line view, as
shown in Fig. 10d, where the maximum standard devia-
tion of both nodes (highlighted in Figs. 10b, 10c) is
lower than that of other nodes, indicating that both nodes
act more stable than others. And we can also find out the
two outliers easily from the statistical line view (Fig. 10d).

Fig. 11 shows a selection of the middle portion of the 4
hour dataset. For the most part, the lines bundle into clus-
ters, indicating a smoothly running system, with an excep-
tion of the green nodes. From the detailed view, we can tell
that the two green nodes are much like the yellow cluster;
they may have just been trapped in the force directed layout
for a while before self-correcting. For the red and yellow
clusters, the primary difference between them is the CPU
and memory usage, we can see that from the detail plots,
both CPU and memory utilization of the red cluster are a lit-
tle higher than the yellow one. It indicates that they may be
working on different jobs or have a different hardware con-
figurations. For the blue cluster, it is tightly bundled

Fig. 8. magnifying lens (Cartesian distortion) applied to behavioral lines. Overlapping is severe in (a), we can not see any detail of the bundle. After
applying the magnifying lens (b), individual lines are spread out for viewing and selection. The two red lines in (c) would normally be impossible to
isolated.

Fig. 9. The detailed view consists of an array of small multiples per
dimension and per selection. Each plot renders semitransparent areas
over time to convey the smoothed statistical metrics. The thickness of
the area corresponds with the variance of the timeseries.

TABLE 1
Metrics Collected from the Two Cloud Systems for Case Studies

Metric 476 node system 70 node system

CPU Utilization
p p

Memory Idle
p p

Network Lo
p

Network Download
p p

Network Upload
p p

Disk Read
p

Disk Write
p

Disk Utilization
p

Load
p
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because all the nodes belong to this cluster seem to be idle,
as shown in the detailed view.

The 24 hour dataset exhibits much more interesting
behaviors, particularly since there is a gap in the middle of
the dataset where the cloud system was inaccessible - possi-
bly due to maintenance or an update. Fig. 12a shows the
timeline stacked chart of the overall system behavior. The
gap is quite obvious, but there are a number of other notable

spikes and behavior shifts. We explore some of these in the
more detailed view.

Early in the overall time period, as we can see in Fig. 12b,
the system is fairly constant, some nodes have periodic behav-
ior, and some disk-heavy nodes suddenly drop to 0, which
lead to a shift. Then, a little after 2:00, we can perceive a drasti-
cally change in the layout, which turns out to be caused by a
spike in disk reads in the yellow and green clusters.

Fig. 11. A time-range selection from the 4 hour data set. The behavior is overall very stable, grouped into several clusters. The red group and the yel-
low group are very similar, with a little difference in CPU and memory usage. The two green nodes are much like and finally shift into the yellow group.
The blue group is tightly bundled together, because those nodes seem to be idle and all metrics are very much the same.

Fig. 10. The two week dataset. The behavior line view (a) shows an overall trend where one bundle splits into two, with a number of outliers. Investi-
gating some of the outliers reveals that the underlying statistical lines (b-c) have very unique patterns, particularly with respect to the context of the
entire dataset (d).

1700 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 6, JUNE 2016



In Fig. 12c, at around 3:15 and 3:40, two valleys emerge
for the red cluster due to CPU spikes. After that there comes
the second spike, primarily affected by the green and yellow

clusters, mostly hitting their CPU load. Fringe nodes, such
as those in the cyan cluster, are pushed away, even though
their pattern doesn’t change.

Fig. 12. A cloud computer system, over a 24 hour period with an outage in the middle. There are some significant events leading up to the outage, and
a period of flux after the outage as the system returns to a steady state. Excerpts from the detail view are inset for space to describe the more inter-
esting patterns.
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Leading up to the outage, the two primary clusters
exhibit more sporadic but synchronous behavior Fig. 12d,
with the exception at 5:50, when each cluster diverges
briefly in disk reads. For the outage, it is noteworthy that
this affects all nodes seemingly equivalently, indicating that
it is a system-originated effect, like a system-wide out of
power, and not likely job or user originated.

After the outage (Fig. 12e), the two primary clusters
begin synchronized, before splitting into two distinct
groups based on different memory usage. Outliers, the
green node and the highlighted red node, can be easily rec-
ognized, because any anomaly in any metric of the node is
exhibited in its behavior line.

Then the system moves into a more synchronized pattern
(Fig. 12f). While the two primary clusters are changing CPU
load behavior over time, the changes synchronize well,
leading to the stability of the layout.

Finally, the whole system settles into a steady state for
the remainder of the time range (Fig. 12g), with several
anomalies in the red and yellow nodes.

5 DISCUSSION AND FUTURE WORK

The main contribution of our design is the presentation of a
succinct overview of the whole cloud computation system,
which provides effective indicators for the analysts to more
easily locate system anomalies or bottlenecks. Nevertheless,
it is possible for the overview to possibly miss some subtle
events due to the similarity metric used. For example, two
processing nodes could shift in different metrics such that
the behavioral lines of these two nodes tend to be bundled
together when they should not, but such occurrences are
not likely. Allowing the users to assign different weights to
different dimensions may reduce this problem.

Before we compute a force-directed layout for the
behavioral similarity plot, we first need to smooth the orig-
inal data, because the original, noisy data is not that use-
ful, as shown Fig. 6. The data used in the stacked graph
timeline view is smoothed in the same way as the data
used in the behavioral similarity plot view. The choice of
the smoothing window size could be critical to the results;
a small window size might not provide enough readability
while a large window size could lose too much of the origi-
nal information contained in the data. Fig. 13, shows an
exploration of the parameter space; from left to right, the
window size is 0, 32, and 64, respectively. Line patterns
better reveal themselves as the window size increases, but
some features can become less clear or almost disappear in
the extreme case. While this provided insight to find a

decent default value, we also allow users to interactively
adjust the window size in the stacked graph timeline view.
After an interesting pattern is identified with one window
size, the user can adjust the window size according to the
corresponding time range, which is then applied to
smooth the data used to compute the behavioral lines. In
this way, our approach enables users to find a good win-
dow size to smooth the data contextually.

Our approach utilizes basic signal processing techniques.
However, other applications could greatly benefit from
combining our approach with more sophisticated signal
processing techniques, such as wavelets or Fourier analyses.
The force directed approach we implemented is rather
na€ıve and inefficient, as it has to compute a full Oðn2Þ repul-
sive forces, and it may encounter problems with local
minima – particularly in 1D. More efficient layout
approaches could be incorporated to increase the scalability
to larger data sets. Dynamic clustering approaches could be
incorporated to aid in this. We plan to develop a hierarchi-
cal force-directed algorithm with a time complexity of
OðnlognÞ for faster layout computing to be better capable of
handling streaming data. And when a line plot such as the
one we have used grows too dense, additional visual sum-
marization techniques could be explored. Last, while we
have demonstrated some applications of our visual-based
approach through case studies, a more extensive study that
allows us to validate the findings experimentally would fur-
ther prove the effectiveness of our approach.

6 CONCLUSION

Time varying multidimensional data commonly found in
many Big Data applications can be very difficult to reason
effectively. When the data is noisy, this challenge is greatly
compounded. We have developed a new approach to visual
summarization of such complex data in a way that is intui-
tive and simple. In particular, it enables visual analysis in a
novel statistical space and has the potential to support
streaming data analysis. We have demonstrated the visual
analysis process with case studies on two datasets that exist-
ing techniques were ill-equipped to handle. While these
data sets were obtained from logging cloud computing, the
applicability of our approach extends to innumerable other
domains, and could greatly help in other complex, time crit-
ical situations. Although behavior plots may not present
every facet of the data to the user in isolation, they provide
good indicators to attract analysts’ attention and they link
well with more detailed or traditional visual analytic
approaches.

Fig. 13. The effect of different smoothing window sizes. From left to right, the smoothing window sizes are 0, 16, and 64, respectively. Color of the
behavioral lines here encodes nothing but is used to distinguish from each other.
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