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a b s t r a c t

In this paper, we study a new form of reverse nearest neighbor (RNN) queries, i.e., obstructed

reverse nearest neighbor (ORNN) search. It considers the impact of obstacles on the distance be-

tween objects, which is ignored by the existing work on RNN retrieval. Given a data set P, an

obstacle set O, and a query point q in a two-dimensional space, an ORNN query finds from P, all

the points/objects that have q as their nearest neighbor, according to the obstructed distance

metric, i.e., the length of the shortest path between two points without crossing any obsta-

cle. We formalize ORNN search, develop effective pruning heuristics (via introducing a novel

concept of boundary region), and propose efficient algorithms for ORNN query processing as-

suming that both P and O are indexed by traditional data-partitioning indexes (e.g., R-trees). In

addition, several interesting variations of ORNN queries, namely, obstructed reverse k-nearest

neighbor (ORkNN) search, ORkNN search with maximum obstructed distance δ (δ-ORkNN), and

constrained ORkNN (CORkNN) search, have been introduced, and they can be tackled by ex-

tending the ORNN query techniques, which demonstrates the flexibility of the proposed

ORNN query algorithm. Extensive experimental evaluation using both real and synthetic

data sets verifies the effectiveness of pruning heuristics and the performance of algorithms,

respectively.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Given a multi-dimensional data set P and a query point q, a reverse nearest neighbor (RNN) query retrieves all the points

in P that have q as their nearest neighbor (NN). Due to its wide application base such as decision support [15], profile-based

marketing [15,26], and resource allocation [15,35], RNN is one of the most popular variants of NN queries [7,12,14,17,20]. Formally,

RNN(q) = {p ∈ P | q ∈ NN(p)}, in which RNN(q) represents the set of reverse nearest neighbors to q and NN(p) denotes the NN of a

point p ∈ P. Consider an example in Fig. 1a, where the data set P consists of three data points (i.e., p1, p2, p3) in a two-dimensional

(2D) space. Each point pi (1 ≤ i ≤ 3) is associated with a vicinity circle/arc cir(pi, r) centered at pi and having r = dist(pi, NN(pi))
✩ This paper is an extended version of the conference paper, titled “On Efficient Obstructed Reverse Nearest Neighbor Query Processing”, which has been

published in the Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS 2011),

November 1–4, 2011, Chicago, IL, USA. Specifically, the paper extends the conference paper by including (i) additional three interesting variants of ORNN queries,

i.e., ORkNN search (Section 7.1), δ-ORkNN retrieval (Section 7.2), and CORkNN search (Section 7.2); (ii) enhanced experimental evaluation that incorporates the

new classes of queries (Section 8); and (iii) more complete and informative related work (Section 2), more pseudo-codes, more illustrative examples, and more

analyzes. More details concerning this paper’s extension have also been pointed out explicitly in Section 1 of the paper.
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Fig. 1. Example of RNN and ORNN queries
as its radius, i.e., the vicinity circle/arc cir(pi, r) covers the NN of pi. Here, dist() refers to a specified distance metric. As shown in

Fig. 1a, for the RNN query issued at a point q that uses the Euclidean distance as the distance metric, its result set RNN(q) = {p1},

since q is only inside p1’s vicinity arc cir(p1, dist(p1, p2)).

RNN search has been well studied, and many efficient algorithms have been proposed to support RNN query and its vari-

ants. A short review of some representative algorithms will be presented in Section 2.1. Existing algorithms employ either the

Euclidean distance in a Euclidean space or the network distance in a road network to measure the proximity between objects. To

the best of our knowledge, all those algorithms do not take into account the existence of obstacles (e.g., buildings and blindage).

However, obstacles are ubiquitous in the real world, and their existence may change the distance between objects, and hence

affect the final query result. Recently, the impact of obstacles on various research problems has attracted much attention from

academy [10,11,13,19,23,32,34,39], and many work have been conducted, by taking the influence of obstacles into consideration.

For example, the spatial clustering in the presence of obstacles (e.g., COD_CLARANS [29], DBRS_O [30], DBCLuC [38], etc.) is a new

research direction for the data mining community formed by considering the impact of obstacles on spatial clustering.

In this paper, we study the impact of obstacles on RNN retrieval in a Euclidean space, and form a new type of RNN queries,

namely, obstructed reverse nearest neighbor (ORNN) search. Given a data set P, an obstacle set O, and a query point q in a 2D space,

an ORNN query finds from P, all the points that take q as their NN, according to the obstructed distance, i.e., the distance/length

of the shortest path that connects two points without crossing any obstacle. An example is depicted in Fig. 1b, where P = {p1, p2,

p3} and O = {o1, o2}. To simplify the discussion in this paper, we assume that obstacles are in rectangular shapes, although they

could be in any other shape as well.

Let ||pi, q|| be the obstructed distance from a point pi to q, and ONN(pi) be the obstructed nearest neighbor (ONN) of pi that

has the smallest obstructed distance to pi compared with other points. We associate each point pi ∈ P with (i) an arc arc(pi, ||pi,

ONN(pi)||) centered at pi and with radius ||pi, ONN(pi)||, and (ii) its obstructed path to q. For instance, the arc arc(p3, ||p3, p2||)

centered at p3 and having ||p3, p2|| as the radius indicates that p2 is the ONN to p3, and the straight line from p3 to q denotes the

obstructed path between them without crossing any obstacle. It is observed that ||p3, q|| < ||p3, ONN(p3) = p2|| and ||p2, q|| < ||p2,

ONN(p2) = p3||, and thus, q is the ONN to both p2 and p3, i.e., q’s ORNN set ORNN(q) = {p2, p3}. Note that, p1 is the RNN of q in a

Euclidean space (see Fig. 1a), but it is not the ORNN of q in an obstructed space due to the block of obstacle o1.

We focus on ORNN search because, it is not only a challenging problem from the research point of view, but also very useful

in many applications. As an example, suppose KFC plans to open a new restaurant and wants to distribute coupons to its poten-

tial customers for promotion. Assume that there are some buildings and parks (i.e., obstacles) around the new restaurant, and

customers who have the new restaurant as their obstructed nearest restaurant are more likely to visit. Consequently, in order

to ensure the effectiveness of the promotion, KFC needs to identify the persons that take the new restaurant as their obstructed

nearest restaurant, and distribute coupons to them. In addition, due to the ubiquity of obstacles, the ORNN query is obviously

important, as a stand-alone tool or a stepping stone, in location-based services, geographic information systems, and complex

spatial data analysis/mining involving obstacles.

In addition to the ORNN query, we also study several interesting variations, i.e., (1) obstructed reverse k-nearest neighbor

(ORkNN) search, which retrieves all the points in the dataset P that take a given query point q as one of their obstructed k-nearest

neighbors (OkNN); (2) ORkNN retrieval with an obstructed distance threshold δ (δ-ORkNN), which finds the ORkNN points that has

the obstructed distances to q bounded by a pre-defined threshold δ; and (3) constrained ORkNN (CORkNN) search, which returns

the ORkNN points in a specified restricted area (defined by the spatial region constraints).

In this paper, we present an efficient solution to tackle the ORNN query, which follows a filter-refinement framework and does

not require any pre-processing. Moreover, we extend ORNN query algorithm to efficiently handle ORkNN, δ-ORkNN, and CORkNN

queries, respectively. In brief, the key contributions of the paper are summarized as follows:

• We formalize ORNN search, a new addition to the family of spatial queries in the presence of obstacles.

• We introduce a new concept of boundary region to facilitate the pruning of unqualified data points and node entries.

• We develop efficient algorithms to answer exact or approximate ORNN retrieval.

• We extend ORNN query techniques to handle several variations of ORNN queries, i.e., ORkNN search, δ-ORkNN search, and

CORkNN search.
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• We conduct extensive experiments with both real and synthetic data sets to verify the effectiveness of the presented pruning

heuristics and the performance of the proposed algorithms.

Note that, this paper extends our preliminary work [9] in several substantial ways. First, we investigate three new ORNN query

variants, i.e., ORkNN, δ-ORkNN, and CORkNN queries. Second, we conduct a more comprehensive performance evaluation which

incorporates the new classes of queries. Third, we present a more complete review of the related work and more illustrative

examples, to make the paper self-contained.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 formulates the ORNN query. Section 4

discusses pruning heuristics. Section 5 presents ODC and BRF Algorithms. Section 6 elaborates algorithms for processing ORNN

search. Section 7 extends ORNN query solution to tackle several ORNN query variants. Considerable experimental results and our

findings are reported in Section 8. Finally, Section 9 concludes the paper with some directions for future work.

2. Related work

In this section, we overview the existing work related to ORNN retrieval, including RNN search, spatial queries with obstacles,

and main-memory obstacle path problems.

2.1. RNN queries

Existing algorithms for RNN query and its variants can be classified into three categories. The first category is based on pre-

processing [15,35]. It pre-computes, for each point p in a given dataset P, the distance from p to its NN p′ (i.e., NN(p)), and forms a

vicinity circle cir(p, dist(p, p′)) centered at p and having dist(p, p′) as its radius. Then, for a specified query point q, it examines q

against all the vicinity circles cir(p, dist(p, NN(p))) with p ∈ P, and those having their vicinity circles enclosing q constitute the final

query result, i.e., RNN(q) = {p ∈ P | q ∈ cir(p, dist(p, NN(p)))}. To facilitate the examination, all the vicinity circles can be indexed

by an RNN-tree [15] or RdNN-tree [35]. However, the construction and update costs of the index are expensive. Hence, we do not

consider the pre-processing based approach.

The second category does not rely on pre-processing but adopts a filter-refinement framework [26,25,38]. The filter-refinement

framework consists of two steps, i.e., filtering step and refinement step. In the filtering step, the search space is pruned according

to the developed pruning heuristics, and a set of candidates is retrieved from the data set. In the refinement step, all the candi-

dates are verified by using NN retrieval criteria and those false hits are discarded. The solution to ORNN search also follows the

filter-refinement framework, and requires no pre-processing.

The third category focuses on a variety of RNN query variants, such as RNN retrieval over moving objects with fixed velocities

[3]; RNN queries in metric spaces [1,27], road networks [24], ad-hoc subspaces [36], and large graphs [37], respectively; RNN

search on data stream [16], location data [31]; continuous RNN monitoring [6,33], probabilistic RNN search [5,21], ranked RNN

query [18], to name just a few.

It is worth pointing out that, all the aforementioned algorithms do not take into account the physical obstacles that are

ubiquitous in the real world and may affect the distance between objects, and thus, they cannot be (directly) applicable to handle

ORNN search efficiently.

2.2. Spatial queries with obstacles

The existence of obstacles could affect the distance or/and visibility between objects. In terms of distance, a suite of algorithms

for processing common spatial queries (e.g., range query, NN retrieval) with obstacle constraints have been proposed [36], and

a more detailed study of obstructed NN search has been conducted in [32]. More recently, continuous NN and moving k-NN

queries in the presence of obstacles are explored in [10,19] as well. In terms of visibility, visible NN (VNN) retrieval [23], visible

RNN (VRNN) search [11], continuous VNN retrieval [13], group VNN search [34], and k-maximum visibility query [22] have been

investigated in the literature.

It is worth noting that, both VRNN and ORNN queries consider obstacles. Nonetheless, they are fundamentally different.

First, they adopt different distance metrics. ORNN retrieval employs obstructed distance to measure the distance between ob-

jects, whereas VRNN search utilizes Euclidean distance to indicate the proximity of objects. Second, ORNN retrieval focuses on

the impact of obstacles on distance, while VRNN search considers the influence of obstacles on visibility.

In a word, different from existing works, we aim at handling the RNN query with obstacle constraints. To our knowledge, this

paper is the first attempt on this problem.

2.3. Main-memory obstacle path problems

The main-memory based obstacle/shortest path problem in the presence of obstacles has been well-studied in computational

geometry [4], and the most common approach is based on the visibility graph VG. The vertexes/nodes of VG correspond to obstacle

vertexes or source/destination point ps/pe. Two nodes vi and vj are connected iff they are visible to each other.

Since the shortest path contains only the edges of VG (as proved in [4]), a popular and practical shortest path computation

method proceeds in two steps. The first step constructs VG; the second step computes the shortest path in VG using Dijkstra’s

algorithm [8]. The time and space complexities of the VG-based approach are O(n2 logn) and O(n2), respectively. Here, n is the
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Table 1

Symbols and description

Notation Description

P/O A set of data points p or obstacles o in a two-dimensional space

Tp/To The R-tree on P or O

LVG A local visibility graph

||p, p′|| The obstructed distance between p and p′
|p, q| The provisional obstructed distance from p to q

SP(p, p′) The shortest obstacle-free path (shortest path for short)

Vp A p’s boundary vertex set

BRp/BAp The boundary region or angle of p

P(p, q) The shortest path from p to q derived based on LVG

ONN(q) The obstructed nearest neighbor of q

ORNN(q) The result set of an ORNN query issued at q
number of nodes in VG. Obviously, the method has a poor scalability and cannot guarantee the efficiency when a large number of

obstacles are considered.

Consider that when ps and pe are close to each other, the majority of the obstacles do not affect their shortest path, and hence,

building a complete VG is unnecessary. Consequently, we try to simplify the computation of obstructed distance, by maintaining a

local visibility graph LVG that only includes those obstacles which may contribute to the shortest paths between specified points.

3. Problem formulation

In this section, we formally define the ORNN query, the focus of this paper. Table 1 summarizes the notations used frequently

throughout the paper.

Definition 3.1. (Visibility [11]). Given two points p, p′ in a data set P and an obstacle set O, p and p′ are visible to each other iff

there is no any obstacle o in O such that the line segment formed by p and p′, denoted as [p, p′], crosses o.

Definition 3.2. (Obstacle-free Path [10]). Given two points p, p′ in a data set P and an obstacle set O, a path P(p, p′) = {v0, v1, v2,

…, vn, vn + 1} connecting p and p′ sequentially passes n nodes (i.e., obstacle vertexes), denoted as vi (1 ≤ i ≤ n), with v0 = p and

vn+1 = p′. P(p, p′) is an obstacle-free path (path for short) iff ∀ i ∈ [0, n], vi and vi + 1 are visible to each other. Its distance |P(p,

p′)| = �i∈[0, n] dist(vi, vi + 1).

Definition 3.3. (Obstructed Distance [29]). Given two points p, p′ in a data set P, the obstructed distance between p and p′,
denoted by ||p, p′||, is the length of the shortest obstacle-free path (shortest path for short) from p to p′, denoted as SP(p, p′), i.e.,

∀ P(p, p′), |P(p, p′)| ≥ |SP(p, p′)|. Here, ||p, p′|| = |SP(p, p′)|.

Fig. 1b shows an example. Since [p1, q] ∩ o1 	= ∅ and [p2, q] ∩ o2 	= ∅, both p1 and p2 are invisible to q. Also, p3 is visible to

q as [p3, q] ∩ (o1 ∪ o2) = ∅. In Fig. 1b, there are many obstacle-free paths between points p2 and q, e.g., {q, v1, p2}, {q, v2, v1,

p2}, {q, v2, v3, v4, p2}, etc. The path {q, v1, p2} is the shortest among all the obstacle-free paths from p2 to q, and thus, its length

is the obstructed distance between p2 and q, i.e., ||p2, q|| = ||v1, q|| + ||v1, p2||. In addition, we would like to highlight that, the

Euclidean distance between any two points p and p’ always forms the lower bound for their obstructed distance, i.e., dist(p, p’) ≤
||p, p’|| holds. Based on Definition 3.3, we now formalize ONN and ORNN retrieval in the following Definition 3.4 and Definition

3.5, respectively.

Definition 3.4. (Obstructed Nearest Neighbor). Given a point p outside a data set P and a point p′ in P, p′ is the obstructed nearest

neighbor (ONN) of p, denoted by ONN(p) = p′, iff ∀ p′′ ∈ P, ||p′, p|| ≤ ||p′′, p||.

Definition 3.5. (Obstructed Reverse Nearest Neighbor Query). Given a data set P, an obstacle set O, and a query point q, an

obstructed reverse nearest neighbor (ORNN) query retrieves a set ORNN(q) ⊆ P of points that have q as their ONN, i.e., ORNN(q) =
{p ∈ P | q ∈ ONN(p)}.

Consider Fig. 1b again. As ONN(p2) = ONN(p3) = {q}, ORNN(q) = {p2, p3}. A naive solution to ORNN retrieval is to perform ONN

search [39] for every point in a specified data set P, and then return those points p ∈ P satisfying q ∈ ONN(p). Nevertheless, as

demonstrated by the experimental results to be presented in Section 8, this approach is very inefficient, since it has to traverse

the data set P and the obstacle set O multiple times (i.e., |P| times), resulting in high I/O and CPU costs, especially when P is larger.

To this end, we propose efficient algorithms for ORNN query processing, assuming that both P and O are indexed by R-trees [2].

In particular, the method proposed in this paper follows a filter-refinement framework, requires no pre-processing, and enables

effective pruning heuristics (via a novel concept of boundary region) to shrink the search space significantly.

4. Pruning heuristics

Before presenting the pruning heuristics for ORNN retrieval, we introduce some concepts that can be used to the development

of effective pruning strategies.
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Fig. 2. Illustration of BRp , BAp , and BSp
Definition 4.1. (Point Angle). Given a point p and a query point q, let q be the origin. The amount of rotation (in anti-clockwise

direction) about q required to bring the x-axis into correspondence with the line segment [q, p] is defined as p’s point angle w.r.t.

q, denoted by θp (∈ [0, 2π )).

Definition 4.2. (Boundary Vertex, Boundary Vertex Set). Given a point p, a vertex v of an obstacle o in an obstacle set O, and a

query point q, if v is closer to p than to q according to the obstructed distance, i.e., ||p, v|| < ||q, v||, v is defined as p’s boundary

vertex w.r.t. q. All p’s boundary vertexes w.r.t. q constitute p’s boundary vertex set Vp w.r.t. q, formally, Vp = {v ∈ o ∧ o ∈ O | ||p,

v|| < ||q, v||}.

Fig. 2 depicts an example. As ||p, b|| < ||q, b||, vertex b of obstacle o2 is p’s boundary vertex w.r.t. q; while all the vertexes of

obstacle o3 are closer to q than to p, and thus none of them is p’s boundary vertex w.r.t. q. Therefore, in Fig. 2, p’s boundary vertex

set Vp = {a, b, c, e, f, h} w.r.t. q. In addition, the point angle of vertex f w.r.t. q (i.e., θ f) is �xqf, and that of vertex a w.r.t. q (i.e., θ a)

is �xqa.

Definition 4.3. (Boundary Region, Boundary Angle). Given a point p, a query point q, and p’s boundary vertex set Vp w.r.t. q, we

define the vertex in Vp having the minimal (maximal) point angle w.r.t. q as vmin (vmax), i.e., ∃ vmin, vmax ∈ Vp, ∀ v ∈ Vp, θ vmin ≤ θ v

≤ θ vmax. The boundary region of p w.r.t. q, denoted by BRp, is defined as the polygon formed by the shortest path SP(p, vmin) from

p to vmin, the shortest path SP(p, vmax) from p to vmax, the line segment [q, vmin], and the line segment [q, vmax]; and the boundary

angle of p w.r.t. q, denoted by BAp, is defined as q’s interior angle corresponding to BRp.

Definition 4.4. (Boundary Sector). Given a point p, a query point q, and p’s boundary angle BAp w.r.t. q, the boundary sector of p

w.r.t. q, denoted by BSp, is defined as the circular sector centered at q and with BAp as its central angle.

As shown in Fig. 2, since Vp = {a, b, c, e, f, h}, the vertex vmin (vmax) with minimal (maximal) point angle w.r.t. q is f (a), i.e.,

vmin = f and vmax = a. Suppose SP(p, vmin) = {p, f} and SP(p, vmax) = {p, a}, the polygon formed by SP(p, vmin), SP(p, vmax), [q, vmin],

and [q, vmax] is a convex quadrilateral paqf, and thus BRp = paqf, BAp = �fqa, and p’s boundary sector w.r.t. q (i.e., BSp) is the

circular sector centered at q and having�fqa as its central angle. It is worth noting that if the polygon formed by SP(p, vmin), SP(p,

vmax), [q, vmin], and [q, vmax] is self-intersecting, i.e., SP(p, vmin), SP(p, vmax), [q, vmin], and [q, vmax] do not intersect with each other,

BRp = ∅ and BAp = 0.

The reason for us to introduce the boundary region is that it can effectively prune away unqualified data points and node

entries, and hence shrink the search space. Take Fig. 2 as an example. Without any auxiliary information, the entire search space

needs to be scanned. However, once p’s boundary region BRp w.r.t. q (i.e., the polygon paqf) is identified, it is guaranteed that any

point having the shortest path to q intersecting BRp at either SP(p, vmin) or SP(p, vmax) is closer to p than to q, and thus can be safely

discarded, as proved by Lemma 4.1 below

Lemma 4.1. Given a point p in a data set P, and assume that an ORNN query issued at a query point q, a point p′ ∈ P could not be an

ORNN of q if its shortest path to q crosses either SP(p, vmin) or SP(p, vmax) at the intersection point x, i.e., p′ 	∈ ORNN(q) if x ∈ SP(p’, q) ∧
x ∈ SP(p, vmin) ∪ SP(p, vmax).

Proof. Suppose a point p′ with its shortest path SP(p′, q) to q intersecting either SP(p, vmin) or SP(p, vmax) is an ORNN of q. Without

loss of generality, we assume SP(p′, q) crosses SP(p, vmin) at point x, i.e., ||p′, q|| = |SP(p’, q)| = ||p′, x|| + ||x, q||, as illustrated in

Fig. 2. Also, we assume that P(p′, p) is an obstacle-free path from p′ to p via x, i.e., |P(p′, p)| = ||p′, x|| + ||x, p|| ≥ ||p′, p||. On the

other hand, as p’ is an ORNN of q, ||p′, q|| ≤ ||p′, p||, i.e., ||p′, x|| + ||x, q|| = ||p′, q|| ≤ ||p’, p|| ≤ ||p’, x|| + ||x, p||, meaning that ||x,

q|| ≤ ||x, p|| holds. In other words, ||q, vmin|| ≤ ||x, q|| + ||x, vmin|| ≤ ||x, p|| + ||x, vmin|| = ||p, vmin||, i.e., ||q, vmin|| ≤ ||p, vmin||, which

contradicts the fact that the vertex vmin is a boundary vertex of p w.r.t. q. Consequently, the above assumption is invalid, and the

proof completes. �

Although Lemma 4.1 can prune certain data points, it incurs high CPU overhead since both locating the shortest path SP(p′,
q) from p′ to q and determining the intersection between SP(p′, q) and SP(p, v ) (or SP(p, vmax)) are expensive. Actually, the
min
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Fig. 3. Illustration of false miss and boundary region based pruning.
CPU cost can be significantly reduced if we slightly relax the condition of Lemma 4.1. Take Fig. 2 as an example again. Points (e.g.,

p′) locating inside the boundary sector BSp but outside the boundary region BRp are very likely to have their shortest paths to q

crossing SP(p, vmin) or SP(p, vmax), compared with those locating outside BSp. Consequently, the following Heuristic 1 is developed

as the approximate implementation of Lemma 4.1.

Heuristic 1. Given a point p in a data set P, and assume that an ORNN query issued at a query point q, it has high probability that

a point p’ ∈ P could be pruned by Lemma 4.1 if (i) p′ ∈ BSp (p’s boundary sector w.r.t. q), and (ii) p′ 	∈ BRp (p’s boundary region

w.r.t. q).

In general, the pruning heuristic is employed to prune away the points that cannot be in the final result. Nonetheless, if it

discards actual answer points, we refer it to as false misses (FM). Heuristic 1 prunes all the data points p′ that satisfy p′ ∈ BSp and

p′ 	∈ BRp. However, some points filtered out by Heuristic 1 might not have their shortest paths to q intersecting SP(p, vmin) or SP(p,

vmax). In other words, Heuristic 1 may prune away actual answer points, resulting in false misses. Take Fig. 3a as an example. Since

the point p′ satisfies p′ ∈ BSp and p′ 	∈ BRp, it can be discarded by Heuristic 1. However, SP(p′, q) = ||pv, k|| + ||k, j|| + ||j, q|| < ||p′,
k|| + ||k, j|| + ||j, p|| = SP(p′, p). Hence, the point p′ ∈ P is the ORNN of q. In other words, Heuristic 1 has a false miss because

it prunes away the real ORNN point p′. In order to quantify the FM, we introduce a metric, i.e., FM ratio, which is the ratio of

the number of real answer points pruned by Heuristic 1 to the size of the complete answer set. As reported in the experimental

results, the FM ratio is extremely low. Since the boundary region BRp of a point p ∈ P could be in an irregular shape, checking

whether a specified point is located outside BRp is non-trivial. To facilitate this examination, Heuristic 2 is proposed.

Heuristic 2. Given a point p in a data set P and a query point q, let dp be the maximal distance from q to any point along the

shortest paths SP(p, vmin) and SP(p, vmax), i.e., ∃ v′ ∈ SP(p, vmin) ∪ SP(p, vmax), ∀ v ∈ SP(p, vmin) ∪ SP(p, vmax), dist(v, q) ≤ dist(v′,
q) = dp. It is confirmed that a point p′ ∈ P satisfies both p′ ∈ BSp and p′ 	∈ BRp (i.e., p′ is pruned by s) if (i) θp’ ∈ BAp and (ii) dist(p′,
q) > dp.

Heuristic 2 utilizes an angular sector to bound the boundary region in order to further simplify the checking process. As shown

in Fig. 2, instead of checking whether a specified point p’ is outside the boundary region BRp of point p w.r.t. q (i.e., quadrilateral

paqf), Heuristic 2 examines whether the point p’ is outside the angular sector aqi with dp as the radius, which only involves the

angle test and the distance test.

Note that Heuristics 1 and 2 can be easily extended to prune non-leaf node MBRs. Here, we illustrate the basic idea using

Fig. 3b. Specifically, a node MBR (e.g., N1) that falls into p’s boundary sector BSp w.r.t. q but outside p’s boundary region BRp w.r.t.

q could be discarded, because its child entries are very likely to be pruned by Heuristics 1 and 2. Furthermore, in some cases, the

pruning of a node MBR requires multiple boundary sectors and boundary regions. For instance, the node MBR N3 in Fig. 3b could

be pruned away, since it lies completely in the union of BSp and BSp’ but outside the union of BRp and BRp’.

The pseudo-code of the Boundary Region based Pruning Algorithm (BRP) is presented in Algorithm 1. BRP can perform adap-

tively, according to the application requirement (i.e., whether the performance or the accuracy is more important). If approxima-

tion is allowed, it employs Heuristics 1 and 2 to prune unqualified data points and node MBRs; otherwise, it uses Lemma 4.1 to

conduct exact pruning. Note that, the metric mindist(N, q) in the line 10 of Algorithm 1 denotes the minimal Euclidean distance

between a node MBR N and a specified query point q.

5. ODC and BRF Algorithms

In order to enable the boundary region based pruning, there are two issues we have to address, i.e., (i) obstructed distance

computation and (ii) boundary region formation. In what follows, we present corresponding solutions.
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Algorithm 1

Boundary Region based Pruning Algorithm (BRP).

Input: an entry e (data point p′ or node MBR N), a query point q, an identified boundary region set SBR accepting entries in the form 〈p, BAp , dp , SP(p, vmin),

SP(p, vmax)〉
Output: TRUE if e can be pruned or FALSE otherwise

1: if e is a data point p′ then

2: for each entry 〈p, BAp , dp , SP(p, vmin), SP(p, vmax)〉 ∈ SBR do

3: if approximation is allowed then

4: if θ p′ ∈ BAp and dist(p′ , q) > dp then // Heuristics 1, 2

5: return TRUE // e can be discarded

6: else // exact ORNN search

7: if SP(p′ , q) crosses SP(p, vmin) or SP(p, vmax) then

8: return TRUE // Lemma 4.1

9: if e is a node MBR N then

10: get N’s boundary angle θ based on Definition 4.3 assuming that the boundary vertex set contains N’s four vertexes, and d = mindist(N, q)

11: if approximation is allowed then

12: let set S contain all the entries 〈p, BAp , dp , SP(p, vmin), SP(p, vmax)〉 ∈ SBR with θ ∩ BAp 	= ∅
13: if θ ⊆ ∪BAp∈S BAp and d > MAXdp∈S dp then

14: return TRUE // N can be pruned away

15: return FALSE
5.1. Obstructed distance computation

Existing approaches of obstructed distance computation maintain a global visibility graph VG and invoke shortest path algo-

rithms (e.g., Dijkstra’s algorithm [8]) to calculate the obstructed distance. However, as mentioned in Section 2.3, these methods

are inefficient, incurring high space complexity and update cost. Therefore, we adopt an incremental approach to slowly expand

a local visibility graph, denoted as LVG, containing the obstacles that may affect the obstructed distance between a given query

point q and currently evaluated points. It is worth mentioning that the vertexes of LVG correspond to obstacle vertexes. Two

nodes vi and vj are connected iff they are visible to each other. As demonstrated by Lemma 5.1, as long as we carefully tune a

threshold γ and include all the obstacles having their minimal Euclidean distances to q bounded by γ in LVG, it is guaranteed

that the shortest path derived based on the current LVG is the real shortest path. In addition, we strive to reduce the number of

obstructed distance computation by reusing known obstructed distances.

Lemma 5.1. Given a point p, a query point q, a local visibility graph LVG with radius γ , and assume that all the obstacles o in an

obstacle set O having their minimal Euclidean distances (i.e., mindist) to q bounded by γ are contained in LVG, i.e., {o ∈ O | mindist(o,

q) ≤ γ } ⊆ LVG, and let P(p, q) be the shortest path from p to q derived based on LVG. If |P(p, q)| ≤ γ , P(p, q) must be the real shortest

path from p to q, i.e., P(p, q) = SP(p, q) and |P(p, q)| = ||p, q||.

Proof. If P(p, q) is not the real shortest path from p to q, there must be another one P1(p, q) = SP(p, q) with |P1(p, q)| < |P(p, q)|.

Since P(p, q) is the shortest one among all the paths from p to q such that they only pass the vertexes of obstacles included in

LVG, P1(p, q) must pass at least one vertex v of some obstacle o that is not contained in LVG, i.e., v 	∈ LVG and mindist(o, q) > γ . We

further partition P1(p, q) into two paths via v, i.e., P11(p, v) and P12(v, q). As |P1(p, q)| = |P11(p, v)| + |P12(v, q)|, |P1(p, q)| > |P12(v,

q)| ≥ dist(v, q) ≥ mindist(o, q) > γ . On the other hand, |P(p, q)| ≤ γ holds, and hence, |P1(p, q)| > |P(p, q)| satisfies, which contradicts

the assumption above. Thus, the proof completes. �

Algorithm 2 shows the pseudo-code of the Obstructed Distance Computation Algorithm (ODC). It divides all the vertexes in LVG

into two categories: (i) the set Svr of vertexes that have the real obstructed distances to a specified query point q so far, and (ii)

the set Svv of vertexes whose obstructed distances to q need to be verified later. Initially, to reduce the number of obstructed

distance computation, ODC calculates, for a point p being evaluated, the provisional obstructed distance from p to q, denoted by

|p, q|, based on the current LVG and known obstructed distances (lines 2-3). If |p, q| ≤ γ , it is confirmed that |p, q| is the actual

obstructed distance, i.e., |p, q| = ||p, q||, according to Lemma 5.1 (line 4). Otherwise (i.e., |p, q| > γ ), the algorithm expands LVG, and

employs Dijkstra’s algorithm to compute the obstructed distances until |p, q| ≤ γ holds (lines 5–18). Specifically, ODC extends γ
to γ ′ by using the equation γ ′ = γ + α(|p, q| − γ ), and expands LVG accordingly by calling the GetObs algorithm [13] that can

find all the obstacles with their Euclidean distances to q falling inside the range [γ , γ ′] and store them in the set So (lines 6 and

7). Due to the space limitation, we omit the details of GetObs algorithm. The addition of new obstacles may affect the visibility

of the vertexes in Svv (but not the ones in Svr), and thus their obstructed distances to q. In particular, for each vertex v′ ∈ Svv, ODC

distinguishes three cases: (i) If the adjacent edges of v′ in the current LVG intersect any obstacle in So, the algorithm deletes v′
from Svv, and adds it to the set Svc for the evaluation later (lines 10 and 11). (ii) If the adjacent edges of v′ in the current LVG do

not cross any obstacle in So and |v′, q| ≤ γ holds, the algorithm deletes v′ from Svv, and adds it to Svr as |v′, q| = ||v′, q|| by Lemma

5.1 (line 13). (iii) If the adjacent edges of v′ in the current LVG do not intersect any obstacle in So and |v′, q| > γ satisfies, the

algorithm deletes v′ from Svv, and adds it to Svc (line 14). Thereafter, ODC inserts all the vertexes in Svc to LVG, computes, for p

and all the vertexes in Svc, the obstructed distances to q using Dijkstra’s algorithm, and moves all the vertexes in Svc to Svv (lines

15–17). Finally, the algorithm adds, for the reuse later, all the vertexes v′′′ ∈ Svv to Svr if |v′′′, q| ≤ γ holds (lines 19 and 20).
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Algorithm 2

Obstructed Distance Computation Algorithm (ODC).

Input: a data point p, a query point q, a local visibility graph LVG with radius γ , an obstacle R-tree To , a min-heap Ho , the set Svr of vertexes that have the real

obstructed distances to q so far, the set Svv of vertexes whose obstructed distances to q need to be verified in the next round

Output: radius γ

/∗ Svc: the set of vertexes whose obstructed distances to q need to be calculated in this round. ∗/

1: initialize |p, q| = ∞, So = Svc = ∅ // |p, q|: provisional distance to q

2: for each vertex v ∈ Svr and v is visible to p do

3: if dist(p, v) + ||v, q|| < |p, q| then |p, q| = dist(p, v) + ||v, q||

4: if |p, q| ≤ γ then return // ||p, q|| = |p, q| by Lemma 5.1

5: while |p, q| > γ do

6: γ ′ = γ + α(|p, q| − γ ) // the value of α is a natural number

7: GetObs(To , Ho , q, γ ′ , So) // algorithm of [13]

8: γ = γ ′ , and add the vertexes of every obstacle in So to Svc

9: for each vertex v′ ∈ Svv do

10: if the adjacent edges of v′ in LVG cross any obstacle in So then

11: Svv = Svv − {v’} and Svc = Svc ∪ {v′}
12: else

13: if |v′ , q| ≤ γ then Svv = Svv − {v′} and Svr = Svr ∪ {v′}
14: else Svv = Svv − {v′} and Svc = Svc ∪ {v′}
15: add all the vertexes in Svc to LVG

16: compute the obstructed distances to q using Dijkstra’s algorithm for p and all vertexes in Svc based on LVG

17: for each vertex v′′ ∈ Svc do Svc = Svc − {v′′} and Svv = Svv ∪ {v′′}
18: So = ∅ // for the next round

19: for each vertex v′′′ ∈ Svv do

20: if |v′′′, q| ≤ γ then Svv = Svv − {v′′′} and Svr = Svr ∪ {v′′′}
21: return γ

Fig. 4. Example of ODC.
It is worth mentioning that α used in line 6 of Algorithm 2 is a tuning parameter whose value is a natural number. It is

introduced to accelerate the expanse of LVG. As demonstrated by the experimental results, a small value of α reduces the LVG size

but incurs high obstructed distance computation overhead, whereas a larger value of α decreases the cost of obstructed distance

calculation but increases the size of LVG. Nonetheless, how to select the appropriate values of α is one of our future work.

Example 1. We illustrate ODC algorithm with the example depicted in Fig. 4, where the data set P = {p1, p2, p3, p4, p5} and the

obstacle set O = {o1, o2, o3, o4}. Suppose α = 1 and p1 is the data point evaluated currently, with LVG = {q, p1}, γ = 0, Svr = {q},

and Svv = ∅. First, ODC obtains |p1, q| = dist(p1, q) due to Svr = {q}. As |p1, q| > γ = 0, the algorithm performs while-loop in lines

5–18 of Algorithm 2, in which it sets γ to dist(p1, q), calls GetObs to get So = {o1, o2} and Svc = {a, b, c, d, e, f, g, h}, updates LVG to

{q, p1, a, b, c, d, e, f, g, h}, and utilizes Dijkstra’s algorithm, for p1 and all the vertexes in Svc, to compute all the obstructed distances

to q. Note that, in this round of the while-loop, ODC skips for-loop in lines 9–14 of Algorithm 2 due to Svv = ∅. Then, the algorithm

proceeds in the similar manner until |p1, q| ≤ γ holds, after which LVG = {q, p1, a, b, c, d, e, f, g, h, i, j, k, l}, γ = ||p1, q|| = dist(p1,

a) + dist(a, d) + dist(d, q), Svr = {q, a, b, c, d, e, f}, and Svv = {g, h, i, j, k, l}. Finally, vertex i is also added to Svr because |i, q| = dist(i,

q) < ||p1, q||. Here, the algorithm terminates, with LVG = {q, p1, a, b, c, d, e, f, g, h, i, j, k, l}, γ = ||p1, q||, Svr = {q, a, b, c, d, e, f, i}, and

Svv = {g, h, j, k, l}.

5.2. Boundary region formation

Boundary region formation is based on boundary vertexes. Recall that, for a point p evaluated currently, when identifying

p’s boundary vertexes w.r.t. a given query point q, we need to find not only the obstructed distance from a vertex v to q but

also that from v to p. According to Lemma 5.2, we need to maintain a new local visibility graph centered at p, denoted as LVGp,

and tune its radius γ p so that the local shortest path P(v, p) derived based on LVGp has the real shortest path. However, it is not
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Algorithm 3

Boundary Region Formation Algorithm (BRF).

Input: a data point p, a query point q, a local visibility graph LVG with radius γ , a boundary region set SBR

Output: a boundary region set SBR

1: initialize Vp = ∅
2: Dijkstra(LVG, p)

3: for each vertex v ∈ LVG do

4: if |v, q| ≤ γ and |p, v| ≤ γ − dist(v, q) and |p, v| < |v, q| then

5: Vp = Vp ∪ {v} // v is a boundary vertex w.r.t. q

6: if Vp 	= ∅ then

7: find vmin and vmax from Vp , and obtain BAp based on Definition 4.3

8: dp = MAXv’∈SP(p , vmin )∪SP (p , vmax ) dist(v′ , q)

9: SBR = SBR ∪ 〈p, BAp , dp , SP(p, vmin), SP(p, vmax)〉
10: return SBR

Fig. 5. Example of BRF.
desirable to construct LVGp since p keeps changing. Moreover, maintaining both LVGp and LVG (centered at q) is inefficient because

they contain a large number of common vertexes. Motivated by these findings, in this paper, we only maintain LVG. As proved in

Lemma 5.2, the shortest path P(v, p) derived based on LVG with |P(v, p)| ≤ γ − dist(p, q) is the real shortest path from v to p.

Lemma 5.2. Given a point p, a query point q, a local visibility graph LVG (centered at q) with radius γ , and let P(v, p) be the shortest

path from v to p derived based on LVG. If |P(v, p)| ≤ γ − dist(p, q), P(v, p) must be the real shortest path from v to p, i.e., P(v, p) = SP(v,

p) and |P(v, p)| = ||v, p||.

Proof. According to Lemma 5.1, a path P(v, p) with |P(v, p)| ≤γ − dist(p, q) is an actual shortest path if all the obstacles with their

minimal distances (i.e., mindist) to p bounded by (γ − dist(p, q)) are included in current LVG. Assume that there is at least one

obstacle o with mindist(o, p) ≤ (γ − dist(p, q)) is not contained in the current LVG, i.e., ∃ o ∈ O, mindist(o, p) ≤ (γ − dist(p, q)) ∧ o 	∈
LVG. Let v′ be a vertex of o such that dist(v′, p) = mindist(o, p). If points v′, p, and q form a triangle, mindist(o, q) ≤ dist(v′, q) < dist(v′,
p) + dist(p, q) = mindist(o, p) + dist(p, q) ≤ γ − dist(p, q) + dist(p, q) = γ . Otherwise, points v′, p, and q are located along a line

segment, and hence mindist(o, q) ≤ dist(v′, q) = dist(v′, p) + dist(p, q) ≤ γ . Thus, mindist(o, q) ≤γ holds. Since the radius of LVG is

γ , obstacle o is certainly included in LVG, and the assumption that o is outside LVG is invalid. The proof completes. �

It is worth noting that P(p, q) is updated when LVG expands. According to Lemma 5.2, the minimum P(p, q) is just the real

shortest path. A straightforward approach of boundary region formation is to scan the entire obstacle set and identify all the

obstacle vertexes that are closer to the point p (evaluated currently) than to a query point q, in order to constitute p’s complete

boundary vertex set Vp w.r.t. q. Nonetheless, the formation of p’s boundary region BRp w.r.t. q does not necessarily require com-

plete Vp. Take Fig. 2 as an example. The BRp is formed based on current Vp = {a, b, c, e, f, h}, although Vp might contain many

other boundary vertexes. In addition, complete Vp requires a global visibility graph. As mentioned earlier, we only maintain a

local visibility graph LVG. Consequently, we need to form the boundary region based on LVG.

Algorithm 3 depicts the pseudo-code of the Boundary Region Formation Algorithm (BRF). Initially, BRF computes the obstructed

distances from the currently evaluated point p to all other vertexes in current LVG, using Dijkstra’s algorithm (line 2). Then, for

each vertex v in LVG, the algorithm determines whether v is ps boundary vertex w.r.t. q based on Lemma 5.2 and Definition 4.2,

and added it to Vp if yes (lines 3–5). In the sequel, the boundary region is formed, which is denoted as a five-tuple vector 〈p, BAp,

dp, SP(p, vmin), SP(p, vmax)〉 (lines 6–9).

Example 2. We illustrate BRF algorithm with the example shown in Fig. 5, where the data set P = {p, p′, p′′} and the obstacle set

O = {o1, o2, o3}. Assume that p is the data point evaluated currently, with LVG = {q, p, a, b, c, d, e, f, g, h, i, j, k, l}, SBR = ∅, and γ .

BRF first utilizes Dijkstra’s algorithm to calculate the obstructed distances from p to all other vertexes in LVG, and then, obtains

Vp = {b, c, d, e, f} since they satisfy all the three conditions presented in the line 4 of Algorithm 3. Next, BRF finds vmin = f and
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Algorithm 4

ORNN Search Algorithm (ORNN).

Input: a data R-tree Tp , an obstacle R-tree To , a query point q

Output: the result set Sr of an ORNN query

1: initialize Sc = Sr = ∅ and LVG = {q}

2: Sc ← ORNN-Filter (Tp , To , q, Sc , LVG) // Algorithm 5

3: Sr ← ORNN-Refinement (Tp , To , q, Sc , Sr) // Algorithm 6

4: return Sr

Algorithm 5

Filter for ORNN Algorithm (ORNN-Filter).

Input: a data R-tree Tp , an obstacle R-tree To , a query point q, a candidate set Sc , a local visibility graph LVG

Output: a candidate set Sc

/∗ Hp , Ho: min-heaps; Tp.root: the root of Tp; To.root: the root of To ∗/

1: initialize γ = 0, SBR = Svv = ∅, Svr = {q}

2: initialize Hp = (Tp.root, 0), Ho = (To.root, 0)

3: while Hp is not empty do

4: de-heap the top entry (e, mindist(e, q)) of Hp

5: if e is a data point p then

6: if not BRP (p, q, SBR) then // Algorithm 1

7: add p to LVG

8: γ ← ODC (p, q, LVG, γ , To , Ho , Svr , Svv) // Algorithm 2

9: Sc = Sc ∪ {p}

10: SBR ← BRF (p, q, LVG, γ , SBR) // Algorithm 3

11: delete p from LVG

12: else // e is an intermediate node

13: for each child entry ei ∈ e do

14: if not BRP (ei , q, SBR) then

15: insert (ei , mindist(ei , q)) into Hp

16: if approximation is allowed then

17: if ∪p∈SBR BAp = 2π and MAXp∈SBR dp ≤ mindist(e, q) then

18: break // terminate algorithm

19: return Sc
vmax = d, gets p’s boundary angle BAp = �fqd, derives dp = dist(p, q), and updates the boundary region set SBR to 〈p, �fqd, dist(p,

q), {p, f}, {p, c, d}〉.

6. ORNN query processing

In this section, we explain how to process ORNN search efficiently. Algorithm 4 shows the pseudo-code of the ORNN Search

Algorithm (ORNN). It follows a filter-refinement framework, assuming that the data set P and the obstacle set O are indexed by

two different R-trees. Specifically, the filtering step prunes unqualified data points and node MBRs using the currently identified

boundary regions, and obtains a candidate set Sc which is a superset of the final query result set; the subsequent refinement step

eliminates the false hits.

6.1. The filtering step

Since we rely on the boundary regions for pruning search space, small boundary regions are preferred. In other words, the

boundary regions formed by data points and obstacles that are close to a specified query point q should be identified as early

as possible. This is because their corresponding boundary regions are relatively small. Consequently, we access data points in

ascending order of their Euclidean distances (i.e., mindist) to q. Two min-heaps Hp and Ho are employed to enable the best-first

traversal. The pseudo-code of the Filter for ORNN Algorithm (ORNN-Filter) is presented in Algorithm 5.

First, ORNN-Filter sets the radius γ of LVG to zero and initializes the min-heaps Hp and Ho with the root nodes of data R-tree

Tp and obstacle R-tree To, respectively (lines 1 and 2). Thereafter, it recursively de-heaps the head entry e of Hp for evaluation

(lines 3–18). If e is a data point p and cannot be discarded by BRP, ORNN-Filter invokes ODC to compute the obstructed distance

between p and q, and then forms p’s boundary region BRp w.r.t. q via BRF. Otherwise, e must be an intermediate (i.e., a non-leaf)

node, and the algorithm en-heaps all its child entries for subsequent examination if they cannot be pruned away by BRP.

Note that ORNN-Filter enables an early termination if approximation is allowed (lines 16–18). As stated in Heuristic 3 below,

when the existing boundary regions stored in the boundary region set SBR span a full-angle range (i.e., ∪p∈SBR BAp = 2π ), the

search space for ORNN objects is restricted to a circle cir(q, d) centered at q and having d = MAXp∈SBR dp as its radius. Thus, once

the key (i.e., mindist(e, q)) of the current top entry e of Hp reaches the maximal value of dp maintained in SBR (i.e., d), it has high

probability that the remaining entries (including data points and node MBRs) in Hp cannot become or contain ORNN object(s)

based on Heuristics 1, 2, and 3. Note that, Heuristic 3 is based on the boundary region set. If the boundary region set is small, it

may not effective.
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Fig. 6. Example of ORNN.

Algorithm 6

Refinement for ORNN Algorithm (ORNN-Refinement).

Input: a data R-tree Tp , an obstacle R-tree To , a query point q, a candidate set Sc , a result set Sr

Output: a result set Sr

1: for each candidate c ∈ Sc do

2: ONNc = ONN (Tp , To , c) // algorithm of [39]: find the ONN of c

3: if ||ONNc , c|| ≥ ||c, q|| then

4: Sr = Sr ∪ {c} // c is an ORNN of q

5: return Sr
Heuristic 3. Given an ORNN query issued at a specified query point q, a set Se of entries (including data points and node MBRs),

and a boundary region set SBR with d = MAXp∈SBR dp, it has high probability that the entries in Se could be pruned by Heuristics

1 and 2 if (i) ∀ e ∈ Se, mindist(e, q) > d, and (ii) ∪p∈SBR BAp = 2π .

Example 3. To facilitate the understanding of ORNN-Filter algorithm, Fig. 6a shows an example with the data set P = {p1, p2, p3,

p4, p5, p6, p7, p8}, the obstacle set O = {o1, o2, o3}, the corresponding data R-tree Tp shown in Fig. 6b, and the approximation being

allowed. Initially, ORNN-Filter visits the root of Tp and inserts its child entries N5, N6 into a min-heap Hp (= {N5, N6}) sorted in

ascending order of their mindist to a given query point q. Then, the algorithm de-heaps the top entry N5 of Hp, accesses its child

nodes, and en-heaps the entries into Hp = {N1, N6, N2}. Next, N1 is visited and it updates Hp to {p1, N6, p2, N2}. Since point p1 is

the head entry of Hp and cannot be discarded by BRP (due to SBR = ∅), ORNN-Filter adds p1 to a local visibility graph LVG, calls

ODC to calculate the obstructed distance from p1 to q, inserts p1 into Sc (= {p1}), utilizes BRF to determine p1’s boundary region

BRp1 (i.e., polygon qbp1a) w.r.t. q, updates SBR to {〈p1, �bqa, dist(b, q), {p1, b}, {p1, a}〉}, and deletes p1 from LVG. The algorithm

proceeds in the same manner until the heap Hp becomes empty, with Sc = {p1, p3}. Note that, the de-heaped entries from Hp

(including p2, N2, p4, and N4) during the search are pruned by BRp1 or BRp3.

6.2. The refinement step

Once the candidate set Sc is retrieved by ORNN-Filter, the refinement step starts. It validates every candidate via an ONN query

[39]. Those candidates that are closer to a given query point q than their obstructed nearest neighbors are returned as the final

ORNN objects. Algorithm 6 shows the pseudo-code of the Refinement for ORNN Algorithm (ORNN-Refinement).

Example 4. Continue Example 3. Recall that Sc {p1, p3} after the termination of ORNN-Filter. Now we invoke ORNN-Refinement

to verify each candidate in Sc. As shown in Fig. 6, point p1 is a false hit since it is closer to p2 (i.e., p1’s ONN) than to q, while point

p3 is validated as an actual ORNN of q, and thus it is added to the query result set Sr = {p3}.

6.3. Discussion

In the following, we present the time complexity of the ORNN algorithm and prove its correctness.

Let Conn be the cost of an ONN query, and |P|, |O|, and |Sc| be the cardinality of a data set P, an obstacle set O, and a candidate

set Sc, respectively.

Lemma 6.1. The time complexity of the ORNN algorithm is O (|Sc| × (log|P| × |O| × log|O| + Conn)).

Proof. The ORNN algorithm follows the filter-refinement framework, and |LVG| << |O| (as demonstrated by the experimental

results to be presented in Section 8). In the filtering step, it takes O(|Sc| × log|P| × |O| × log|O|) for obtaining the candidate set

Sc; and in the refinement step, it incurs O(|Sc| × Conn) to eliminate all the false hits. Thus, the total time complexity of the ORNN

algorithm is O(|Sc| × (log|P| × |O| × log|O| + Conn)). �
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Fig. 7. Example of k-BRP.
It is worth mentioning that, the time complexity of ORNN algorithm, i.e., O(|Sc| × (log|P| × |O| × log|O| + Conn)), is scal-

able. This is because O(|Sc| × (log|P| × |O| × log|O| + Conn)) is log scalable and linear scalable with respect to |P| and |O|, re-

spectively. Moreover, the time complexity O(|Sc| × (log|P| × |O| × log|O| + Conn)) of ORNN algorithm is better than that of

the naive ORNN algorithm O(|P| × Conn), which needs to perform an ONN query for every point in P. At the worst case, an

ONN query has to traverse the whole |P| and |O| to get the final result, whose time complexity is Conn = O(|P| × |O|). Hence,

O(|Sc| × (log|P| × |O| × log|O| + Conn)) = O(|Sc| × (log|P| × |O| × log|O| + |P| × |O|)) and O(|P| × Conn) = O(|P| × |P| × |O|). As

demonstrated by the experimental results, |Sc| << |P|. Thus, O(|Sc| × (log|P| × |O| × log|O| + Conn)) is better than O(|P| × Conn),

which can also be confirmed by the experimental results to be presented in Section 8.

Lemma 6.2. The ORNN algorithm retrieves exactly the ORNNs of a given query point q, i.e., the algorithm has no false negatives and

no false positives.

Proof. First, the ORNN algorithm only prunes away those non-qualifying points or/and node entries in the filtering step, by using

the boundary regions identified so far, which guarantees no false negatives. Second, every candidate is verified in the refinement

step via an ONN query, which ensures no false positives. �

Although the ORNN search algorithm presented above assumes that the data set P and the obstacle set O are indexed by

two separate R-trees, it can be naturally extended to support ORNN search on a single R-tree that indexes both data points and

obstacles. However, given the focus of this paper and the page limitation we have, we would like to leave that as one of our future

work.

7. Extensions

In this section, we extend our techniques to tackle several interesting ORNN query variants, i.e., ORkNN, δ-ORkNN, and

CORkNN queries.

7.1. ORkNN search

As defined in Definition 7.2, an ORkNN query aims to find all the points that take a given query point q as one of their OkNN

which is defined in Definition 7.1.

Definition 7.1. (Obstructed k-Nearest Neighbor). Given a point p, and a point p′ in a data set P, p′ is the obstructed k-nearest

neighbor (OkNN) of p, denoted by OkNN(p), iff there are at most k − 1 points r in P satisfying ||r, p|| ≤ ||p′, p||.

Definition 7.2. (Obstructed Reverse k-Nearest Neighbor Query). Given a data set P, an obstacle set O, and a query point q, an

obstructed reverse k-nearest neighbor (ORkNN) query retrieves a set ORkNN(q) ⊆ P of points that have q as one of their OkNNs, i.e.,

ORkNN(q) = {p ∈ P | q ∈ OkNN(p)}.

Take Fig. 1b as an example, and suppose k = 2. Since O2NN(p1) = {p2, q}, O2NN(p2) = {q, p3}, and O2NN(p3) = {q, p2},

OR2NN(q) = {p1, p2, p3}.

Next, we explain how to extend ORNN query algorithm to answer ORkNN search. First, we discuss how the BRP presented in

Algorithm 1 can be extended to the k-Boundary Region based Pruning Algorithm (k-BRP). Recall that, for BRP, once a point/MBR

falls inside a boundary region w.r.t. q but out of the boundary sector w.r.t. q, it can be discarded shortly. In k-BRP, a point/MBR

can be pruned only if it falls into at least k boundary regions. For illustration, we assume k = 2 in the following discussion. As

depicted in Fig. 7, since point p′′ is located within both BRp and BRp’ simultaneously, it can be safely pruned away. For MBR N3, it

can also be discarded as it falls inside the overlap between BRp and BRp ′ . Nevertheless, N1 and N2 cannot be pruned because N1

only falls into BRp, and N2 only falls inside BRp ′ .
Algorithm 7 presents the pseudo-code of k-BRP. Unlike BRP, k-BRP uses a counter to record how many boundary regions a

point/MBR falls into (lines 6 and 9). When performing ORkNN retrieval, only when the MBR falls completely inside a pruning
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Algorithm 7

k-Boundary Region based Pruning Algorithm (k-BRP).

Input: an entry e (data point p′ or node MBR N), a query point q, an identified boundary region set SBR

accepting entries in the form 〈p, BAp , dp , SP(p, vmin), SP(p, vmax)〉, a parameter k

Output: TRUE if e can be pruned or FALSE otherwise

1: initialize count = 0 // count: a counter

2: if e is a data point p′ or a node MBR N then

3: for each entry 〈p, BAp , dp , SP(p, vmin), SP(p, vmax)〉 ∈ SBR do

4: if approximation is allowed then

5: if θ p′ ∈ BAp and dist(p′ , q) > dp then // Heuristics 1, 2

6: count = count + 1

7: else // exact ORkNN search

8: if SP(p′ , q) crosses SP(p, vmin) or SP(p, vmax) then

9: count = count + 1 // Lemma 4.1

10: if count ≥ k then

11: return TRUE // e can be pruned

12: return FALSE

Fig. 8. Example of δ-ORNN and CORNN queries.
region, the counter is increased by one. Once the counter reaches k, the corresponding entry can be discarded, and the algorithm

returns TRUE.

ORkNN search returns all the points that are closer to a specified query point q than their k-th obstructed nearest neighbor.

To solve the ORkNN query, we also follow the filter-refinement framework. In particular, we find a set Sc of ORkNN candidates that

contains all the actual answer points, and then eliminate all the false candidates in Sc. The ORNN-Filter algorithm can be easily

adapted to support ORkNN retrieval. Recall that, ORNN-Filter enables an early termination if approximation is allowed. To be

more specific, when the existing boundary regions stored in SBR span a full-angle range and the key of current top entry e of heap

Hp reaches the maximal value of dp maintained in SBR (i.e., MAXp∈SBR dp ≤ mindist(e, q)), ORNN-Filter stops. However, the early

termination condition for ORkNN-Filter is strict. Only when the existing boundary regions stored in SBR span a full-angle range,

and meanwhile there are at least k boundary regions for any angle interval, ORkNN-Filter terminates iff the key of current top

entry e of Hp reaches the maximal value of dp maintained in SBR. Similarly, the ORNN-Refinement algorithm can also be extended

to handle ORkNN search. Nonetheless, we skip the detailed pseudo-codes of ORkNN, due to the similarity between ORNN and

ORkNN algorithms, as well as the paper space limitation.

7.2. ORkNN search with constraints

In many real applications, users might enforce some constraints (such as distance and spatial region) on ORkNN queries,

and thus, we introduce the ORkNN query with maximum obstructed distance δ constraint and constrained region CR constraint,

respectively, as formally defined in Definition 7.3 and Definition 7.4, respectively.

Definition 7.3. (ORkNN Query with Maximum Obstructed Distance δ). Given a data set P, an obstacle set O, a query point q, and

an obstructed distance threshold δ, an ORkNN query with maximum obstructed distance δ (δ-ORkNN) returns a set δ-ORkNN(q) ⊆
P points, such that ∀ p ∈ δ-ORkNN(q), q ∈ OkNN(p) and ||p, q|| ≤ δ, i.e., δ-ORkNN(q) = {p ∈ P | q ∈ OkNN(p) ∧ ||p, q|| ≤ δ}.

An example of δ-ORNN (k = 1) search is depicted in Fig. 8a, where p2 is not the δ-ORNN of q due to ||p2, q|| > δ, while p3 is

a δ-ORNN of q as ||p3, q|| < δ and ONN(p3) = {q}. The δ-ORkNN query has its own applications. Take the KFC application as an

example. The manager may only be able to go certain distances to distribute coupons, e.g., not exceeding 2 km. He/she can use

the δ-ORkNN query to get the promotion targets.

Definition 7.4. (Constrained Obstructed Reverse k-Nearest Neighbor Query). Given a data set P, an obstacle set O, a query point

q, and a constrained region CR, a constrained obstructed reverse k-nearest neighbor (CORkNN) query retrieves a set CORkNN(q) ⊆ P

points, such that ∀ p ∈ CORkNN(q), q ∈ OkNN(p) and p ∩ CR 	= ∅, i.e., CORkNN(q) {p ∈ P | q ∈ OkNN(p) ∧ p ∩ CR 	= ∅}.
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Table 2

Real datasets used in experiments.

Dataset Cardinality Description

GR 21,645 2D rivers in Greece

LA 131,461 2D streets in Los Angles

Table 3

Parameter ranges and default values.

Parameter Range Default

α 1, 2, 4, 6, 8 4

k 1, 3, 5, 7, 9 5

|P|/|O| 0.25, 0.5, 1, 2, 4 1

buffer size (% of the tree size) 0, 5, 10, 15, 20 0

δ (% of the space width) 5, 10, 15, 20, 25 15

CR (% of full space) 10, 20, 30, 40, 50 30
Fig. 8b illustrates an example of CORNN (k = 1) search, in which p3 is not the CORNN of q as it falls outside CR, i.e., p3 ∩ CR = ∅,

while p2 is a real CORNN point since it is located inside CR with ONN(p2) = {q}. Also, CORkNN retrieval has its own application

base. Consider the KFC application again. The manager wants to distribute coupons within a specified region. In this case, a

CORkNN query can be employed to decision support.

The proposed algorithms for ORNN search are flexible, and can be naturally adjusted to support δ-ORNN and CORNN queries,

by integrating constrained conditions (i.e., the distance threshold δ and the constrained region CR) during the query processing.

In addition, we develop the following heuristics to further boost the search process. First, since the search region (SR) of δ-ORNN

retrieval is bounded by δ (e.g., the shaded area in Fig. 8a represents the SR of the δ-ORNN query issued at q), the filtering step

terminates shortly once the head entry e (a data point or a node) of the heap visited currently has its mindist to q (i.e., mindist(e,

q)) larger than δ, because all the remaining entries (e.g., the node MBR N in Fig. 8a) unvisited are definitely located outside SR

and thus cannot become or contain the actual answer point(s). Moreover, any evaluated data point (e.g., a point p2 in Fig. 8a)

having its obstructed distance to q (i.e., ||p2, q||) exceeding δ can be directly excluded from any further evaluation. Second, given

the fact that the final result of CORNN search must satisfy the specified constrained region CR, any data point or node that does

not intersect CR can be pruned away safely, as it cannot become or contain the real answer point(s). In Fig. 8b, for example, a

point p3 and a node MBR N3 are discarded since they lie outside CR. In addition, the algorithms can also be extended to answer

δ-ORkNN and CORkNN queries, with the extension similar to that for ORkNN search (stated earlier), and hence omitted.

8. Experimental evaluation

In this section, we experimentally evaluate the effectiveness of the developed pruning heuristics and the performance of the

proposed algorithms for ORNN search and its variants, using both real and synthetic datasets. All the algorithms were imple-

mented in C++, and all experiments were conducted on an Intel Core 2 Duo 2.93 GHz PC with 3GB RAM.

8.1. Experimental setup

We employ two real datasets, i.e., GR and LA, which are summarized in Table 2. All the real dataset are available at http:

//www.rtreeportal.org. We also create several synthetic datasets S1 and S2, with their cardinality varying from 0.25 × |GR| to

4 × |GR| and from 0.25 × |LA| to 4 × |LA|, respectively. Similar to [39], the distribution of S1 follows GR distribution and that of S2

follows LA distribution. For all datasets, every dimension of the data space is normalized to the range [0; 10,000]. Since ORkNN

retrieval involves a data set P and an obstacle set O, we deploy two different combinations of the datasets, namely, SG, and SL,

representing (P, O) = (S1, GR), and (S2, LA), respectively. It is worth mentioning that the data points in P are allowed to lie on the

boundaries of the obstacles but not in their interior. All data and obstacle sets are indexed by R∗-trees [2], with a page size of

4096 bytes.

The experiments investigate the performance of the proposed algorithms under a variety of parameters, which are listed in

Table 3. It is worth noting that, in each experiment, only one parameter varies, whereas the others are fixed to their default values.

The main performance metrics include query cost (i.e., the sum of the I/O time and CPU time, where the I/O time is computed

by charging 10 ms for each page access, as with [28]), the cardinality of candidate set Sc (i.e., |Sc|), the number of node/page

accesses (NA), the CPU time, the local visibility graph size |LVG| (i.e., the number of vertexes contained in LVG), and the positive

hit (PH) ratio (i.e., the ratio of the number of actual answer points to the cardinality of the complete answer set). Each reported

value in the following diagrams is the average performance of 50 random queries whose locations follow the corresponding

obstacle distribution, similar to [39]. Unless specifically stated, the size of LRU buffer is 0 in the experiments, i.e., the I/O cost is

determined by the number of node accesses.

http://www.rtreeportal.org
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Fig. 9. Efficiency of heuristics vs. α, |P|/|O|, k, and buffer size, respectively.

Fig. 10. ORkNN search performance vs. α.
8.2. Effectiveness of pruning heuristics

The first set of experiments is to verify the effectiveness of the presented pruning heuristics (i.e., Heuristics 1, 2, and 3).

The effectiveness of a heuristic is measured by processing time (i.e., the number of node accesses and CPU time) of the ORkNN

algorithms employing different heuristics. Fig. 9 plots the efficiency of different heuristics with respect to α, k, |P|/|O|, and buffer

size respectively, using dataset combinations SG and SL. Specifically, Naive denotes the ORkNN algorithm without any heuristic;

H12 represents the ORkNN algorithm using Heuristics 1 and 2; and H3 denotes the ORkNN algorithm using Heuristic 3. Notice

that the efficiency of Heuristics 1 and 2 is illustrated together with the same curve, since they are applied in the k-BRP algorithm

simultaneously. As expected, H12 and H3 outperform Naive significantly. This is because, as pointed out in Section 3, Naive

needs to traverse the data R-tree Tp and the obstacle R-tree To multiple times, incurring extremely high I/O overhead and distance

computation cost; while H12 and H3 use effective heuristics to shrink the search space significantly. Since the advantage of H12

and H3 over Naive is very significant, we only present the experimental results of ORkNN algorithm using Heuristics 1, 2, and 3 in

the following presentation, for the clarity of diagrams.

8.3. Results on ORkNN queries

The second set of experiments studies the performance of the proposed algorithms for ORkNN queries. First, we investigate

the effect of α on the presented ORkNN algorithm, with the experimental results for SG and SL shown in Fig. 10. Here, the total

query cost is broken into two components, corresponding to the filtering step and the refinement step, respectively. The number

with percentage on top of each bar indicates the ratio of the cost incurred in the filtering step to that of the overall query cost.
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Fig. 11. ORkNN search performance vs. k.

Fig. 12. ORkNN search performance vs. |P|/|O|.
Notice that, the cost of ORkNN search drops with α. The reason is that, as α becomes larger, the number of obstructed distance

computation decreases significantly and the boundary region formation speeds up. Also notice that, although |LVG| increases

with α, its size is always much smaller than the size of data set, as also demonstrated in the subsequent experiments. This is

because ORkNN algorithm only retrieves incrementally the qualified obstacles that may affect the final query result. Fig. 10d

and h unveil the PH ratio of the algorithms under different values of α. It is observed that the PH ratio decreases slightly as α
grows. The reason is that when α is larger (e.g., 8), more obstacles are added to LVG, which may speed up the boundary region

formation, and thus increase the probability of false misses. Nonetheless, the algorithms have high accuracy, e.g., the minimal PH

ratio is 93.2% as reported in Fig. 10d. The high accuracy can also be observed from all the experiments below.

Second, we explore the impact of k on the proposed algorithms, with the results corresponding to SG and SL depicted in Fig.

11. Note that we fix α at 4, set |P|/|O| to 1 (i.e., the median value shown in Table 3), and change k from 1 to 9. It is observed

that, the cost of algorithms increases gradually with the growth of k. The reason is that, as k grows, the result set enlarges. In

other words, more candidates are retrieved in the filtering step, and more candidates are refined in the filtering step, resulting in

higher cost.

Third, we study the effect of |P|/|O| on the proposed algorithms, using SG and SL dataset combinations. Fig. 12 shows the

performance of the algorithms with respect to |P|/|O|, by fixing α and k to 4 and 5 respectively, and changing |P|/|O| from 0.25

to 4. It is observed that, the cost of algorithms increases gradually with the growth of |P|/|O|. The reason behind is that, as the

density of data set grows, more candidates are retrieved, incurring high refinement overhead.

Finally, we examine the performance of the algorithms in the presence of an LRU buffer, by varying the buffer size from 0%

to 20% of the tree size of the dataset P. To obtain stable statistics, we perform the first 25 queries to warm up the buffer, and
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Fig. 13. ORkNN search performance vs. buffer size (α = 4, |P|/|O| = 1, k = 5).

Fig. 14. δ-ORkNN search performance vs. δ (α = 4, |P|/|O| = 1, k = 5).
then report the average cost of the last 25 queries in Fig. 13, with α = 4, k = 5, and |P|/|O| = 1. Note that, when the buffer size

enlarges, the cost of ORkNN-Refinement improves although the cost of ORkNN-Filter remains. This is because, the refinement

step of ORkNN search requires performing an OkNN query for each candidate, resulting in the traversal of the data R-tree Tp and

the obstacle R-tree To multiple times. Also notice that the PH ratio remains the same, as shown in Fig. 13d and h, since the buffer

stores the nodes visited recently based on LRU, which only affect the performance of algorithms but not the accuracy.

8.4. Results on ORkNN queries with constraints

The last set of experiments evaluates the performance of algorithms for δ-ORkNN and CORkNN queries.

First, we inspect the influence of the maximum obstructed distance δ on the efficiency of δ-ORkNN search algorithm. We

change δ values from 5% to 25% of the side length of the search space, and the corresponding results for SG and SL dataset

combinations are depicted in Fig. 14. Clearly, δ has a direct impact on the performance of δ-ORkNN retrieval, since it controls

the size of the search region. In particular, the cost of the algorithm increases gradually as δ grows. The reason is that with the

growth of δ, the search region enlarges, and thus, more candidate points are retrieved in the filtering step.

We then investigate the impact of the constrained region CR size on the performance of CORkNN query processing algorithm.

We vary the size of CR from 10% to 50% of the whole data space, and present the results in Fig. 15. As expected, the cost of the

algorithm increases with the growth of CR. This is because, as CR grows, more points will fall inside the specified CR, and the

number of the candidates obtained in the filtering step increases, which leads to more traversals of the obstacle R-tree and more

candidate examinations.
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Fig. 15. CORkNN search performance vs. CR (α = 4, |P|/|O| = 1, k = 5).
9. Conclusions

This paper, for the first time, identifies and solves a new type of RNN queries, namely, obstructed reverse nearest neighbor

(ORNN) search, which considers the impact of obstacles on the distances between objects. The ORNN query is not only inter-

esting from a research point of view, but also useful in many decision support applications involving spatial data and physical

obstacles. We carry out a systematic study of ORNN retrieval. We carefully formalize the problem, develop effective pruning

heuristics by introducing a novel concept of boundary region, propose efficient algorithms for ORNN query processing, extend

ORNN query solution to tackle several variations of ORNN queries, i.e., ORkNN, δ-ORkNN, and CORkNN queries, and conduct ex-

tensive experiments with both real and synthetic datasets to demonstrate the effectiveness of our presented pruning heuristics

and the performance of our proposed algorithms. In the future, we intend to explore the ORkNN search w.r.t. a line segment that

contains continuous query points instead of a single query point.
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