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This paper studies the problem of k-optimal-location-selection (kOLS) retrieval in metric
spaces. Given a set DA of customers, a set DB of locations, a constrained region R, and a crit-
ical distance dc , a metric kOLS (MkOLS) query retrieves k locations in DB that are outside R
but have the maximal optimality scores. Here, the optimality score of a location l 2 DB

located outside R is defined as the number of the customers in DA that are inside R and
meanwhile have their distances to l bounded by dc according to a certain similarity metric
(e.g., L1-norm, L2-norm, etc.). The existing kOLS methods are not sufficient because they are
applicable only to the Euclidean space, and are not sensitive to k. In this paper, for the first
time, we present an efficient algorithm for kOLS query processing in metric spaces. Our
solution employs metric index structures (i.e., M-trees) on the datasets, enables several
pruning rules, utilizes the advantages of reuse technique and optimality score estimation, to
support a wide range of data types and similarity metrics. In addition, we extend our tech-
niques to tackle two interesting and useful variants, namely, MkOLS queries with multiple
or no constrained regions. Extensive experimental evaluation using both real and synthetic
data sets demonstrates the effectiveness of the presented pruning rules and the perfor-
mance of the proposed algorithms.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Given an object set DA, a location set DB, a constrained region R, and a distance parameter dc , a k-optimal-location-selection
(kOLS) query returns top-k optimal locations in DB that are located outside R. Note that, in this paper, the optimality score of
a location l 2 DB is defined as the number of the objects in DA that are within R and have their distances to l bounded by dc .
kOLS queries are useful in a large number of applications such as decision making and resource/service planning. Three
potential applications are listed below as three examples.
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Application 1 (Pizza restaurant location selection). Consider that, as shown in Fig. 1, Pizza Hut would like to open a new store
nearby a residential area R. The main customer base of this new store is the residents DA in R. Because of the 30-min delivery
guarantee, the store p may only provide the pizza delivery service to the residents with their distances to p bounded by a
certain distance dc (e.g., 2 km). In addition, due to certain restriction conditions (e.g., imagine R is a campus which does not
open to any public restaurant), the new Pizza Hut restaurant has to be located outside R. If the potential customer base for
the delivery service is the most important, given a set DB of potential locations, the kOLS query can help the decision-maker
to identify an appropriate pizza restaurant location that covers the largest number of residents (e.g., l2 in Fig. 1).
Application 2 (Data center planning). A data center is a facility used to house computer systems and associated components.
For security reason, the data servers DA are usually placed in a safe region R. There are a set DB of locations outside R such that
we can install switches and routers, which can transport traffic between the servers and the outside world. The data is for-
warded from a source to a destination via router(s) one by one. In general, the fewer the routers the data pass, the safer and
the faster a transfer would be. In order to ensure a fast and secure service, we assume that a router r can reach those servers
that are within dc hops from r. Under this assumption, kOLS search can be employed to analyze the optimality of different
locations for routers, and hopefully we need less routers to connect to more servers.
Application 3 (New computer promotion). Consider a computer manufacturer is planning to launch new computers to
attract more customers. Every computer can be modeled as a d-dimensional vector, to represent its price, size, color and
other performance features. Similarly, a corresponding d-dimensional vector can also be used to denote a customer’s pref-
erence. If the similarity (e.g., L1-norm) between a computer and a customer’s preference is no larger than dc , the customer
can be considered as a potential customer who may buy the computer. Based on this assumption, a kOLS query could be
helpful to select optimal computers from a computer dataset DB to attract more customers in DA. In this case, the constrained
region R can be considered as a ‘‘circle’’ to select closely related computers, with a popular computer as its center and a pre-
defined/customer-specified distance as its radius.

Although the concept of kOLS search is not new [16], the existing work only considers the Euclidean space, where the
distance between two objects is measured by the Euclidean distance. In reality, not all the applications can be fit into the
Euclidean space, and the Euclidean distance might not be able to capture the distance between objects. In Application 1,
the distance from a Pizza Hut restaurant location to a resident address cannot be captured by the Euclidean distance but
the road network distance; In Application 2, the distance from a data server to a router is measured by the number of hops
but not the Euclidean distance. Moreover, Application 3 generalizes the problem and goes beyond typical distance and loca-
tion concepts. Specifically, each computer (customer’s preference) is represented as a d-dimensional feature vector, and the
distance (e.g., L1-norm) between a computer and a customer’s preference is defined according to the feature vectors. In a
word, there are many applications in real life that require a more general solution for flexible distance measurements
and/or object representations. Motivated by this, in this paper, we propose a metric k-optimal-location-selection (MkOLS)
query to support the kOLS query in a metric space. Due to the difference between the Euclidean space and the metric space,
the original solution for the Euclidean space presented in [16] cannot be applied to answer MkOLS retrieval efficiently, and
new efficient algorithms are needed. To the best of our knowledge, there is no prior work on this problem.

A naive solution to tackle MkOLS search is to, for each location l 2 DB, we can quantify its optimality score by traversing
the object set DA; and then, we return those k locations with the maximum optimality scores. This approach is straightfor-
ward, whereas it is very inefficient due to the following two deficiencies. First, it needs to traverse DA multiple times, resulting
in high I/O and CPU costs. Second, it is insensitive to k and hence has to scan all the objects in DB even when k� jDBj.

In this paper, we propose an efficient algorithm for MkOLS query processing, assuming that both DA and DB are indexed by
M-trees [9]. However, the presented methodology is not limited to the M-tree only, and it can also be applied to other metric
indexes [17]. In particular, our solution enables several pruning rules, utilizes the advantages of reuse technique and optimality
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Fig. 1. Illustration of pizza restaurant location selection.
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score estimation, requires no detailed representations of objects, and can be applied as long as their mutual distances can be
computed and the distance metric satisfies the triangle inequality. Furthermore, our techniques can be easily extended to
solve some interesting and useful variants of MkOLS queries. In brief, the key contributions of this paper are summarized
as follows:

� We formalize the MkOLS query, a new and valuable addition to the family of optimal location selection problems and que-
ries in metric spaces.
� We develop a suite of pruning rules to significantly reduce query costs and present an efficient algorithm for processing

exact MkOLS retrieval using M-trees.
� We extend our techniques to handle two interesting and useful variants of MkOLS queries, namely, MkOLS search with

multiple or no constrained regions.
� We conduct extensive experiments to verify the effectiveness of our developed pruning rules and the performance of our

proposed algorithms.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 formulates the MkOLS query, pre-
sents pruning rules, and describes the Baseline algorithm. Section 4 elaborates an efficient MkOLS search algorithm. Section 5
extends our techniques to address two MkOLS query variants. Considerable experimental results and our findings are
reported in Section 6. Finally, Section 7 concludes the paper with some directions for future work.
2. Related work

In this section, we review the previous work related to MkOLS retrieval, including facility location problems and query
processing in metric spaces.
2.1. Facility location problems

Given an object set and a location set, the facility location (FL) problem is to retrieve the optimal location(s) that can
attract the most objects. The existing work can be classified into two categories, i.e., max-inf problems and min-dist problems.
Our problem studied in this paper belongs to the first category, and it is a significant addition to the family of FL problems.
2.1.1. Max-inf problems
Max-inf problems aim at finding the locations with the maximum influence, and there are two different ways to measure

the influence. The first one is based on the concept of reverse nearest neighbor (RNN) query [20], and it quantifies the influ-
ence of an object o as the number of the objects taking o as their nearest neighbors. Du et al. [13] propose the algorithms for
selecting a location in a specified spatial region, where the influence of a location is defined as the total weight of its RNNs in
an object set. Cabello et al. [5] introduce a facility location problem using the MAXCOV optimization criterion, which finds
the regions in a data space to maximize the numbers of RNNs for the objects in these regions. Huang et al. [18] develop two
branch and bound algorithms for finding the top-k most influential locations in a given set of locations. Xia et al. [34] address
the problem of finding the top-t most influential sites inside a specified spatial region. Zhang et al. [37] study the problem of
finding the optimal location that has maximum aggregate weight on multiple types of objects. Note that, all these efforts
differ from ours in optimality functions and some settings (e.g., our work aims at metric spaces instead of Euclidean spaces),
and thus are not applicable to MkOLS search. On the other hand, the second one is to measure the optimality of a location
beyond RNN. Gao et al. [16] first identify the kOLS query and propose three algorithms to tackle it. Xiao et al. [35] explore
optimal location (OL) queries in road networks. In particular, they develop a unified framework to solve three interesting
variants of OL queries. It is worth mentioning that, however, these solutions are specifically designed for the Euclidean space
or the road network, and hence cannot be used to handle MkOLS retrieval.
2.1.2. Min-dist problems
Min-dist problems aim at minimizing the average distance between the facilities and their corresponding customers.

Zhang et al. [36] discuss the min-dist optimal-location problem where, given a set C, a facility set F, and a spatial region
Q, the goal is to find the locations in Q such that, if a new facility is built at any one of these locations, the average distance
from each customer to its closest facility is minimized. Mouratidis et al. [23] study the k-medoid query, which returns a set P0

of k medoids from a point set P that minimizes the average distance between every point in P and its nearest medoid in P0. Qi
et al. [25] investigate the min-dist location selection problem which, given a customer set C, a facility set F, and a location set
L, finds a location in L for establishing a new facility such that the average distance from a customer to its nearest facility is
minimized. Recently, Chen et al. [8] explore the problem to find an optimal location that minimizes the maximum distance
to client objects, based on road network graphs. It is worth noting that, all the above works are different from ours in that (i)
they try to minimize the average distance, whereas we aim to maximize the number of objects and (ii) none of these
approaches is designed for metric spaces. Thus, they are not applicable to answer MkOLS search.
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More recently, Didandeh et al. [11] introduce the facility location problem to locate a set of facilities with respect to a
dynamic set of demands. Wang et al. [33] study the target set selection problem on social networks. Fort and Sellarès
[14] explore the k-influence region problem using GPU parallel approach. Rahmani and Mirhassani [26] investigate the
capacitated facility location problem (CFLP), which aims to determine how to locate facilities and move commodities, such
that the customers’ demands are satisfied and the total cost is minimized. Zhang and Chow [38] exploit personalized
influence to facilitate location recommendations using the geographical and social influences. However, all these works
are clearly different from ours, since (i) they take other factors (e.g., GPU, social network, etc.) into consideration to address
facility location problems and (ii) none of their solutions is designed for the metric space. Thus, they are not applicable to
solve our studied problem.

2.2. Querying metric spaces

Since indexes can accelerate query processing, following the most approaches in the relevant literature [1,2,7,29], we
assume, in this paper, that each dataset is indexed by an M-tree [9]. In an M-tree, an intermediate entry e records (i) a routing
object e:o that is a selected object in the subtree sube rooted by e, (ii) a covering radius e:r which is set to the maximum dis-
tance between e and the objects in sube, and (iii) a parent distance e:pdist corresponding to the distance from e to the routing
object of the parent entry ep referencing the node containing e. All the objects in sube lie in e’s cluster sphere centered at e:o
with radius e:r. A leaf entry o stores the details of an object and the distance o:pdist to its parent entry. As to be used later, the
minimum distance and maximum distance between an entry e and an object o is the smallest and largest distances from o to
any object in sube, respectively, i.e.,
mindistðe; oÞ ¼ MAXðdistðe:o; oÞ � e:r; 0Þ
maxdistðe; oÞ ¼ distðe:o; oÞ þ e:r
Range and k-nearest neighbor (kNN) queries in metric spaces have been well-studied in the database literature [6]. Brin
[4] presents an algorithm based on Geometric NN Access Tree (GNAT). Ciaccia et al. [9] adopt a branch-and-bound technique
using M-tree for processing range and kNN queries in metric spaces. Clarkson [10] proposes two data structures, i.e. D(S) and
M(S;Q), for NN retrieval in metric spaces. Skopal et al. [28] introduce the PM-tree, a variation of M-tree that combines M-tree
with the pivot-based methods for similarity search. Tellez et al. [30] propose an NN algorithm based on a new metric index-
ing technique with an algorithmic mechanism to lift the performance of otherwise rigid metric indexes. Ares et al. [3]
present the cluster reduction approach for similarity search in metric spaces. Recently, Doulkeridis et al. [12] address P2P
similarity search in metric spaces, where data are horizontally distributed across a P2P network. Vlachou et al. [32] propose
a framework for distributed similarity search, in which each participating peer preserves its own data autonomously and is
indexed by an M-tree.

Achtert et al. [1] propose an approach for efficient reverse k-nearest neighbor (RkNN) query in arbitrary metric spaces,
which uses conservative and progressive distance approximations to filter out true drops and true hits. Tao et al. [29] present
a two-stage algorithm for RkNN search and develop several novel pruning heuristics to boost search performance. Achtert
et al. [2] give a solution to RkNN retrieval in a dynamic environment, which integrates the potentials of self-pruning and
mutual pruning to achieve optimal pruning power and reduce the query time accordingly. Liu et al. [22] present an efficient
algorithm for reverse furthest neighbors (RFN) query.

Jacox and Samet [19] introduce a Quickjoin algorithm for similarity join, which recursively partitions the objects until
each partition contains a few objects, where a nested-loop join is employed. Paredes and Reyes [24] develop a new metric
index, i.e., coined List of Twin Clusters (LTC), for answering similarity joins. Kurasawa et al. [21] propose a new divide-and-
conquer-based k-closest pair query method, i.e., Adaptive Multi-Partitioning (AMP), in metric spaces. Silva and Pearson [27]
develop DBSimJoin, a physical similarity join database operator for datasets in any metric space.

Chen and Lian [7] and Fuhry et al. [15] study skyline query in metric spaces. More Recently, Tiakas et al. [31] investigate
metric based top-k dominating queries, which combines top-k and skyline queries under generic metric spaces. Although
query processing in metric spaces has been well studied, we would like to highlight that there is no prior work on answering
top-k optimal location selection queries in metric spaces. To the best of our knowledge, the work presented in this paper is
the first attempt.

3. Preliminaries

In this section, we formally define the MkOLS query, propose several effective pruning rules to speed up the search, and
present a baseline algorithm for answering MkOLS search. Table 1 lists the symbols used frequently in the rest of this paper.
The example depicted in Fig. 2 serves as a running example in the rest of the paper.

3.1. Problem formulation

We first formalize the concepts of optimal set and optimality score in Definitions 1 and 2, respectively, based on which
MkOLS retrieval is defined in Definition 3.



Table 1
Symbols and description.

Notation Description

DA A set of objects in metric spaces
DB A set of locations in metric spaces
TA The M-tree/COM-tree on DA

TB The M-tree on DB

k The number of required location(s)
R A region centered at R:o with radius R:r
dc A critical distance
Sb The optimal set of a location b in DB

jjb; Sbjj The accumulated distance of a location b in DB

b:OPT The optimality score of a location b in DB

B:EST The estimated optimality score of a (leaf or non-leaf)
entry B 2 TB

Region R

Location

a1 a2
a3

a4

a6

a5

a7 a8 b6

b1

b4 b3

b2

b5b7
b8

Customer

dc

Fig. 2. A running example for MkOLS search.
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Definition 1 (Optimal set). Given an object set DA, a location set DB, a region R, and a distance dc , the optimal set Sbj
of a

location bj 2 DB located outside R is formed by all the objects ai 2 DA that are within R and meanwhile have their distances to
bj bounded by dc , i.e., Sbj

¼ faijai 2 DA ^ ai 2 R ^ distðai; bjÞ 6 dcg, where distðai; bjÞ refers to a metric distance between ai and
bj that could be of any type of objects in a metric space.

MkOLS search aims to find top-k locations with the largest optimal sets. However, there might be multiple locations shar-
ing the same size of optimal sets, i.e., there is a tie. As shown in Fig. 2, for a given distance dc; b7 and b8 have the same optimal
sets, i.e., Sb7 ¼ Sb8

¼ fa5; a6; a7; a8g. Consequently, we need to define a tie breaker. Although different applications may prefer
various tie breakers, we employ the accumulated distance. For a specified location bj 2 DB, its accumulated distance, denoted
by jjSbj

; bjjj, is defined as
P

ai2Sbj
distðai; bjÞ, in which distðx; yÞ denotes a certain metric distance function defined by the appli-

cation. As an example, in the context of Application 1, distðx; yÞ can be defined as the network distance from x to y, which
reflects the travel distance from the Pizza Hut restaurant to a residential address. If two locations share the same size of
potential customer base (i.e., the optimal set), we prefer the one closer to the potential customers, i.e., having a smaller
accumulated distance. Continuing the above example, location b8 is better than location b7 due to the smaller accumulated
distance. Formally, the optimality score of a location is formulated below, by considering both optimal set size and the
accumulated distance.

Definition 2 (Optimality score). Given an object set DA, a location set DB, a region R, and a distance dc ;8bj 2 DB ^ bj R R, its
optimality score is defined as
bj:OPT ¼ jSbj
j �

jjSbj
; bjjj

dc � jSbj
j þ 1
Note that, jSbj
j represents the cardinality of Sbj

, and
jjSbj

;bj jj
dc�jSbj

jþ1 is within the range of ½0;1Þ. In other words, the Definition 2

considers the size of the optimal set of a location bj as the major factor when evaluating bj’s optimality score. The accumu-
lated distance plays a role only if two locations share the same size of the optimal set. Formally, 8bi; bj 2 DB ^ bi; bj R R; jSbi

j >
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jSbj
j ! bi:OPT > bj:OPT; and jSbi

j ¼ jSbj
j ^ jjSbi

; bijj < jjSbj
; bjjj ! bi:OPT > bj:OPT. Based on the concepts of the optimal set and

the optimality score, the MkOLS query is defined as follows. Notice that, MkOLS retrieval might return less than k locations.
Definition 3 (MkOLS search). Given an object set DA, a location set DB, a region R, a distance dc , and an integer kðP 1Þ in a
metric space, a metric k-optimal-location-selection (MkOLS) query finds k locations in DB having the maximal optimality score
among all the locations located outside R, i.e., MkOLS ðDA;DB;R; dc; kÞ ¼ fResjRes # DB; jResj 6 k, and 8bi 2 Res;
8bj 2 ðDB � ResÞ ^ bj R R; bi:OPT P bj:OPT and bi:OPT > 0}.
3.2. Pruning rules

Due to the lack of geometric properties, query processing in metric spaces is naturally more challenging than that in
Euclidean spaces. In the following, we propose several pruning rules that will be used in our search algorithms. Note that,
all these pruning rules are based on the two assumptions: (i) the query is purely processed based on mutual distances
but nothing else and (ii) two M-trees TA and TB are built over DA and DB, respectively. Next, we first present the rules to prune
the entries in TA, and then present the rules to discard the entries in TB.

Rule 1. For an entry A 2 TA;A can be safely pruned away if mindistðA;RÞ > 0, in which mindistðA;RÞ represents the minimum
distance between A and a given constrained region R.
Proof. If mindistðA;RÞ > 0;A is outside R. In other words, A does not contain any object located within R and thus can be
pruned. h
Rule 2. Given an entry A 2 TA and its parent entry Ap, if distðAp:o;R:oÞ � A:pdist > A:r þ R:r;A can be discarded safely.
Proof. Given three objects A:o;Ap:o, and R:o in a metric space, distðAp:o;R:oÞ 6 distðA:o;R:oÞ þ distðAp:o;A:oÞ ¼ distðA:o;R:oÞ
þA:pdist, due to the triangle inequality. If distðAp:o;R:oÞ � A:pdist > A:r þ R:r, then distðA:o;R:oÞ P distðAp:o;R:oÞ � A:pdist >
A:r þ R:r, i.e., mindistðA;RÞ ¼ distðA:o;R:oÞ � A:r � R:r > 0. Thus, the entry A can be safely pruned according to Rule 1, and
the proof completes. h

Both Rules 1 and 2 are employed to prune away the entries A 2 TA based on mindistðA;RÞ. Rule 1 directly checks
mindistðA;RÞ, while Rule 2 derives the value of mindistðA;RÞ with the help of A’s parent entry Ap. Consider, for instance, in
Fig. 3, the leaf entry a1 can be discarded as mindistða1;RÞ > 0, and the intermediate entry A1 can also be safely pruned as
mindistðA1;RÞ > 0. On the other hand, the entry A2 containing objects a4 and a5 is within R as mindistðA2;RÞ ¼ 0. Conse-
quently, A2 cannot be pruned away.

Rule 3. For an entry B 2 TB, if maxdistðB;R:oÞ � R:r 6 0 or mindistðB;RÞ > dc;B can be safely pruned.
Proof. If maxdistðB;R:oÞ � R:r 6 0, then B is completely within the region R, which can be safely pruned as MkOLS search only
considers the locations outside the region R. On the other hand, if mindistðB;RÞ > dc , then for any location b 2 B, its optimal
set is empty, i.e., Sb ¼ ;. This is because 8a 2 DA ^ a 2 R and 8b 2 B; distða; bÞP mindistðB;RÞ > dc . Since MkOLS retrieval only
considers the locations with positive optimality score, B can be safely pruned. The proof completes. h
R.ROB1

a1

a3a2

b3

b2

b1

Entry of TB

Region R

A1
a4

a5

A2

B2b6

b5

Entry of TA

mindist(A1, R)

mindist(B2, R)

dc

b4
dc

B3

b8
b7

dcb9

R.r

b9.pdist

Fig. 3. Illustration of pruning rules.
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Rule 4. Given an entry B 2 TB and its parent entry Bp, if distðBp:o;R:oÞ þ B:pdist þ B:r � R:r 6 0 or
jdistðBp:o;R:oÞ � B:pdistj � B:r � R:r > dc , then B can be safely discarded.
Proof. It is correct according to Rule 3 and the triangle inequality utilizing the parent entry Bp, and thus omitted. h

Similarly, both Rules 3 and 4 can prune away the entries in TB. Rule 3 is based on certain distance measures between B
and R, while Rule 4 is based on distance measures between B’s parent entry Bp and R. Take Fig. 3 as an example. Based on Rule
3, all the entries in TB that are located inside R, i.e., b1 and B1, can be pruned because of ðmaxdistðB;R:oÞ � R:rÞ 6 0; the entries
B2 and b4 can be pruned away due to mindistðB;RÞ > dc. In addition, take b9 as an example. Using Rule 4, it can be discarded as
ðjdistðB3:o;R:oÞ � b9:pdistj � R:rÞ > dc .

The reason we develop the above rules is to filter out the objects in TA that cannot affect the optimality score of any
answer location, and filter out the locations in TB that cannot become any answer location. In order to distinguish those fil-
tered entries from the remaining entries, we introduce the concept of qualified entry, as formally defined in Definition 4. As
an example, in Fig. 3, A2 is a qualified object entry, and B3 is a qualified location entry.

Definition 4 (Qualified entry). An object (leaf or non-leaf) entry in TA that cannot be discarded by Rules 1 and 2 is called a
qualified object entry; and a location (leaf or non-leaf) entry in TB that cannot be pruned by Rules 3 and 4 is referred to as a
qualified location entry.
Algorithm 1. Baseline Algorithm (BL).

Input: k;R; dc; TA; TB

Output: Res
1: initialize max-heaps HðkÞ and HA, stacks stB; st, and temp, structure LM
2: HA ¼ faijai 2 TA ^ ai 2 Rg //Rule 1/2
3: push the root entries of TB outside R into st //Rule 3/4
4: while HA – ; do
5: entry a = HA.deHeap()
6: stB ¼ ;
7: Traverse-DBða;R; dc; stB; st; tempÞ
8: st ¼ temp [ stB and temp ¼ ;
9: while stB – ; do
10: ðb; distða; bÞÞ ¼ stB:popðÞ
11: LM½b�.append(a; distða; bÞ)
12: for each b in LM do
13: calculate b:OPT by Definition 2
14: H.insert(b)
15: Res ¼ H and return Res

Function: Traverse-DBða;R; dc; stB; st; tempÞ
16: while st – ; do
17: entry e = st.pop()
18: if e is leaf entry then
19: if distðe; aÞ 6 dc then
20: stB.push(e)
21: else
22: for each child entry ei 2 e do
23: push qualified location entry ei into st, and break //Rule 3/4
24: push ei which is located outside R into temp //Rule 3/4

3.3. Baseline algorithm
Our baseline algorithm (BL) fully utilizes the pruning rules presented above, which shares the same idea as RRB algorithm
[16] (that performs the best in [16]). Nonetheless, the differences between BL and RRB are as follows: (1) BL employs the
metric index M-tree while RRB uses R-tree and (2) BL utilizes Rules 2 and 4 to further improve query efficiency. In a word,
BL is actually a simple adaption of RRB with some additional improvements.

The basic idea of BL is as follows. It first locates all the qualified objects via Rules 1 and 2, maintained by a max-heap HA.
Then, for each qualified object a in HA, it finds all the qualified locations whose optimality scores can be affected by a via
Rules 3 and 4, maintained by a stack stB. Next, it adopts a brute-forth approach to evaluate the optimality score for each qual-
ified location. Finally, the k locations with the highest optimality score are returned.
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The pseudo-code of BL algorithm is depicted in Algorithm 1. First of all, BL initializes a max-heap H with the capacity k to
store temporary results, a max-heap HA to keep all the qualified objects, a stack stB holding all the qualified locations whose
optimality scores may be affected by a specified object a, two stacks st and temp holding the qualified locations (i.e., those
locations outside R), and a map structure LM to preserve the locations and their corresponding optimal sets (line 1). Note
that, we need two stacks st and temp to store the qualified location entries, with one serving as the working stack and
the other serving as the auxiliary stack in order to enable reuse. Then, it preserves all the qualified objects that are not
pruned away by Rules 1 and 2 in HA (line 2), and pushes the root entries of TB that are outside or intersected with R into
st (line 3). Thereafter, it evaluates all the qualified objects maintained in HA one by one. For each evaluated object a 2 HA,
the evaluation has two steps. First, it invokes a function Traverse-DB to evaluate the impact of a on all the qualified locations,
i.e., those locations maintained by st (line 7). As shown in lines 16–24, Traverse-DB inserts all the locations whose optimality
scores could be affected by a into stB. Meanwhile, it still keeps all the qualified location entries, i.e., those intersected with or
located outside R, via temp for the reuse later. Second, it updates LM based on stB returned by the function Traverse-DB. To be
more specific, the structure LM maintains, for each potential location b, a list of objects that contribute to b’s optimal set via
LM½b�. When a is confirmed to affect b’s optimality score, we insert a into LM½b�. In other words, once all the qualified objects
maintained by HA are evaluated, LM½b� has the set of objects that form its optimal set, i.e., LM½b� ¼ Sb. We then derive the
optimality scores of all the locations b in LM, and the top-k locations with the highest optimality scores form the final result
set (lines 12–15).

Example 1. We now illustrate how BL algorithm answers MkOLS search using our running example depicted in Fig. 2, with
corresponding M-trees over DA and DB illustrated in Fig. 4 and k ¼ 1. Initially, BL initializes HA to the set of qualified objects
(i.e., HA ¼ fa7; a6; a1; a5; a4; a2; a3g) with the objects sorted based on descending order of their mindist to the center of R. Note
that, object a8 is pruned away by Rule 1 as mindistða8;RÞ > 0. Stack st has its initial entries fB1;B2g. Then, it evaluates the
entries of HA one by one. First, a7 is evaluated, with details shown in Table 2. Using the function Traverse-DB, (i) entry B4 is
discarded by Rule 2 because of mindistðB4; a7Þ > dc , but preserved in temp for the reuse later; (ii) location b1 whose
optimality score cannot be affected by a7 is inserted into temp; (iii) other locations are added to stB ¼ fb2; b5; b6; b7; b8g,
which takes a7 in their optimal sets. After the evaluation, we have stB ¼ fb2; b5; b6; b7; b8g, temp ¼ fB4; b1g,
LM½b2� ¼ fða7; distðb2; a7ÞÞg, LM½b5� ¼ fða7; distðb5; a7ÞÞg, LM½b6� ¼ fða7; distðb6; a7ÞÞg, LM½b7� ¼ fða7; distðb7; a7ÞÞg, and
LM½b8� ¼ fða7; dist ðb8; a7ÞÞg.

Second, BL pops a6 from HA, reuses st, and finds all the qualified locations fb7; b8g that can be affected by a6 with
LM½b2� ¼ fða7; distðb2; a7ÞÞg, LM½b5� ¼ fða7; distðb5; a7ÞÞg, LM½b6� ¼ fða7; distðb6; a7ÞÞg, LM½b7� ¼ fða7; distðb7; a7ÞÞ; ða6; dist
ðb7; a6ÞÞg, and LM½b8� ¼ fða7; dist ðb8; a7ÞÞ; ða6; distðb8; a6ÞÞg. The algorithm proceeds in the same manner until the heap HA

becomes empty. Table 3 depicts the final contents of LM. Next, BL computes, for every location in LM, its optimality score
according to Definition 2. In the end, b8 that has the highest optimality score is returned as the optimal location.
4. MkOLS query processing

Although BL algorithm fully utilizes our presented pruning rules, the performance is highly dependent on the number of
qualified objects/locations. No matter how small k is, it has to evaluate all the qualified objects/locations. For instance, in
Example 1, even though only one optimal location is required, BL has to evaluate the optimality scores for five qualified
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Table 2
Illustration of Traverse-DB for a7.

Operation st stB temp

Initialization B1;B2 ; ;
Visit B1 B3;B2 ; B4

Visit B3 b2;B2 ; B4; b1

Visit b2 B2 b2 B4; b1

Visit B2 B5;B6 b2 B4; b1

Visit B5 b5; b6;B6 b2 B4; b1

Visit b5 b6;B6 b5; b2 B4; b1

Visit b6 B6 b6; b5; b2 B4; b1

Visit B6 b7; b8 b6; b5; b2 B4; b1

Visit b7 b8 b7; b6; b5; b2 B4; b1

Visit b8 ; b8; b7; b6; b5; b2 B4; b1
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locations (b2; b5; b6; b7, and b8), incurring high I/O and CPU costs. In order to develop a k-sensitive algorithm with better per-
formance, we propose an early termination technique based on the estimation of the optimality score and then present an
efficient search algorithm to support MkOLS retrieval.

4.1. Estimation-based early termination

According to Definition 2, for a location b with its optimal set Sb; b:OPT is within the range of ðjSbj � 1; jSbj�. Consequently,
given two locations bi and bj, if jSbi

j > jSbj
j, it is certainly bi:OPT > bj:OPT. As the calculation of the exact optimality score

(i.e., bi:OPT) is more expensive than finding the size of its optimal set (i.e., jSbj
j), we would like to take jSbj

j as an estimation
(i.e., the upper bound) of bi:OPT. In the following, we first explain how to estimate the optimality score for a specified location,
and then present an early termination condition based on the estimated optimality score.

Since the optimality score considers the cardinality of the optimal set but not the real content of the optimal set, we only
care about how many objects are there in an optimal set. Therefore, we present the concept of object count in Definition 5,
based on which the estimated optimality score is developed, as presented in Definition 6.

Definition 5 (Object count). Given an intermediate entry e of a tree T built on an object set O, let e:So be the set of objects that
are contained in the subtree (sube) rooted by e, i.e., e:So ¼ fojo 2 O ^ o 2 subeg, its cardinality is referred to as the object count
of e, denoted as e:jSoj.
Definition 6 (Estimated optimality score). Assume that the current view of TA in the memory st is VðTAÞ ¼ fA1;A2; . . . ;

Am; a1; a2; . . . ; ang, where Ai is an intermediate entry and ai is an object. For a location entry eb representing either a set of
locations or a real location, its estimated optimality score is defined as:
eb:EST ¼
X

Ai2VðTAÞ^mindistðAi ;ebÞ6dc

Ai:jSoj þ jfajjaj 2 VðTAÞ ^mindistðaj; ebÞ 6 dcgj: ð1Þ
Given a tree TA rooted at R, it is explored during the process of MkOLS search. Consequently, we use VðTAÞ to represent the
current view of TA in the form of a set of intermediate entries and objects. Consider our running example. Before the process
of MkOLS retrieval, VðTAÞ ¼ fA1;A2g. Assume that entry A1 is expanded, then VðTAÞ ¼ fA3;A4;A2g and so on. Given a current
view of TA, the estimated optimality score of a location entry can be calculated based on Eq. (1). Notice that, Eq. (1) treats
intermediate entries and objects in VðTAÞ differently. For intermediate entries Ai, it utilizes object count to count the number
of objects contained in Ai that could contribute to the optimal set of the location b; for objects a, it evaluates the objects
Table 3
Illustration of LM in BL.

Key Value

b1 ;
b2 ða7; distðb2; a7ÞÞ
b3 ;
b4 ;
b5 ða7; distðb5; a7ÞÞ
b6 ða7; distðb6; a7ÞÞ
b7 ða7; distðb7; a7ÞÞ; ða6; distðb7; a6ÞÞ; ða5; distðb7; a5ÞÞ
b8 ða7; distðb7; a7ÞÞ; ða6; distðb7; a6ÞÞ; ða5; distðb7; a5ÞÞ
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directly (i.e., mindistða; bÞ 6 dc). In other words, when the view is in high level, the estimated optimality score tends to be
very loose as it assumes all the objects in an entry Ai with mindistðAi; bÞ 6 dc contributing to b’s optimal set while actually
only some of them contributing to b’s optimal set. Since we expand our view of the tree, the estimated optimality score gets
closer to the real optimality score.

The reason we introduce the concept of estimated optimality score is to derive the upper bound of the optimality score for
a real location or a set of locations, as stated in Lemma 1. Based on the estimation, we can easily compare the optimality
score between two locations, or even compare the optimality score of a set of locations (in the form of an intermediate entry)
with the optimality score of another location, as stated in Lemma 2 and 3, respectively.

Lemma 1. Given a qualified location intermediate entry B 2 DB;8b 2 B; b:OPT 6 B:EST.
Proof. Without loss of generality, we assume VðTAÞ ¼ fA1;A2; . . . ;Ajg where Ai 2 VðTAÞ refers to an intermediate entry or an
object in TA, and VðTAÞest ¼ fAijAi 2 VðTAÞ ^mindistðAi; bÞ 6 dcg. Given a location b 2 B;8a 2 Sb; 9Ai 2 VðTAÞ such that a 2 Ai.
Based on the definition of optimal set, distða; bÞ 6 dc . As a 2 Ai;mindistðAi; bÞ 6 distða; bÞ 6 dc and hence Ai 2 VðTAÞest . In other
words, we have Sb # VðTAÞest . Since B:EST ¼

P
Ai2VðTAÞest

Ai:jSoj and b:OPT 6 jSbj; b:OPT 6 B:EST holds. The proof completes. h
Lemma 2. Given two qualified locations bi; bj 2 DB, if bi:EST 6 bj:OPT, then bi:OPT 6 bj:OPT.
Proof. Based on Lemma 1, for a specified qualified location bi 2 DB; bi:OPT 6 bi:EST. If bi:EST 6 bj:OPT , then
bi:OPT 6 bi:EST 6 bj:OPT. The proof completes. h
Lemma 3. Given a qualified location entry B and a qualified location object b, if B:EST 6 b:OPT, then for 8bi 2 B; bi:OPT 6 b:OPT.
Proof. Based on Lemma 1, 8bi 2 B; bi:OPT 6 B:EST. If we know that B:EST 6 b:OPT , then 8bi 2 B; bi:OPT 6 B:EST 6 b:OPT. The
proof completes. h

Based on the aforementioned lemmas, we propose to explore the entries in TB based on their estimated optimality scores,
as stated in Theorem 1. According to this new exploring order, it is not necessary to explore all the qualified locations and
hence improve MkOLS search accordingly.

Theorem 1. Assume that we explore entries e of TB in descending order of their estimated optimality scores (i.e., e:EST), and
maintain top-k locations with the highest optimality score in a candidate set C. Let e be the current evaluated entry. If jCj ¼ k and
e:EST 6 MINb2Cb:OPT, entry e and all the remaining unexplored entries cannot contain any answer location for MkOLS retrieval.
Proof. Assume that the above statement is not valid. In other words, there is at least one location b 2 ei with ei:EST 6 e:EST is
actually an answer location for a MkOLS query. As b is an answer location, b:OPT > MINb2Cb:OPT . On the other hand, accord-
ing to Lemma 1, b:OPT 6 ei:EST. Since ei:EST 6 e:EST; b:OPT 6 ei:EST 6 e:EST. In other words, MINb2Cb:OPT < b:OPT 6
ei:EST 6 e:EST which contradicts with the fact that e:EST 6 MINb2Cb:OPT. Consequently, our assumption is invalid, and the
proof completes. h

In order to enable this new exploring order, we propose a variant of M-tree, termed as COUNT M-tree (COM-tree), which
can facilitate the estimation of optimality score according to Definition 6. Specifically, for each intermediate entry e, we add
the object count e:jSoj to the original M-tree. For ease of understanding, the COM-tree on DA is illustrated in Fig. 5(b), where
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the number in every intermediate entry e refers to e:jSoj. Note that, these numbers are obtained during the construction of
COM-tree. In addition, since the main structure for M-tree is not changed, our presented distance-based pruning rules (pre-
sented in Section 3.2) are still applicable to COM-tree.

4.2. Estimation-based algorithm

Based on Theorem 1 and COM-tree, we develop our second algorithm, namely, estimation-based algorithm (EB), to answer
the MkOLS query. For EB, we build a COM-tree TA on DA and an M-tree TB on DB, respectively. The location entries in TB are
evaluated based on their estimated optimality scores, i.e., the entries eb with larger eb:EST are processed earlier in order to
apply Theorem 1.

To estimate the optimality scores for those location entries, TA is traversed based on the breadth-first paradigm. In par-
ticular, when a location entry eb is processed, we traverse the entries in TA that may affect eb:EST down one level, in order to
refine the estimation precision. Theorem 1 serves as an early termination condition. If it is satisfied, the algorithm terminates
immediately and returns the result; otherwise, it proceeds to evaluate entries in TB.

Algorithm 2. Estimation-based Algorithm (EB).

Input: k;R; dc; TA; TB

Output: Res
1: initialize stacks st; stA, and temp, max-heap HB, and min-heap HðkÞ
2: push root entries in TA located inside R into st
3: calculate EST for qualified root entries in TB, and push them into HB

4: while eb ¼ HB.pop() – ; do
5: if jHj ¼ k ^ eb:EST 6 H.top().OPT then
6: return H //Theorem 1
7: while st – ; do
8: pop entry ea from st
9: if mindistðea; ebÞ 6 dc ^ ea is a non-leaf entry then
10: push its qualified children into stA //Rule 1/2
11: else if mindistðea; ebÞ 6 dc ^ ea is an object then
12: push ea into stA

13: else
14: push ea into temp
15: if eb is a non-leaf location then
16: for each qualified child ebj

of eb do
17: calculate ebj

:EST using stA //Rule 3/4
18: HB.insert(ebj

; ebj
:EST)

19: else
20: for each entry ea in stA do
21: if ea is a non-leaf entry and maxdistðea; ebÞ > dc then
22: replace ea with all qualified objects contained in ea that affect the optimality score of eb

23: compute eb:OPT using stA

24: H.insert(eb; eb:OPT)
25: st ¼ stA [ temp and stA ¼ temp ¼ ;
26: Res ¼ H and return Res

Algorithm 2 depicts the pseudo-code of EB. To begin with, EB initializes all the important data structures (lines 1–3). HB is
a max-heap to store fetched qualified entries in TB, sorted in descending order of their estimated optimality scores. Note that,
if two entries have the same estimated optimality score, the entry e with smaller mindistðe;RÞ is evaluated earlier. Initially, it
contains the qualified root entries of TB. H is a min-heap with size of k to maintain those retrieved locations with the highest
optimality score. The top entry of H tells the minimum optimality score of current candidates (i.e., MINb2Cb:OPT). Note that,
when H contains less than k locations, MINb2Hb:OPT returns zero. Two stacks st and temp, one as a working stack and the other
as an auxiliary stack, maintain all the qualified object entries. Initially, st contains the root entries of TA that are located inside
R, and temp is empty. Similar as stacks st and temp used in BL algorithm, they are to implement reuse technique so that we
only need to access object entries in TA once. stA is also a stack to preserve all the qualified object entries that might affect the
optimality score of a certain location b.

After initialization, it evaluates location entries based on descending order of their estimated optimality scores (lines 4–
25). To be more specific, it pops out the top entry eb for evaluation. If the condition listed in Theorem 1 is satisfied, the algo-
rithm can be terminated earlier by returning the current set of candidate locations maintained by H (lines 5–6). Otherwise,



Table 4
Illustration of EB.

Operation HB st H

Initial B1ð8Þ;B2ð8Þ A1;A2 ;
Visit B1 B2ð8Þ;B4ð4Þ;B3ð2Þ A3;A4;A5;A6 ;
Visit B2 B6ð4Þ;B4ð4Þ;B3ð2Þ;B5ð1Þ A3;A4;A5; a7; a8 ;
Visit B6 b7ð4Þ; b8ð4Þ;B4ð4Þ;B3ð2Þ;B5ð1Þ A3; a3; a4; a5; a6; a7; a8 ;
Visit b7 b8ð4Þ;B4ð4Þ;B3ð2Þ;B5ð1Þ A3; a3; a4; a5; a6; a7; a8 b7

Visit b8 B4ð4Þ;B3ð2Þ;B5ð1Þ A3; a3; a4; a5; a6; a7; a8 b8

Visit B4 B3ð2Þ;B5ð1Þ A3; a3; a4; a5; a6; a7; a8 b8
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we expand the current view of TA preserved in st down by one level to calculate the estimated optimality score of eb’s child
entries (lines 7–14). In particular, (i) for the non-leaf entry ea with mindistðea; ebÞ 6 dc , we push all its qualified children into
stA, according to Rule 1/2; (ii) for the leaf entry ea with mindistðea; ebÞ 6 dc , we push it into stA; and (iii) for the (leaf or
non-leaf) entry with mindistðea; ebÞ > dc , we maintain it in temp. Thereafter, if eb is a non-leaf location, we can derive the esti-
mated optimality scores of all the qualified child entries of eb and insert them back to HB for further evaluation (lines 15–18).
Note that, in BL algorithm, we access TA down to the leaf level, and evaluate directly the impact of each qualified object
a 2 TA on location b’s optimality score. However, in EB algorithm, the exploration of TA is triggered by the evaluation of qual-
ified location entries maintained by HB. Initially, we only know the root entries of TA. As entries in HB are evaluated, entries of
TA are explored, and the view of TA is expanded. This is because eb:EST can be evaluated based on a view of VðTAÞ (maintained
by st), from the most abstract view with VðTAÞ only containing root entries to the most detailed view with each entry in VðTAÞ
representing an object. This hierarchical exploration of TA and TB can effectively prevent the exploration of those entries that
only contain locations with either zero optimality score or very small optimality score, and hence contributes to the
improvement of search performance. In addition, we also want to highlight that stA might contain non-leaf entries ea when
evaluating OPT for a location eb (lines 21–22). If maxdistðea; ebÞ > dc , we traverse down to get all qualified objects in the sub-
tree rooted by ea to compute eb’s optimality score. After computing OPT for a location eb using stA, we then update the result
heap H accordingly (lines 23–24). Finally, EB returns the final result.

Example 2. Back to our running example depicted in Fig. 4 with k ¼ 1. Initially, st ¼ fA1;A2g, and we compute the estimated
optimality score for root entries B1 and B2 of TB, with B1:EST ¼ B2:EST ¼ A1:jSoj þ A2:jSoj ¼ 8. As B1 is closer to R:o than B2;HB

is set to fB1ð8Þ;B2ð8Þg. After the initialization, we continuously evaluate the location entries popped out from HB. First, B1 is
evaluated. As both A1 and A2 in st may affect B1:EST , we expand them, with their child entries maintained by stA

(¼ fA3;A4;A5;A6g). We then derive the estimated optimality score of B1’s child entries based on the content of stA, with
B3:EST ¼ A6:jSoj ¼ 2 and B4:EST ¼ A4:jSoj þ A6:jSoj ¼ 4. Then, HB is updated to fB2ð8Þ;B4ð4Þ;B3ð2Þg. Similarly, we continue this
process to evaluate the entries popped from HB. When b7 is visited, we first push all qualified entries maintained in st that
will affect the optimality score of b7 into stA = {a4; a5; a6; a7}. As b7 is a leaf entry, we compute b7:OPT using stA, and insert b7

into H. Next, we evaluate location b8 similarly, and update H ¼ fb8g as b8:OPT < b7:OPT. In the following, EB proceeds to
evaluate entries in HB until the early termination satisfies as B3:EST < b8:OPT. Finally, the optimal location b8 is returned.
Table 4 depicts the detailed steps of EB. h
4.3. Discussion

In the sequel, we first prove the correctness of the proposed algorithms, and then analyze their performance.

Lemma 4. Both the proposed algorithms (i.e., BL and EB) return exactly the actual MkOLS query result, i.e., both algorithms have
no false negatives, no false positive, and the returned result set contains no duplicate objects.
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Fig. 6. Illustration of MkOLSMR and MkOLSNR queries.
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Proof. First, no result is missed (i.e., no false negatives) as only unqualified (leaf and non-leaf) entries are pruned by our
developed Rules and Theorem 1. Second, all locations that can become the optimal locations are evaluated and verified
against other qualified locations in TB to ensure no false positive. Third, no duplicate objects are generated because each loca-
tion is evaluated at most once and are popped right after evaluation. The proof completes. h

It is worth noting that, EB outperforms BL significantly. This is because BL needs to evaluate all the qualified locations;
while EB evaluates the locations in descending order of their estimated optimality scores, and it can terminates the evalu-
ation once it retrieves at least k locations and is certainly that all the unexamined locations have their optimality scores
smaller than that of retrieved locations. In other words, it is very likely that EB only evaluates some, but not all, qualified
locations. As to be demonstrated in Section 6, EB avoids lots of unnecessary location evaluations which significantly cuts
down the query cost.

5. Extension

In this section, we show the flexibility and extensibility of our proposed EB algorithm by studying two interesting
variations of MkOLS queries, namely, MkOLS search with multiple constrained regions ðMkOLSMRÞ, and MkOLS search with
non-constrained region ðMkOLSNRÞ.

5.1. MkOLSMR search

According to the definition of MkOLS retrieval, only one constrained region R is considered. However, in some real appli-
cations, there may exist several constrained regions. Take Application 1 as an example. If the new Pizza Hut branch may
serve a few residential areas while it cannot be located inside any of them, we have to take into account multiple constrained
regions. In view of this, a useful variant of MkOLS queries, i.e., MkOLS search with multiple constrained regions (i.e.,
MkOLSMR), is proposed.

Definition 7 (MkOLSMR search). Given an object set DA, a location set DB, a critical distance dc;n constrained regions
Rið1 6 i 6 nÞ, and an integer k (P 1) in a metric space, an MkOLSMR query finds the k locations in DB having the maximal
optimality scores among all the locations located outside Ri.

Note that, the optimality score of a location for MkOLSMR retrieval is similar as its original setting presented in Definition
2. Nevertheless, MkOLSMR search takes n regions into consideration. Therefore, given an object a 2 DA and a location b 2 DB, if
it is within one of those n regions and meanwhile has its distance to b bounded by dc , the object a contributes to the location
b’s optimal set SMR

b , i.e., SMR
b ¼ faijai 2 DA ^ 9j 2 ½1;n�; ai 2 R½j� ^ distðai; bÞ 6 dcg. Here, distðai; bÞ is a metric distance and ai; b

can be any type of objects in the metric space.
An example of MkOLSMR query with two constrained regions R1 and R2 is shown Fig. 6. Suppose k = 1, b4 is the optimal

location since it covers the most qualified objects in R1 and R2, with SMR
b4
¼ fa2; a4; a5; a6g. The EB algorithm can be easily

extended to the estimation-based algorithm for MkOLSMR (EBM) for answering MkOLSMR search. Notice that, there are two
major changes. First, pruning rules for objects (i.e., Rules 1 and 2) need to consider the distance between the objects and
all n regions. An object entry A can be pruned only when its distances to all n regions satisfy the condition. Second, pruning
rules for locations (i.e., Rules 3 and 4) also need to consider the distance between a location entry and all n regions.

5.2. MkOLSNR search

Both MkOLS and MkOLSMR queries assume there is at least one constrained region. However, MkOLS retrieval without any
constrained region, namely, MkOLSNR search, also have a application base. Again, consider the Pizza Hurt restaurants exam-
ple. If a new Pizza Hut restaurant can be located in any location, it can be supported by MkOLSNR retrieval.

Definition 8 (MkOLSNR search). Given an object set DA, a location set DB, a critical distance dc , and an integer k (P 1) in a
metric space, an MkOLSNR query finds the k locations in DB having the maximal optimality scores among all the locations.

Note that, the optimality score considered by MkOLSNR search is also similar as the original optimality score considered by
MkOLS retrieval. The only difference is that, since there is no constrained region R, the optimal set SNR

bj
for bj (2 DB) includes all

the objects whose distances to bj bounded by dc , i.e., SNR
bj
¼ faijai 2 DA ^ distðai; bjÞ 6 dcg. Here, distðai; bjÞ is a metric distance,

and ai; bj can be any type of objects in metric spaces.
Table 5
Statistics of the data sets used.

Dataset Cardinality Dimensionality Metric

LA 500 K 2 L1-norm
Uniform [250 K, 4 M] [2,5] L2-norm
Zipf [250 K, 4 M] [2,5] L1-norm



Table 6
Parameter ranges and default values.

Parameter Settings Default

k 1, 4, 16, 64, 256 16
R (% of full space) 1, 2, 4, 8, 16 4
dcð�1000Þ 0.6, 0.8, 1, 1.2, 1.4, 1.6 1
Dimensionality 2, 3, 4, 5 2
Cardinality (M) 0.25, 0.5, 1, 2, 4 1
Number of constrained regions 0, 1, 2, 3, 4, 5 1
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Consider the example depicted in Fig. 6 again. If we remove the constrained regions R1 and R2; S
NR
b3
¼ fa1; a3; a4; a6; a7g and

SNR
b4
¼ fa2; a4; a5; a6g. If k ¼ 1, MkOLSNR search will return b3 as the answer location because it has the largest optimal set. Our

EB algorithm can also be easily adjusted to the estimation-based algorithm for MkOLSNR (EBN) to tackle MkOLSNR retrieval.
Since there is no constrained region, all the entries should be considered as qualified entries, i.e., all the four pruning rules
developed in Section 3 cannot be applied here, as they are all based on the constrained region R.
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6. Experimental evaluation

In this section, we experimentally evaluate the effectiveness of our developed pruning rules and the performance of our
proposed algorithms for MkOLS search and its variants, using both real and synthetic datasets. All algorithms were imple-
mented in C++, and all experiments were conducted on an Intel Core 2 Duo 2.93 GHz PC with 3 GB RAM.

We employ a real dataset LA containing 500 K downtown locations in Los Angeles. Specifically, we partition LA into two
different datasets DA and DB to simulate three cases (i) jDAj < jDBj, (ii) jDAj ¼ jDBj, and (iii) jDAj > jDBj. The distance between
two points in LA is measured as L1-norm, which is typically used as an approximation of the road network distance [29].

We also generate several synthetic datasets with dimensionality varying in the range of [2,5] and cardinality varying in
the range of [250 K, 4 M], following Uniform and Zipf distributions. Table 5 summarizes the datasets used in our experi-
ments. The coordinate of each point in Uniform datasets is generated uniformly along every dimension, and that of each point
in Zipf datasets is generated according to a Zipf distribution with skew coefficient a ¼ 0:8. Without loss of generality,
L2-norm (i.e., the Euclidean distance) is used as the distance metric for Uniform datasets, and L1-norm is utilized to compute
the distance between two points in Zipf datasets. Note that, for all datasets, every dimension in the data space is normalized
to [0, 10,000]. All datasets are indexed by either COM-trees (presented in Section 4.1) or M-trees [9], with a page size of 4096
bytes.

We study the performance of the proposed algorithms under various parameters, which are listed in Table 6. Note that, in
each experiment, only one factor varies, whereas the others are fixed to their default values. In addition, the center of region
R is generated randomly, and the region R is bounded by the data space.

The main performance metrics include the query cost, the number of page accesses (PA), the number of locations
calculated (LC), and compdists, which represents the number of distance computations. Here, the query cost refers to the
sum of the I/O time and CPU time, where the I/O time is computed by charging 10 ms for each page access, as with [7]). Each
reported value in the following diagrams is the average performance of 100 queries.
6.1. Effectiveness of pruning rules

The first set of experiments verifies the effectiveness of our presented pruning rules, in terms of the number of times rules
are applied. We implement EB algorithm and count a rule applied if an object or an intermediate entry is pruned away by
that rule. First, we study the impact of k;R, and dc on the performance of pruning rules under the real dataset LA with
jDAj ¼ jDBj ¼ 250K , as shown in Fig. 7. It is obvious that all the developed rules help to prune certain number of objects/
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entries. Among three parameters, the parameters R and dc play more significant role because all the rules are based on R and
dc. On the other hand, k does not affect the pruning power much. Note that, we skip the experimental results under real data-
sets with varying jDAj/jDBj, due to the similar experimental results and the space limitation.

In addition, we also explore the impact of dimensionality and cardinality respectively, using synthetic datasets, as
depicted in Fig. 8. In general, the number of pruning applications increases as dimensionality grows. This is because, it is
more difficult to prune high level entries as dimensionality ascends, resulting in a large number of low level entries pruning
applications. As expected, the number of applications steadily increase with the growth of cardinality. The reason is that,
when jDAj and jDBj increase, there are more records that may qualify the pruning rules.

6.2. Results on MkOLS search

The second set of experiments evaluates the performance of BL and EB algorithms in answering MkOLS queries. Since
both BL and EB take advantage of the COM-tree structure to help to prune objects in batches. To give a comprehensive exper-
imental study, we also consider the case where no indexes are available. In this case, a straightforward algorithm, so-called
NoIndex (NI), can act as an ancillary solution. For simplicity, we assume that the data can be fully loaded into memory. In this
case, NI begins with loading the objects and locations and pruning unnecessary ones (similar to Rules 1 and 3, but on single
record level only). Then NI calculates the optimal score of each qualified location, and finally only the locations with top-k
optimality scores are selected as the result. We study the influence of various parameters, including (i) the value of k, (ii) the
size of constrained region R, (iii) the value of critical distance dc , (iv) the dimensionality of datasets, and (v) the cardinality of
datasets.

First, we investigate the effect of k on the efficiency of the algorithms based on real datasets, and report the results in
Fig. 9. Notice that, the query cost is broken into I/O cost and CPU cost. The name on top of each bar refers to the specific
algorithm; and PA and LC are shown at the bottom. Note that, as pointed out in Section 3.3, BL is actually a simple adaption
of RRB algorithm [16] with some additional improvements. The real dataset LA is employed and three different dataset size
combinations are considered, representing different cases for MkOLS queries: (i) jDAj < jDBj : jDAj ¼ 100K; jDBj ¼ 400K; (ii)
jDAj � jDBj : jDAj ¼ jDBj ¼ 250K; and (iii) jDAj > jDBj : jDAj ¼ 400K; jDBj ¼ 100K.
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The first observation is that EB is several orders of magnitude better than NI and BL in all cases. The reason is that, NI has
to fetch and evaluate all the qualified locations one by one in a brute-force way. As a result, the I/O and CPU costs of NI are
significant. BL has been designed to reduce I/O overhead, but in the expense of higher CPU cost. EB, on the other hand, utilizes
the estimation based early termination technique, which is efficient and sensitive to k. The second observation is that the
performance of EB increases gradually with k, whereas the performance of both NI and BL is insensitive to k. This is because
both NI and BL need to calculate the optimality score of each qualified location, regardless of the value of k. However, EB
enables an early termination, and the value of k directly affects when the algorithm can be terminated. Since EB significantly
outperforms both NI and BL (by factors) for all the cases including jDAj < jDBj; jDAj � jDBj, and jDAj > jDBj, we skip NI and BL
but only report the performance of EB in the rest of experiments.

Then, we explore the influence of R on the efficiency of the algorithms using real data sets, with the results depicted in
Fig. 10. As expected, the query cost and compdists of EB increase as R grows. The reason behind is that, there are more qual-
ified objects and more qualified locations as R increases. Therefore, the algorithms require more page accesses and more
query cost with the growth of R.

Fig. 11 plots the performance of EB as a function of dc . As observed, the query cost and the number of distance compu-
tations (i.e., compdists) of EB increase with dc , because the MkOLS search space grows as dc ascends.

Next, we evaluate the impact of the dimensionality on the efficiency of EB algorithm based on synthetic datasets, and
report the results in Fig. 12. The I/O cost ascends with dimensionality due to the reduced page capacity. A crucial observation
is that the compdists decreases when dimensionality exceeds three, so does the CPU cost. This is because the object density
drops as dimensionality grows [9], and thus, the number of objects that can contribute to the optimal set of each location
decreases.

Finally, we conduct scalability tests and study the performance of EB under different dataset cardinalities. Fig. 13 shows
the performance of EB as a function of jDAj (=jDBj). As expected, the cost increases with the cardinality of datasets. EB is
designed to evaluate only the records with very promising chances to be part of the result, and hence, it scales well and
solves MkOLS efficiently even for the case when jDAj ¼ jDBj ¼ 4M. Note that, we have also tested both NI and BL. However,
their performance (e.g., hours for the case when jDAj ¼ jDBj ¼ 4M) is not comparable with EB, and thus omitted.
6.3. Results on MkOLSMR search

The third set of experiments verifies the performance of EBM algorithm designed for the MkOLSMR query under different
number n of constrained regions, with n changed from one to five. As depicted in Fig. 14, the query cost and the compdists
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increase with the number of R. The reason behind is that, with the growth of the number of R, the search space becomes
larger, leading to more qualified objects and more qualified locations.
6.4. Results on MkOLSNR search

The last set of experiments evaluates the efficiency of EBN in answering MkOLSNR retrieval. According to the definition of
the query, it does not consider any constrained region, i.e., the number of regions is 0. We fix k, cardinality jDAj, dimension-
ality to their default values (i.e., 16, 1 M, 2, respectively), and vary dc from 600 to 1600. Fig. 15 plots the performance of EBN
under real and synthetic datasets. The total query time increases with dc , because more object-location pairs need to be
precisely evaluated.

In particular, for Uniform datasets, EBN is CPU-bounded instead of I/O-bounded. The reason is that (i) the pruning rules
does not work well without any constrained region and (ii) many location entries share an equivalent estimated optimality
because of the uniform distribution. It is worth noting that, the CPU cost of EB is small on Uniform datasets when there are
constrained regions, as reported in previous two sets of experiments. This is because the border of R makes the estimated
optimality of different locations diverse from each other.
7. Conclusions

This paper, for the first time, identifies and studies the problem of metric k-optimal-location-selection (MkOLS) search,
which supports the kOLS query in a generic metric space. MkOLS retrieval is not only interesting from a research point of
view, but also useful in many decision support applications. We propose an efficient algorithm called EB that does not
require the detailed representations of the objects, and is applicable as long as the similarity between two objects can be
evaluated and meanwhile satisfies the triangle inequality. Our solution is based on metric index structures (i.e., M-trees
and COM-trees), employs several pruning rules, and makes use of the reuse and optimality score estimation techniques.
Extensive experiments with both real and synthetic datasets demonstrate the effectiveness of the proposed pruning rules
and the performance of the proposed algorithms under various problem settings. In addition, we extend our techniques
to tackle two interesting and useful MkOLS query variants, i.e., MkOLSMR and MkOLSNR queries.

In the future, we intend to further improve the efficiency of our proposed algorithms by devising better pruning rule(s)
and optimality score estimation. For instance, we would like to derive a lower bound of the optimality score to develop effec-
tive pruning rules. Also, we plan to explore the applicability of our proposed algorithms in other location facility problems.
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