Visualizing the Time-varying Crowd Mobility
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Abstract

Modeling human mobility is a critical task in fields such as urban
planning, ecology, and epidemiology. Given the current use of mo-
bile phones, there is an abundance of data that can be used to cre-
ate models of high reliability. Existing techniques can reveal the
macro-patterns of crowd movement, or analyze the trajectory of an
individual object; however, they focus on geographical characteris-
tics. In this paper, we employ a novel data representation, the mo-
bility transition graph, which is generated from a citywide human
mobility dataset by defining the temporal trends of crowd mobility
and the interleaved transitions between different mobility patterns.
We describe the design, creation and manipulation of the mobility
transition graph and demonstrate the efficiency of our approach by
case study.
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1 Motivation

Understanding and exploring human mobility patterns is essential
in domains such as urban planning, transportation optimization, and
epidemiology [Gonzalez et al. 2008; Schneider et al. 2013]. Un-
derstanding where and how people move provides a window into
how they interact with their built environment and can provide in-
sight for planners to improve transportation routes, prepare for dis-
asters, or various other concerns. Given the current use of mobile
devices, researchers can now, more than ever, study how humans
move. As such there are emerging research trends focusing on the
development of data-driven pattern discovery for human mobility
patterns [Barabasi 2005]. While there has been much recent work
on the visual exploration of traffic patterns based on trajectory data
(e.g., [Wang et al. 2013; Zeng et al. 2014]), Visualizing the mobility
patterns from a citywide population is still a challenging task.

Given the ubiquity of mobile phones, measurements of human lo-
cation and travel via cell signals and GPS locations are becoming
readily available. Such data can be mined as a proxy to describe
the daily life of citizens. Previous studies based on mobile phone
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data have made significant progress in extracting human behavior
and mobility patterns by leveraging various approaches, including
statistical physics, mobility modeling, and data mining. Though
effective, these approaches focus primarily on discovering macro-
scale patterns. However, studies on mid-level or micro-scale mobil-
ity patterns are missing. Such studies are of critical importance as
recent work from a study of fifteen months of human mobility data
for 1.5 million individuals revealed that human mobility traces are
highly unique [de Montjoye et al. 2013].

In order to better explain the extracted mobility patterns, many of
the previous approaches incorporate classical visualization tech-
niques, including parallel coordinates, heat-maps, and glyphs.
However, there are rarely integrated works that involve intertwined
statistical methods, data mining and visualization techniques. In
this paper, we contribute the design and implementation of a novel
visual exploration approach for depicting the temporal evolution
of human mobility patterns of 500,000 mobile phone users in a
medium-sized city (3 districts, 2 county-level cities and 6 county
areas, 919.7 million resident population in 2013). This dataset con-
tains the location information of one million individuals over the
course of 30 days. The location of an individual is specified at a
temporal resolution of less than one minute and with a spatial res-
olution equal to the distribution of the mobile cell towers. This
makes it feasible to characterize the mobility patterns of an individ-
ual over the 30 day period at a fine scale resolution.

The main contribution of our study is to structure and depict mobil-
ity patterns and how persons transition from one mobility pattern
to another by a hybrid timeline-graph representation, called mobil-
ity transition graph (MTG), in which the vertices represent clusters
of similar mobility patterns and the edges represent transitions be-
tween patterns. The advantage of mobility transition graph is its
ability to simultaneously characterize the temporal evolutions and
interleaved transitions of mobility patterns (i.e., nodes may repre-
sent a concept such as walking to the downtown, and then transition
to a node representing riding the downtown). Besides, we incorpo-
rate the other assistant views to enable users to visually locate the
patterns, analyze the mobility features and groups.

2 Data Preprocess

The dataset employed in our study is provided by a mobile phone
service company. It consists of 14 billion records of 7 million phone
users across 25,000 cell towers over January and February of 2014.
The dataset is collected on the basis of cell towers: a record is gen-
erated whenever the following activity happens: a user enters or
leaves a cell tower, a user makes a call or sends a short message,
or a user stays in a cell tower for more than a given duration (e.g.,3
minutes). Each record contains multiple items: a phone ID, a cell
tower ID, the activity type, a time stamp.

Because of the dirtiness, geographical inaccuracy and temporal s-
parsity of this dataset, several preprocesses are taken to the raw
data:

e Removing Ping-pong Effects The ping-pong effect [Xiong
et al. 2012] is caused by the frequent handoffs between two
nearby cell towers, yielding fabricated records. We encode a



FrETITTerRT—— T —ox
2014-01-21 00:00:00.000—2014-01-28 00:00:00.000 = o | W e D )
700 75 743 10 oun 740 [ 0 20 2 @
g 2 e e Er I ) g .
= - ik . i o o o
) oo oo G000 oo S0 Toe i o i
fiine] woonslind ey frrned s R Lo finoin fravoied e
Envomy Envom Gyraton (a)
R oox
III.-IIIIlIIIII.lllll|IIIII-l-lll|IIIII.-llllllIIIIl-lll||IIIIII--III'IIIIII--III'II
" a2 e a2y a2t o2 s 2 oo a2 a2
) R conir 0 ECTE) H9%m 30%%% £9HR H55% L) S5ER kot
[ |
- :/:I -
H 3
- ] =)
==/ = =
— . f - = — e -
— [ - [ | — - — —
- —_—] — — -
%-%-%- — [ - —
= ] ] -:/:I = .
— - 1 —
1 [ ] = :/I akle © Dissile
| e -
[ | et 0 Transition mexi 0.9
[ (c) 1 i

Figure 1: The mobility patterns extracted from the mobile phone location records of 500,000 users in 7 days (Jan.21 - Jan.27, 2014). (a) The
mobility patterns (clusters) are depicted with a multiple coordinate style in the mobility pattern view. (b) A map view shows the geographical
scene and trajectories. In this case, the selected mobility pattern describes the inactive behavior in the downtown. (c) A mobility transition
graph (MTG) is built upon the dataset. (d) Controlling widgets. When the user selects a pattern, the corresponding trajectories are shown in
the map view and the statistical information are depicted in the multiple coordinate view.

cell tower with a word, and employ an N-gram model [Gao
et al. 2002] to detect and eliminate frequent changes between
multiple cell towers.

e Removing Invalid Records The records whose the activity
type or the cell tower id is unknown are removed.

¢ Removing Duplicate Records Several consecutive records of
a mobile phone may be generated due to the signal intensity
fluctuations or reconnections. We remove duplicated records.

o Compensating Missed or Sparse Records To compensate
missed records of a mobile phone, we add records by interpo-
lating the values from known records.

3 The Mobility Transition Graph

Before designing a visual representation for studying citywide mo-
bility patterns, we firstly represent the mobility of a mobile phone
user with an array of features that is derived from the movement and
geographical context. Considering the commonly used and the rep-
resentative features proposed in recent years, 8 feature descriptors
(10 dimensions) are employed as follows:

e Temporal-uncorrelated Entropy An entropy describes the
degree of predictability. Many definitions concerning en-
tropy have been proposed [Song et al. 2010] to measure the
predictability in human mobility. We adopt the temporal-
uncorrelated entropy because of its capability of distinguish-
ing different movements. Usually, high entropy suggest-
s the movements with dramatic changes. The temporal-
uncorrelated entropy S“" = —XN_ p(j)logap(j) describes
the heterogeneity of visitation patterns, where p(j) denotes
the historical probability of the visit from the mobile phone
user to the jth cell tower.

e Temporal-correlated Entropy We additionally employ a

temporal-correlated entropy S*°, which is similar to S“™¢ de-
spite that p(j) is temporal-correlated. If the ith mobile phone
stays a long time in the jth cell tower, p(j) will be high.

e Average Speed is defined as the average speed of valid move-
ment records. We set the speed limit to be 200km per hour,
and clean the records whose speed is higher than the limit.

e Activity Mileage is defined as the distance the mobile phone
moves.

e Centroid Location is the geographic centroid (the longitude,
the latitude) of the sequence of records in a frame.

e Radius of Gyration is the typical distance traveled by a mo-
bile phone user around the centroid of mass of the trajecto-
ry [Gonzalez et al. 2008]. Which is a synthetic and easy to
compute parameter leveraged to describe the movement span
of the user.

o Residence Location is the estimated location of the home of
a mobile phone user. It is defined as the most frequently ap-
peared location (the longitude, the latitude) from 00:00 a.m.
to 6:00 a.m.

e Activity Radius is the average distance a mobile phone user
travels from his residence location. It measures the activity
scope in t;.

Second, the human mobility in a period of time can be regarded as
a composition of multiple segments, and each segment encodes a
specific event or activity in a time interval. The transitions among
consecutive segments may indicate temporal variations, periodicity
or abnormality of the mobility. Third, the mobility in a segment
is reasonable if and only if the result has a statistical significance.
Consequently, we divide the record sequence of each mobile phone
user into segments with a fixed time interval, then extract the fea-
tures of each segment and cluster all segments of all mobile phone
users by K-means. Each cluster encodes the average mobility of a



group of mobile phone users can be regarded as a mobility pattern.
By assuming that the mobility pattern transition can be character-
ized as the transition between the consecutive segments, we incor-
porate the k-th (k = 1) order Markovian assumption and calculate
the transition likelihood between the mobility patterns in two con-
secutive periods of time by the method in [Song et al. 2009].

3.1 Visualization

Visualizing the constructed mobility transition graph is straightfor-
ward. Essentially, a mobility transition graph (MTG) is a hybrid
timeline-graph representation that characterizes the interconnected
mobility transition in a sequential way. To emphasize on the tempo-
ral transitions, we pack the mobility patterns vertically as a stacked
bar chart sorted by the value of a descriptor or the size (Figure 2
(a)). Each pattern is encoded as a grey rectangle, whose darkness
encodes the count of segments belong to the mobility pattern. The
user may filter and display the necessary patterns (e.g., according to
the likelihood of the transitions which connects to these patterns).

Then we sequentially place the stacked bars from left to right to
represent the flow of mobility over time. The transitions between
two consecutive time periods are encoded by ribbons that connect
pairs of mobility pattern. The ribbons are colored with respect to
the transition likelihood. To highlight the transition in the identical
pattern, the edge of the ribbon is colored in black while the edges in
green represents the transitions between different patterns. Normal-
ly, the width of a ribbon is set to be identical. In cases that multiple
transitions start or end in a node, the width of each ribbon is set
to be proportional to the transition likelihood of the corresponding
transition (see the region in red rectangle of Figure 2 (a)).

Further, an enhanced bar chart is employed to summarize the mo-
bility transition graph as an overview. Each bar in dark grey cor-
responds to a time period in the MTG, and its height encodes the
number of the displayed patterns in the period. Each bar in light
grey encodes the transitions between consecutive time periods. A
semitransparent rectangle mask in blue indicates the interval of the
overview that represents the shown portion of the underlying MTG
(Figure 2 (c)).
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Figure 2: (a) The stacked flow view of a MTG. The color bar at the
right is used to color the links based on the transition likelihood;
(b) A bar chart overviews the MTG.

3.2 The Interface

Figure 1 illustrates the interface of our system. The map view and
the mobility pattern view are designed to display the corresponding
information of a selected mobility pattern. While the MTG view

concentrates to demonstrate the transitions between the mobility
patterns and supports the user to explore with interactive operations.

e The Map View employs OpenStreetMap as the map, and
shows the geographic-related information in the map (Fig-
ure 1 (b)). The trajectories of mobility phone users are shown
in the map to help study the mobility descriptors and mobility
patterns. To avoid heavy visual clutter, trajectories of top-k
mobile phone records that are the closest to the cluster cen-
troid are shown. k is a user-adjustable parameter. The stroke
weight of trajectory encodes the distance to the cluster cen-
troid.

e The Mobility Pattern View displays the detailed informa-
tion of 10 dimensions of 8 mobility descriptors by means of
a multiple coordinates plot (Figure 1 (a)). The histogram on
each coordinate axis characterizes the statistical distribution
of each dimension of the selected mobility pattern. A pat-
tern list panel (Figure 1 (d)) employs a matrix view to show
the dimensions of each mobility pattern. The color of each
matrix cell encodes the numeric value of the corresponding
dimension. The user can either select a row in the list panel
or choose the ribbons in the mobility pattern view to speci-
fy and study a mobility pattern. The user can also filter each
dimension by adjusting the range slider on the associated axis.

e The MTG View The MTG view visualizes the constructed
mobility transition graph. The user can navigate, reorder, fil-
ter and manipulate with the patterns, links and axes of the
representation (Figure 1 (c)).

4 Implementation

The backend takes the responsibility of the data preprocessing and
MTG model constructing. We store and calculate the data with 12
computing nodes. Each node drives 8 core and 20GB memory. We
employ the Apache Spark as the data processing engine which takes
about 1h to fulfill all preprocess steps. The model constructing is
faster which spends about 12m clustering the mobility patterns and
2m calculating the transition between them. The frontend runs on a
PC with 3.4GHz dual core, 16GB memory, which is implemented
in JAVA and uses Processing for rendering. Because the construc-
tion of MTGs is pre-computed, exploring and analyzing the mobil-
ity patterns and their transitions can be performed in real-time.

5 Case Study

5.1 Case 1: The General Exploration of The Mobility
Patterns

(a) (b) (©) (d)

Figure 3: (a)(b): The patterns with high speed and entropy are
distributed along the highway and railway; (c)(d) The patterns with
low speed and entropy may distribute in the residential zone.

The first case study is designed to study the general citywide mobil-
ity patterns. We select the records collected from Feb. 4th 2014 to
Feb. 10th 2014. By the mobility pattern view, we may investigate
the distribution of each mobility description and find the radius of
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Figure 4: The mobility transition graph of case 2. The mobility pattern transition are highlighted and can be traced from (a) to (i).

gyration follows the power law which is consistent with the conclu-
sion in [Gonzalez et al. 2008]. By selecting the patterns, the map
view shows their geographic representation. The patterns with high
speed and entropy are distributed along the highway and railway
(Figure 3 (a)(b)) while the low speed and entropy may distribute
in the residential zone (Figure 3 (c)(d)). Meanwhile, the MTG and
its overview exhibit a periodicity over time (Figure 1 (c)). That is,
there is routinely a peak from 0:00 a.m. to 2:00 a.m. of the tran-
sition likelihood. The transitions among these patterns are quite
stable from 00:00 am to 04:00 am. In the map view, these mobil-
ity patterns are slow and inactive. We deduce that these transition
patterns describe the people sleep in this time period.

5.2 Case 2: Visualizing The Interregional Movement

In this case, we show a movement pattern between two main dis-
tricts selected by our system in Figure 4. Figure 4 (a) describes the
movement in the downtown from 8:00 a.m. to 10:00 a.m. Then
in the next 2 hour, this mobility pattern transfers to the pattern in
Figure 4 (b), which describes the movement from the downtown to
the development zone of this city. Next, this pattern splits into t-
wo patterns depicted in Figure 4 (c) and Figure 4 (d), respectively.
From 2:00 p.m. to 4:00 p.m. the pattern describes the movemen-
t between the downtown and the development zone appears again
and connects the previous pattern in Figure 4 (c). In this way, the
user may trace the transition of the mobility pattern and observe the
relevant information on the map view.

6 Conclusion

We present a novel visual representation that characterizes the sta-
tistical transitions of mobility patterns of crowd in daily life. The
implemented visualization scheme not only allows for intuitive un-
derstanding of mobility patterns, but also provides a mechanism for
studying the transition modes in a situation-aware fashion. We ex-
emplify our approach with case studies on a real dataset and demon-
strate the efficiency of our approach.
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