
Knowledge-Based Systems 89 (2015) 250–264
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Efficient algorithms for finding the most desirable skyline objects q
http://dx.doi.org/10.1016/j.knosys.2015.07.007
0950-7051/� 2015 Elsevier B.V. All rights reserved.

q This paper is a full and extended version of the paper, titled ‘‘Finding the Most
Desirable Skyline Objects’’, which has been published (as a short paper) in the
proceedings of the 15th International Conference on Database Systems for Advance
Applications (DASFAA 2010), April 1–4, 2010, Tsukuba, Japan. Specifically, the paper
extends the short conference paper by including (i) informative related work
(Section 2); (ii) detailed the Most Desirable Skyline Object (MDSO) query processing
algorithms, namely, CB and SB, more illustrative examples, and more analyses and
proofs (Section 4); (iii) a new MDSO query processing algorithm, i.e., reused based
algorithm (Section 4); (iv) processing of the constrained MDSO (CMDSO) query, a
natural variant of MDSO queries (Section 5); and (v) enhanced experimental
evaluation that incorporates the new type of queries (Section 6).
⇑ Corresponding author. Tel.: +86 571 8765 1613; fax: +86 571 8795 1250.

E-mail addresses: gaoyj@zju.edu.cn (Y. Gao), liuq@zju.edu.cn (Q. Liu), luchen@
zju.edu.cn (L. Chen), cg@zju.edu.cn (G. Chen), itqli@cityu.edu.hk (Q. Li).
Yunjun Gao a,⇑, Qing Liu a, Lu Chen a, Gang Chen a, Qing Li b

a College of Computer Science, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
b Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 September 2014
Received in revised form 4 April 2015
Accepted 11 July 2015
Available online 17 July 2015

Keywords:
Skyline
Query processing
Algorithm
Spatial database
The skyline query is a powerful tool for multi-criteria decision making. However, it may return too many
skyline objects to offer any meaningful insight. In this paper, we introduce a new operator, namely, the
most desirable skyline object (MDSO) query, to identify manageable size of truly interesting skyline objects.
Given a multi-dimensional object set and an integer k, a MDSO query returns the most preferable k skyline
objects, based on the newly defined ranking criterion that considers, for each skyline object s, the number
of the objects dominated by s and their accumulated (potential) weights. We devise the ranking criterion,
formalize the MDSO query, and propose three algorithms for processing MDSO queries. In addition, we
extend our methods to tackle the constrained MDSO (CMDSO) query. Extensive experimental results on
both real and synthetic datasets show that our presented ranking criterion is significant, and our
proposed algorithms are efficient and scalable.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Given a set P of multi-dimensional data objects, a skyline query
returns all the data objects from P, called skyline objects, which are
not dominated by any other object in P. Here, an object p dominates
another object p0 if and only if p is not worse than p0 in all dimen-
sions, and strictly better than p0 in at least one dimension. The sky-
line query is useful in many real-life applications. Consider, for
instance, a classical example of the hotel reservation system. Fig. 1
illustrates this case in a 2-dimensional space, where each point
corresponds to a hotel record. The room price of a hotel is repre-
sented as the y-axis (the vertical coordinate), and the x-axis cap-
tures its distance to the beach (the horizontal coordinate). Hotel
p2 dominates p5 since the former is cheaper and closer to the
beach. As hotels p1; p2; p3, and p4 are not dominated by any other
hotel, they constitute the skyline of a dataset P = fp1; p2; . . . ; p8g,
which offer various trade-offs between price and distance: p4 has
the cheapest room price, p1 is the closest to the beach, and p2; p3

may be a good compromise of the two attributes.
Since the skyline operator was first introduced to the database

community in [5], it has received considerable attention due to its
wide applications related to multi-criteria decision making. A large
number of algorithms have been proposed for efficient tradi-
tional/full skyline computation. These approaches can be mainly
classified into two categories depending on whether they use
indexes or not. The first one [2,5,10,17,48] involves solutions that
do not assume any index on the underlying dataset, but they
retrieve the skyline by scanning the entire dataset at least once.
Methods of the other category [21,27,32,36] avoid accessing the
whole dataset by performing the search on an appropriate index
structure, e.g., an R⁄-tree [4]. Other variations of skyline queries
include, to name just a few, subspace skyline computation
[25,34,39], reverse skyline query [12,15,28], metric skyline
computation [9,13], continuous skyline retrieval [19,23], distributed
skyline computation [8,18,40], uncertain skyline query [33,47],
skyline computation on data streams [29,35,38] and incomplete
data [16], and so forth.

As pointed out in [1,7], however, the skyline query may output
an overwhelming number of skyline objects, and thus no longer
offer any interesting insights, especially in high dimensional
spaces. It has been shown in [17] that, for a random dataset, the

expected skyline cardinality equals ðln mÞn�1
=n!, in which m is

the dataset cardinality, n represents the number of dimensions,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.07.007&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.07.007
mailto:gaoyj@zju.edu.cn
mailto:liuq@zju.edu.cn
mailto:luchen@ zju.edu.cn
mailto:luchen@ zju.edu.cn
mailto:cg@zju.edu.cn
mailto:itqli@cityu.edu.hk
http://dx.doi.org/10.1016/j.knosys.2015.07.007
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

Fig. 1. Example of dataset and skyline.

Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264 251
and n! denotes the factorial of n. To this end, several efforts have
been proposed in the literature. In particular, they control the size
of skyline objects by either relaxing the dominance relationship or
integrating user-specific preference, as to be surveyed in Section 2.
Nonetheless, none of them takes into account the potential weights
of non-skyline objects when determining the importance of skyline
objects, which is certainly useful. Motivated by this, in this paper,
we study how to find the most desirable skyline objects from the sky-
line that consists of too many skyline objects by considering both the
number of the non-skyline objects dominated by skyline objects
and the accumulated (potential) weights of non-skyline objects.
Towards this, we introduce a new operator, namely, the most desir-
able skyline object (MDSO) query, to identify manageable size of
truly interesting skyline objects.

Given a set of multi-dimensional objects and an integer k, a
MDSO query returns the most preferable k skyline objects based
on the new ranking criterion (defined in Definition 6) that consid-
ers, for each skyline object s, the number of the objects dominated
by s and their accumulated (potential) weights. Take Fig. 1 as an
example. The most desirable 1 skyline object is p3, because it dom-
inates the maximum number of object/points. The MDSO query is
particularly helpful in web-based recommender systems. For
instance, consider a tourist looking for a suitable hotel via a
web-based hotel booking system (e.g., http://hotels.com). Most
hotels in a certain city may have to be included in the skyline since,
for each hotel p, there might be no one hotel that dominates p on
all attributes, even if it is better than p on many attributes. On the
other hand, it is difficult for the tourist to make a good, quick selec-
tion, by referencing the skyline which contains numerous hotels. In
this case, MDSO queries can be employed to retrieve a few prefer-
able hotels, such that the tourist can find a desired hotel as soon as
possible.

As to be discussed in Section 2, the MDSO operator is different
from the existing works. Hence, the existing techniques are not
directly applicable to tackle the MDSO query efficiently. In this
paper, we develop three efficient algorithms, i.e., Cell Based algorithm
(CB), Sweep Based algorithm (SB), and Reuse Based algorithm (RB), to
obtain the most desirable k skyline objects. Our methods are based
on a conventional data-partitioning index (e.g., R⁄-tree [4]) and do
not require any preprocessing. Consider that, in some real-life appli-
cations, users might enforce some constraints (e.g., spatial region)
on MDSO queries. Thus, we extend our techniques to handle a natu-
ral variant of MDSO queries, namely, the constrained most desirable
skyline object (CMDSO) query, which returns the most preferable k
skyline objects in a specified constrained region. We also present
three efficient algorithms, viz., Constrained Cell Based algorithm
(CCB), Constrained Sweep Based algorithm (CSB), and Constrained
Reuse Based algorithm (CRB), to deal with CMDSO retrieval.

In brief, the key contributions of this paper are summarized as
follows:

� We devise a new ranking criterion and formalize the MDSO
query, a new addition to the family of skyline operators for
the skyline size control.
� We propose three algorithms, i.e., CB, SB, and RB, for efficiently

processing MDSO queries, and analyze their correctness and
complexities, respectively.
� We investigate a MDSO query variation, namely, CMDSO retrie-

val, and present three efficient algorithms to tackle it.
� We conduct extensive experiments with both real and synthetic

datasets to demonstrate the effectiveness of our devised rank-
ing criterion and the performance of our proposed algorithms
in terms of efficiency and scalability.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 formalizes our studied problem. Section 4
elaborates the three algorithms for answering MDSO queries using
an R⁄-tree index on the dataset, and analyzes their correctness and
complexities, respectively. The CMDSO query and its processing
algorithms are described in Section 5. Extensive experimental eval-
uation and our findings are reported in Section 6. Finally, Section 7
concludes the paper with some directions for future work.
2. Related work

In this section, we briefly survey the previous work on the
skyline query and its variants, and then the skyline operators for
skyline size control.

The skyline operator, also known as the maximal vector prob-
lem [22], was first introduced into the database community in
[5]. Since then a number of algorithms for conventional (i.e., full)
skyline queries have been proposed in the literature. They can be
mainly classified into (i) non-index based approaches and (ii) index
based methods, depending on whether they use indexes or not.
Non-index based solutions, including Block-Nested-Loop (BNL)
[5], Divide and Conquer (D&C) [5], Sort-First-Skyline (SFS) [10],
Linear Elimination Sort for Skyline (LESS) [17], Sort and Limit
Skyline algorithm (SaLSa) [2], and Object-based Space
Partitioning (OSP) [48], do not require any index on the data set
to compute skyline. Index based techniques, including Bitmap
[36], Index [36], Nearest Neighbor (NN) [21], Branch and Bound
(BBS) [32], and ZSearch [27], require specific indexes for skyline
retrieval. It has been proved [32] that BBS is I/O optimal, i.e., it
accesses fewer disk pages than any algorithm based on R-trees.

Recently, numerous variations of skyline queries have been
studied as well. Examples include, to name but a few, (i) subspace
skyline computation [25,34,39]; (ii) reverse skyline query
[12,15,28]; (iii) metric skyline retrieval [9,13]; (iv) continuous
skyline query [19,23]; (v) distributed skyline retrieval [8,18,40];
(vi) uncertain skyline query [33,47]; and (vii) skyline computation
on data streams [29,35,38] and incomplete data [16], respectively.

However, the skyline operator may return too many skyline
objects to offer any meaningful insights. To address this, several
efforts on the skyline size control have also been made, by relaxing
the dominance relationship or integrating user-specific preference.
Specifically, Koltun and Papadimitriou [20] introduce approxi-
mately dominating representatives, a refinement of the skyline
query that remedies the output volume problem at a small (and
controlled) loss of accuracy. Zhang et al. [46] aim to find strong
skyline objects in high dimensional spaces, which is the union of
the skyline objects in all d-subspace (of a space) that contains the

http://hotels.com

252 Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264
number of skyline objects less than d. Chan et al. [7] leverage a new
metric, skyline frequency, to rank skyline objects. In [6], Chan et al.
extend the dominant concept of traditional skyline to k-dominant.
Xia et al. [43] propose the e-skyline to tune the skyline size.
Vlachou and Vazirgiannis [42] propose a framework, namely,
SKYRANK, to discover top-k most interesting objects of the skyline
set through subspace dominance relationships. Moreover, Zhang
et al. [45] study the probabilistic top-k skyline operator, which
retrieves the k uncertain objects with the highest skyline probabil-
ities. It is worth noting that, unlike the aforementioned work, our
MDSO operator still adopts the conventional dominance relation-
ship (Definition 1), while it takes the potential weight of
non-skyline objects into consideration, which is neglected by the
above work.

Lin et al. [30] first introduce the concept of representative sky-
line, which is based on dominance relationship. Tao et al. [37] pro-
pose a new definition of representative skyline, namely,
distance-based representative skyline. Vlachou et al. [41] present a
novel framework for discovering the representative skyline over
distributed data sources, which incorporates the above two met-
rics, i.e., dominance-based representative [30] and distance-based
representative [37]. Das et al. [11] define a new k representative
skyline object by ensuring that the probability which a random
user would click on one of them is maximized. More recently,
Lee and Hwang [24] develop an efficient greedy algorithm for the
k representative skyline using the skytree. As proved in
[11,30,37,41], the problem of representative skyline retrieval is
NP-hard for the dimensionality at least 3. Compared with the rep-
resentative skyline, the MDSO query employs a new ranking crite-
rion defined in Definition 6, and it is not NP-hard in high
dimensional spaces. Furthermore, the representative skyline
retrieval does not consider the potential weights of non-skyline
objects, which is also taken into account in the MDSO query.

Balke et al. [1] and Lee et al. [26] obtain manageable number of
the skyline objects by integrating user-specific qualitative prefer-
ences/functions. Vlachou and Vazirgiannis [42] extend SKYRANK
to handle the top-k preference skyline query, when the user’s pref-
erences are available. Bartolini et al. [3] proposes the collaborative
filtering skyline, a general framework that generates a personal-
ized skyline for each active user based on scores of other users with
similar scoring patterns. Different from [1,3,26,42], our MDSO
operator does not rely on any user-specified function, since it is
not always easy for users to provide such a function.

In addition, it is worth mentioning that the MDSO query is fun-
damentally different from the existing top-k dominating (TKD)
query [44] that retrieves k data objects dominating the highest
number of objects in the dataset. First, their result sets are
Table 1
Symbol and description.

Notation Description

P A set of data objects
n Dimensionality of a data space
D A data space
k The number of required skyline objects
di The ith dimension
p; p0; p00 A data point/object
p:di The ith dimensional value of p
p � p0 p dominates p0

S or s or ns The set of skyline objects or a skyline object or a non-skyline
object

lðsÞ The dominating score of a skyline object s
xðnsÞ The dominated score (i.e., potential weight) of a non-skyline

object ns
sðsÞ The preference score of a skyline object s
s ‘ s0 A skyline object s is more desirable than another skyline object s0
different. The MDSO query always returns skyline objects, whereas
the TKD query may return non-skyline objects. Second, they adopt
different ranking criteria. The ranking criterion (Definition 6)
utilized in the MDSO query considers the number of the objects
dominated by each skyline object as well as their accumulated
(potential) weights. On the other hand, the TKD query only takes
the number of the dominated objects into consideration. Thus,
the existing algorithms for TKD queries cannot be applied to
handle MDSO queries efficiently.

3. Preliminaries

In this section, we formally define the ranking criterion and the
MDSO query in Sections 3.1 and 3.2, respectively. Table 1 lists the
symbols frequently used in the rest of the paper.

3.1. Ranking criterion

Let P be a set of data objects in an n-dimensional space
D ¼ ðd1; d2; . . . ; dnÞ, where diði 2 ½1;n�Þ is the ith dimension. For
any object p 2 P, we use p:di to denote the ith dimensional value
of p. Assume that there exists a total order relationship, either ‘<’
or ‘>’, on each dimension. Without loss of generality, in this paper,
we consider ‘<’ relationship, i.e., smaller values are more
preferable.

Definition 1 (Dominance). For any two objects p; p0 2 P; p is said
to dominate p0, denoted by p � p0, iff (i) 8di 2 D; p:di 6 p0:di, and (ii)
9dj 2 D; p:dj < p0:dj.

As an example, in Fig. 1, p3 dominates p6 because
p3:xð¼ 3:5Þ < p6:xð¼ 6Þ and p3:yð¼ 3Þ < p6:yð¼ 4Þ.

Definition 2 (Skyline Object, Skyline, and Non-skyline Object). An
object p 2 P is a skyline object s iff p is not dominated by any other
object p0 ð–pÞ 2 P, i.e., 9=p0 2 P � fpg, p0 � p. The skyline of P is the
set S of skyline objects on the dataset P. An object p00 is a
non-skyline object ns iff there exists at least one object p0 ð–p00Þ 2 P
dominating p00, i.e., 9p0 2 P � fp00g, p0 � p00.

Continuing the above example, p3 is a skyline object and
p3 � p6, and hence p6 is a non-skyline object. To sum up, in
Fig. 1, the skyline object set S ¼ fp1; p2; p3; p4g, and points
p5; p6; p7, and p8 are all non-skyline objects.

Definition 3 (Dominating Score). Let S be the skyline of P, for a
skyline object s 2 S, the dominating score of s, denoted by lðsÞ,
could be defined as:
lðsÞ ¼j fns 2 P � S j s � nsg j ð1Þ
In other words, the score lðsÞ is the number of the non-skyline
objects dominated by a skyline object s. The higher the lðsÞ is, the
more interesting the skyline object is, as pointed out in [30,44]. In
Fig. 1, for instance, p3 is more desirable than p1 since lðp3Þ ¼ 3 and
lðp1Þ ¼ 1. Thus, we can derive a natural ordering of skyline objects
according to the dominating score. Nevertheless, when two skyline
objects share the same dominating score, the tie needs to be bro-
ken. Towards this, one possible approach is to request users to pro-
vide some weight assignments for their preferred attributes.
Unfortunately, providing such weight assignments are not always
easy without any initial knowledge about the data. On the other
hand, as stated in [5], the goal of offering the skyline to the users
is to help them determine the weight assignment. Another possible
work-around is to take the potential weight of every non-skyline
object into consideration, by computing the number of the objects
dominated by it. However, this method incurs expensive

Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264 253
computational cost, as it has to count the number of the objects
that are dominated by each non-skyline object. Based on these
observations, in the following, we present an alternative approach
to break the possibly occurred tie.
Definition 4 (Dominated Score). Let S be the skyline of P, for a
non-skyline object ns 2 P � S, the dominated score (i.e., potential
weight) of ns, denoted by xðnsÞ, could be defined as:
xðnsÞ ¼ 1
s 2 Sjs � nsf gj j ð2Þ
In fact, the dominated score of a non-skyline object considers
the number of the skyline objects dominating it. Intuitively, a
non-skyline object might have larger weight if it is dominated by
as few skyline objects as possible, indicating that it may dominate
more other non-skyline objects. As an example, in Fig. 1, the
weight of p5 is greater than that of p8, due to xðp5Þ ¼ 1 and
xðp8Þ ¼ 1=4. Consequently, we define the preference score of a
skyline object based on the intuition: a skyline object is more inter-
esting if it dominates as many the non-skyline objects with higher
dominated scores as possible.
Definition 5 (Preference Score). Let S be the skyline of P, for a
skyline object s 2 S, the preference score of s, denoted by sðsÞ, is
defined as:
sðsÞ ¼
X

ns02fns2P�Sjs�nsg
xðns0Þ ð3Þ
Take Fig. 1 as an example. p2 is more preferred than p4 as
sðp2Þ ¼ 5=4 and sðp4Þ ¼ 3=4, although lðp2Þ ¼ lðp4Þ ¼ 2. Actually,
the preference score of a skyline object takes into account the accu-
mulated (potential) weight of all non-skyline objects dominated by
it. A skyline object s having a higher score s(s) might be more
preferable for users. Based on Eqs. (1)–(3), the ranking criterion is
formalized as follows:
Definition 6 (Ranking Criterion). Let S be the skyline of P, for two
skyline objects s; s0 2 S; s is more desirable than s0, denoted by s ‘ s0,
iff
Fig. 2. A runnin
�

g example.
s ‘ s0 ()
lðsÞ > lðs0Þ
lðsÞ ¼ lðs0Þ ^ sðsÞ > sðs0Þ

ð4Þ
For example, in Fig. 1, p3 ‘ p4 and p2 ‘ p4 according to
Definition 6.
3.2. Problem formulation

We now present the formal definition of the MDSO query based
on the ranking criterion defined in Section 3.1.

Definition 7 (Most Desirable Skyline Object Query). Given a set P
of data objects, an integer k (P1), and let S be the skyline of P, the
most desirable skyline object (MDSO) query retrieves the set Sr of
skyline objects, such that (i) Sr contains k skyline objects, i.e.,
jSr j = k; and (ii) none of object p0 2 S� Sr is superior to any answer
object p 2 Sr according to the ranking criterion (see Definition 6),
i.e., 8p 2 Sr and p0 2 S� Sr , lðpÞ > lðp0Þ or lðpÞ ¼ lðp0Þ ^ sðpÞ >
sðp0Þ. Note that, when jSj 6 k; S is the result set, i.e., Sr ¼ S.

It is worth noting that, if two skyline objects with the same
dominating score and preference score are tie, only one of them
is returned. The MDSO query is a new addition to the family of sky-
line operators for the skyline size control. Compared with the
existing technique, it takes a slightly different perspective on the
problem of controlling the size of skyline object set. Take Fig. 1
as an example again. If k = 2, the MDSO query on the dataset illus-
trated in Fig. 1 returns p3 (with lðp3Þ ¼ 3 and sðp3Þ ¼ 7=4) and p2

(with lðp2Þ ¼ 2 and sðp2Þ ¼ 5=4) as the most preferable 2 skyline
objects.

4. MDSO query processing

In this section, we propose three algorithms for processing
MDSO queries, i.e., Cell Based algorithm (CB), Sweep Based algorithm
(SB), and Reuse Based algorithm (RB), and analyze their correctness
and complexities, respectively. All the algorithms take an R-tree R
on a dataset and an integer k as input, and output the most desir-
able k skyline objects. For ease of understanding, a running exam-
ple, as shown in Fig. 2, is employed, where the two-dimensional
(2D) data point set in Fig. 2(a) is organized in the R-tree depicted
in Fig. 2(b) with node capacity three. Assume that the number k

254 Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264
of required skyline objects is 2 (i.e., k = 2). The final query result
contains points p9 and p2.

4.1. Cell based algorithm

Once the skyline S of a given data set P is got, the region dom-
inated by all skyline objects in S can be divided into a lot of cells.
For simplicity, we consider the partition of cells in a 2D space
ðx; yÞ. The presented concepts, however, can be easily extended
to high dimensional spaces.

Suppose S ¼ fs1; s2; . . . ; smg is the skyline of a specified data set P
in a 2D space. The region dominated by skyline objects in S can be
partitioned into m � ðmþ 1Þ=2 cells fCabj1 6 a 6 b 6 mg. The
lower-left corner and the upper-right corner of every cell Cab are
ðsb:x; sa:yÞ and (sbþ1:x; sa�1:yÞ, respectively. Note that, when a = 1
ðb ¼ mÞ; s0:y ðsmþ1:xÞ is defined as the maximal value of yðxÞ coordi-
nate in the data space. As illustrated in Fig. 2(a), for instance, the
shadowed region dominated by fp1; p2; p6; p9; p10g is divided into
15 cells. Based on the concept of cells, we can derive Lemma 1 below.

Lemma 1. Any data object or R-tree node falling completely into a
single cell is only dominated by the same skyline objects.
Proof. The proof is straightforward by the partition of cells. h

In other words, data objects that are within a single cell, but not
on the boundaries of the cell, have the same (potential) weight. For
example, in Fig. 2(a), points p11 and p12 contained in an R-tree node
N5 are dominated by the same skyline points p9 and p10 since they
are located inside cell C45. Nevertheless, when an R-tree node inter-
sects multiple cells, the data objects included in the R-tree node may
be dominated by different skyline objects. Take Fig. 2(a) as an exam-
ple again. As the R-tree node N2 crosses four cells, point p4 in N2 are
only dominated by skyline points p2 and p6, whereas point p5 in N2

is dominated by skyline points p2; p6; p9, and p10.

Algorithm 1. Cell Based Algorithm (CB)

Input: an R-tree R on a set of data objects, the number k of
skyline objects to return

Output: the most desirable k skyline objects
1: initialize a set S ¼£ accepting skyline objects s in the

form hs;lðsÞ; sðsÞi and two min-heaps H ¼ H0 ¼£ // H
and H0 are sorted in ascending order of L1-norm

2: insert all entries of the root R.root into H and H0

respectively // R.root: root of an R-tree R
3: compute skyline S using BBS algorithm with H0 //

algorithm of [32]
4: while H – £ do
5: de-heap the top entry e of H
6: if e is a data object and e R S then // e is a

non-skyline object
7: S0 ¼ fs 2 S j s � eg // s 2 S dominates e
8: for each object s 2 S0 do
9: lðsÞ ¼ lðsÞ þ 1 and sðsÞ ¼ sðsÞ þ 1/jS0j

10: else // e is an intermediate (i.e., a non-leaf) node
11: if e is inside a single cell then
12: cnt = ObjectCount (eÞ
13: S00 ¼ fs 2 S j s � eg
14: for each object s 2 S00 do
15: lðsÞ ¼ lðsÞ + cnt and sðsÞ ¼ sðsÞ þ 1= j S00 j �cnt
16: else // e spans multiple cells
17: for each child entry ei 2 e do
18: en-heap ei into H
19: sort all skyline objects in S according to the ascending

order based on Eq. (4)
20: return the top-k objects in S

Function ObjectCount ðNÞ
Input: a node MBR N being evaluated
Output: the number counter of data objects in the subtree

rooted at N
1: initialize a stack st = £ and counter = 0
2: push N into st
3: while st – £ do
4: pop the top entry e out of st
5: if e is a leaf node then // e lies in the second lowest

level of the R-tree
6: let num be the number of child entries in e
7: counter = counter + num
8: else // e is a non-leaf node
9: for each child entry ei 2 e do

10: push ei into st
11: return counter

Our first approach, namely, Cell Based algorithm (CB), utilizes the
aforementioned cell properties. The basic idea of CB is to compute
the skyline S using BBS algorithm [32], and then, for each skyline
object s 2 S, calculate its dominating score lðsÞ and preference
score sðsÞ respectively, and finally return the top-k skyline objects
in S according to our proposed ranking criterion (Definition 6). The
pseudo-code of CB is presented in Algorithm 1. Initially, CB initial-
izes a set S ¼£ accepting skyline objects s of the form
hs;lðsÞ; sðsÞi, and two min-heaps H and H0 sorted in ascending
order of the minimum L1-norm distance from the origin to an
R-tree node or a data object (line 1). Then, it employs BBS algo-
rithm to obtain the skyline preserved in S (line 3). Here,
lðsÞ ¼ sðsÞ ¼ 0 for each skyline object s 2 S. Thereafter, CB com-
putes lðsÞ and sðsÞ by traversing the R-tree R (lines 4–18). In par-
ticular, if a non-skyline object is accessed, for every object s in the
set S0 of all the skyline objects dominating it, lðsÞ and sðsÞ are
increased by 1 and 1/jS0j, respectively (lines 6–9). When an R-tree
node e is encountered, CB distinguishes two cases. (i) If e is within
a single cell, the algorithm first invokes ObjectCount function to get
the number cnt of data objects in the subtree rooted at e, and then,
for each object s in the set S00 of all the skyline objects dominating e,
lðsÞ and sðsÞ are increased by cnt and 1/jS00j � cnt, respectively
(lines 11–15). (ii) If e intersects multiple cells, the algorithm inserts
the child entries of e into the heap H for expansion (lines 17–18).
This traversal terminates once H ¼£. Finally, CB sorts all skyline
objects in S based on Eq. (4) and returns the top-k objects in S as
the final query result (lines 19–20).

Back to the running example depicted in Fig. 2. First, CB uses BBS
algorithm to compute the skyline S¼ hp9;0;0i;hp2;0;0i;hp10;0;0i;f
hp6;0;0i; hp1;0;0ig. Then, for each skyline object s 2 S, it
calculates lðsÞ and sðsÞ by traversing the R-tree R, after
which S ¼ hp9;5;61=30i; hp2;4;61=30i; hp10;3;6=5i; hp6;4;23=15i;f
hp1;1;1=5ig. After sorting, objects p9 and p2 are returned as the
most desirable 2 skyline objects.

4.2. Sweep based algorithm

CB first traverses the R-tree R on the data set P once to obtain
the skyline S of P, and then, for each skyline objects s 2 S, it calcu-
lates lðsÞ and sðsÞ by traversing R once. Totally, the CB algorithm

Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264 255
traverses R twice. Hence, it is not efficient in terms of the I/O cost
(i.e., the number of node accesses) and CPU time, especially in high
dimensional spaces. Motivated by this, we present an alternative,
namely, Sweep Based algorithm (SB). First, we offer the lemma that
is used by SB.

Lemma 2. If a non-skyline object is encountered by the sweep line
(i.e., a vertical line to iteratively sweep along coordinate axis), it is only
dominated by the skyline objects that have been obtained so far.
1 For interpretation of color in Fig. 2, the reader is referred to the web version o
this article.
Proof. Suppose a non-skyline object ns encountered by the sweep
line is dominated by a skyline object s found later. Then, according
to Definition 1, s is smaller than or equal to ns in all dimensions and
strictly smaller than ns in at least one dimension. This means
that s must be encountered by the sweep line prior to ns,
which contradicts with our assumption. Consequently, the proof
completes. h

The main idea of SB is to identify skyline objects, and mean-
while calculate their dominating scores and preference scores,
via a single traversal of the R-tree R used to organize a dataset P.
Algorithm 2 shows the pseudo-code of SB algorithm. Without loss
of generality, SB uses a vertical line to iteratively sweep along x
dimension from left to right for obtaining skyline objects s, lðsÞ,
and sðsÞ. In the first place, SB initializes a set S ¼£ accepting sky-
line objects s in the form hs;lðsÞ; sðsÞi, and a min-heap H sorted
lexicographically on n-dimensional space D ¼ ðd1; d2; . . . ; dnÞ (line
1), e.g., the data points in Fig. 2(a) are sorted as
p1; p2; p3; p6; p4; p9; p7; p8; p10; p5; p11; p12f g. It then recursively finds

skyline objects s and computes lðsÞ and sðsÞ until H ¼£ (lines
3–17). Specifically, for the data objects encountered by the sweep
line, SB processes them one by one from bottom to up. If a data
object p evaluated currently is a skyline object, it is added to S
directly. Otherwise, p must be a non-skyline object, and its domi-
nated score xðpÞ can be determined because, as proved by
Lemma 2, it is only dominated by some skyline objects that have
been identified so far, but not dominated by skyline objects
retrieved later. Thus, for every object s in the set S0 of all skyline
objects dominating p, lðsÞ and sðsÞ are increased by 1 and 1/jS0j,
respectively. The sweep stops after all data objects are accessed.
Finally, the top-k objects in S are returned as the final query result
after sorting (lines 18–19).

Algorithm 2. Sweep Based Algorithm (SB)

Input: an R-tree R on a set of data objects, the number k of
skyline objects to be returned

Output: the most desirable k skyline objects
1: initialize a set S ¼£ accepting skyline objects s in the

form hs;lðsÞ; sðsÞi and a min-heap H ¼£ // H is sorted
lexicographically on n-dimensional space

2: insert all entries of the root R.root into H // R.root: the
root of an R-tree R

3: while H – £ do
4: de-heap the top entry e of H
5: if e is a data object then
6: if S ¼£ then
7: add he;0;0i to S // e is the first skyline object
8: else // S – £

9: S0 ¼ fs 2 Sjs � eg // s 2 S dominates e
10: if S0 ¼£ then // e is a skyline object
11: insert he;0;0i into S
12: else // e is a non-skyline object
13: for each point s 2 S0 do
14: lðsÞ ¼ lðsÞ þ 1 and sðsÞ ¼ sðsÞ þ 1=jS0j
15: else // e is an intermediate node
16: for each child entry ei 2 e do
17: en-heap ei into H
18: sort all skyline objects in S according to the ascending

order based on Eq. (4)
19: return the top-k objects in S

Again, back to our running example. First, point p1 is encoun-
tered by the sweep line (blue1 dashed line in Fig. 2(a)). Since the
current skyline S is empty, p1 is added to S ¼ fhp1;0;0ig as the first
skyline object. The second object accessed is p2. It is also inserted
into S ¼ fhp1;0;0i; hp2;0;0ig, as p2 is not dominated by p1. Then, SB
visits p3 and updates S to fhp1;0;0i; hp2;1;1ig. The algorithm
proceeds in the same manner until all data objects are visited,
after which S¼ hp1;1;1=5i;hp2;4;61=30i;hp6;4;23=15i;hp9;5;61=30i;f
hp10;3;6=5ig. Finally, SB reports objects p9 and p2 as the final query
result after sorting S.
4.3. Reused based algorithm

As mentioned in Section 4.2, the CB algorithm traverses R two
times: one for obtaining the skyline of the dataset, and another
for calculating the dominating score and preference score of every
skyline object. If we keep the visited nodes in the first step (i.e., the
skyline computation) and then use them in the second step (i.e.,
the calculation of the dominating score and preference score for
each skyline object), it only needs to traverse R a single once. In
addition, aggregation R-Tree aR-Tree [31] preserves the value of
the aggregation function for all objects that are enclosed by it,
which is very useful for an aggregation query. To this end, in this
section, we present an efficient algorithm, i.e., Reuse Based algo-
rithm (RB), which further boosts the query performance by
employing the reuse technique and the aR-Tree. In what follows,
we firstly introduce the aR-Tree.

The aR-tree was first proposed in [31], which combines a spatial
index with the materialization technique. The aR-tree is an R-Tree,
which stores for each minimum bounding rectangle (MBR), the
value of the aggregation function (in this paper, the aggregation
function is COUNT) for all objects that are contained by it.
Therefore, an aggregation query does not need to access all the
enclosed objects, since the answer can be found in the intermedi-
ate nodes of the tree, which reduces the I/O overhead. Fig. 3 illus-
trates the aR-tree aR that indexes the dataset in Fig. 2(a). For the
leaf nodes, aR stores the real data objects just like the R-tree R.
As for the entries of intermediate nodes, aR not only maintains
the information of MBRs, but also records the total number of data
objects included in their corresponding sub-tree (i.e., the value of
the function COUNT). In Fig. 3, the leaf nodes N1;N2; . . . ;N5 are
the same as those Fig. 2(b). Moving one level up, MBR N1 contains
three objects p1; p2, and p3, and hence, the COUNT of N1 is 3.
Moving one more level up, in the aR.root, there are two entries
N6 and N7. Since N6 contains N1 and N2, the total number of the
objects in N6 is 5.

By using the aR-tree, when the node MBR falls completely into a
single cell, we can get the dominating score and preference score
directly, rather than calling the function ObjectCount, which results
in the fewer I/O cost. In addition, we provide the following lemma
to guarantee the correctness of the algorithm.
f

Fig. 3. Example of the aR-tree aR for Fig. 2(a).

256 Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264
Lemma 3. The nodes visited in the computation of skyline can also be
reused in the calculation of the dominating score and the preference
score for every skyline object.
Proof. It is obvious because both the computation of the skyline
and the calculation of the dominating score and the preference
score use the same aR-tree structure. h
Algorithm 3. Reuse Based Algorithm (RB)

Input: a COUNT aR-tree aR on a set of data objects, the
number k of skyline objects to be returned

Output: the most desirable k skyline objects
/⁄aR.root: the root of the COUNT aR-tree aR ⁄/
1: initialize a set S ¼£ accepting skyline objects s in the

form hs;lðsÞ; sðsÞi and two min-heaps H ¼ H0 ¼£

2: insert all entries of the root aR.root into H0

3: compute skyline S using BBS algorithm with H0, and
meanwhile maintain all the data objects and node MBRs
dominated by some skyline object in S into H

4: while H – £ do // reuse all the entries preserved in H
5: de-heap the top entry e of H
6: if e is a data object then // e must be a non-skyline

object
7: S0 ¼ fs 2 S j s � eg // s 2 S dominates e
8: for each object s 2 S0 do
9: lðsÞ ¼ lðsÞ þ 1 and sðsÞ ¼ sðsÞ þ 1=jS0j

10: else // e is an intermediate node
11: if e is inside a single cell then
12: S00 ¼ fs 2 S j s � eg
13: for each object s 2 S00 do
14: lðsÞ ¼ lðsÞ + COUNT(eÞ and

sðsÞ ¼ sðsÞ þ 1=jS00j � COUNT(e)
15: else// e spans multiple cells
16: for each child entry ei 2 e do
17: en-heap ei into H
18: sort all skyline objects in S according to the ascending

order based on Eq. (4)
19: return the top-k objects in S

Our third approach, i.e., RB algorithm, utilizes the aforemen-
tioned aR-tree and reuse technique. The basic idea of RB is to com-
pute the skyline S using BBS algorithm just like CB. But, unlike CB,
during the skyline computation, all the data objects and node
MBRs dominated by some skyline objects in S have to be kept.
Then, for each skyline object s 2 S, RB calculates its dominating
score lðsÞ and preference score sðsÞ respectively, using the visited
nodes stored in the previous step. Finally, RB returns the top-k sky-
line objects in S according to our proposed ranking criterion
(Definition 6). The pseudo-code of CB is presented in Algorithm
3. Initially, CB initializes a set S ¼£ accepting skyline objects s
of the form hs;lðsÞ; sðsÞi, and two min-heaps H and H0 sorted in
ascending order of the minimum L1-norm distance from the origin
to an aR-tree node or a data object (line 1). Then, it employs the
BBS algorithm to obtain the skyline by traversing the aR-tree aR
and meanwhile storing the visited nodes (line 3). After this step
is completed, all the data objects and node MBRs dominated by
some skyline objects in S are maintained in H, which is used for
computing lðsÞ and sðsÞ later (lines 4–17). In particular, if a
non-skyline object is accessed, for every object s in the set S0 of
all the skyline objects dominating it, lðsÞ and sðsÞ are increased
by 1 and 1/jS0j respectively (lines 6–9). When an aR-tree node e
is encountered, RB distinguishes two cases. (i) If e is within a single
cell, for each object s in the set S00 of all the skyline objects
dominating e, lðsÞ and sðsÞ are increased by COUNT(eÞ and
1/jS00j � COUNT(e) respectively (lines 11–14). (ii) If e crosses multi-
ple cells, the algorithm inserts the child entries of e into the heap H
for expansion (lines 16–17). This traversal terminates once H ¼£.
Finally, RB sorts all skyline objects in S based on Eq. (4), and returns
the top-k objects in S as the final query result (lines 19–20).

Back to the running example depicted in Fig. 2 again. First, RB
uses BBS algorithm to compute skyline S ¼ hp9;0; 0i; hp2;0;0i;f
hp10;0;0i; hp6;0;0i; hp1;0;0ig, after which H ¼ p1; p2; p3; p6; p7; p8;f
p9; p10;N2;N5g. Then, for each skyline object s 2 S, it calculates
lðsÞ and sðsÞ by traversing the entries in H, after which
S¼ hp9;5;61=30i;hp2;4;61=30i;hp10;3;6=5i;hp6;4;23=15i;hp1;1;1=5if g.
After sorting, objects p9 and p2 are output as the most desirable 2
skyline objects.

4.4. Discussion

In this section, we analyze the correctness and complexities of
our proposed three algorithms, viz., CB, SB, and RB.

Lemma 4. The CB, SB, and RB algorithms traverse the index on the
data set P two times, one time, and one time, respectively.

Proof. As shown in Algorithm 1, CB first traverses the R-tree R on
the data set P once to obtain the skyline S of P, and then, for each
skyline object s 2 S, it computes lðsÞ and sðsÞ by traversing R once.
Thus, the CB algorithm traverses R two times. SB algorithm is based
on the sweep line, which identifies skyline objects, and meanwhile
calculates their dominating scores and preference scores. RB algo-
rithm employs the reuse technique. Therefore, both SB and RB
algorithms traverse the index a single once. h

Theorem 1. The proposed three algorithms can find exactly the most
desirable k skyline objects.
Proof. CB invokes BBS algorithm [32] to compute the skyline S
accurately. Hence, no answer objects are missed (i.e., no false
misses). Then, every data object is examined in order to calculate
lðsÞ and sðsÞ for each skyline object s 2 S, which ensures no false
hits. Thus, the correctness of the CB algorithm is guaranteed. The
correctness of the SB algorithm is obvious since all data objects
are evaluated during the execution, which guarantees no false
misses and no false hits. As for the RB algorithm, the aR-tree and
Lemma 3 ensure its correctness. h

Let jRj and jaRj be the cardinalities of R-tree and aR-tree index-
ing a data set P (i.e., the number of total entries including

Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264 257
intermediate nodes and data nodes, respectively), m be the number
of skyline objects, jHj be the size of a min-heap H, jH0j be the size of
a min-heap H0, a be the maximal memory space during the execu-
tion of ObjectCount function, and b be the percentage of the jaRj
that have been visited by RS algorithm.

Theorem 2. The time complexities of CB, SB, and RB algorithms are
O((3 � jRj � logjRj + logjmj) �mÞ; O((2 � jRj � logjRj + logjmj) �mÞ,
and O(((1 + 2b) � jaRj � logjaRj + logjmj) �mÞ, respectively.
Proof. CB algorithm requires O(jRj � logjRj �mÞ time to compute
the skyline S of P using BBS algorithm (line 3 of Algorithm 1).
Then, it recursively checks each data object to derive lðsÞ and sðsÞ
for each skyline object s 2 S (lines 4–18 of Algorithm 1). Every
examination takes O(2 � logjRj �mÞ. Thus, the checking in total
incurs O(2 � jRj � logjRj �mÞ cost. In addition, line 19 of
Algorithm 1 can be completed in Oðm � logmÞ time. Hence, the time
complexity of CB algorithm is O((3 � jRj � logjRj + logjmj) �mÞ. SB
should evaluate jPj data objects (lines 3–17 of Algorithm 2), and
every evaluation can be finished in O(2 � log jRj �mÞ time.
Therefore, the evaluations in total incur O(2 � jRj � logjRj �mÞ cost.
Line 18 of Algorithm 2 takes Oðm � logmÞ to perform sorting. Thus,
the time complexity of SB algorithm is O((2 � jRj � logjRj +
logjmj) �mÞ. RB algorithm requires O(jRj � logjRj �mÞ time to
compute the skyline S of P using BBS algorithm (lines 3 of
Algorithm 3). It then recursively checks each data object to derive
lðsÞ and sðsÞ for every skyline object s 2 S by using H (lines 4–17
of Algorithm 3). Each examination takes O(2 � logjaRj �mÞ.
Hence, the checking in total incurs O(2b � jaRj � logjaRj �mÞ cost.
In addition, line 18 of Algorithm 3 can be completed in Oðm � logmÞ
time. Consequently, the time complexity of RB algorithm is
O(((1 + 2b) � jaRj � logjaRj + logjmj) �mÞ. h
Theorem 3. The space complexities of CB, SB, and RB algorithms are
O(jHj + jH0 j + aÞ; O(jHj), and O(jHj + jH0j), respectively.
Proof. The storage of CB is dominated by heap H0 (used in line 3 of
Algorithm 1), heap H (utilized in lines 4–18 of Algorithm 1), and
the space required to perform the ObjectCount function.
Therefore, the space complexity of CB algorithm is
O(jHj + jH0 j + aÞ. The storage of SB is dominated by heap H. Thus,
the space complexity of SB algorithm is O(jHj). The storage of RB
is dominated by heap H0 (used in line 3 of Algorithm 3) and heap
H (utilized in lines 4–17 of Algorithm 3). Hence, the space com-
plexity of RB algorithm is O(jHj + jH0 j). h
Fig. 4. Example of a MDSO query.
5. CMDSO query processing

In this section, we extend our techniques (presented above) to
handle a natural variant of MDSO queries, namely, the constrained
most desirable skyline object (CMSDO) query, which aims to com-
pute the MDSO in a specified region. In the sequel, we formalize
the CMSDO query in Section 5.1, and then propose three algo-
rithms for computing CMSDO and offer their theoretical analysis
accordingly in Section 5.2.

5.1. Problem formulation

In some real-life applications, users might enforce some con-
straints (e.g., spatial region, distance, etc.) on MDSO queries. As
an example, in web-based recommender systems, the users may
want to the desired hotel whose room price is between $200 and
$300. Note that, in a normal MDSO query, no such restriction can
be directly specified for the query result. Therefore, the traditional
MDSO query cannot tackle such query efficiently. To this end, in
this paper, we introduce a new form of MDSO queries, i.e.,
CMDSO retrieval, which finds the most preferable k skyline objects
in a given constrained region, as formally defined in Definition 8.

Definition 8 (Constrained Most Desirable Skyline Object
Query). Given a set P of data objects, an integer k (P1), a
constrained region CR, and let Sc be the constrained skyline of P, a
constrained most desirable skyline object (CMDSO) query retrieves a
set Scr of skyline objects, such that (i) Scr is inside CR; (ii) Scr

contains k skyline objects, i.e., jScr j = k; and (iii) none of object
p0 2 Sc � Scr inside CR is superior to any answer object p 2 Scr

according to the ranking criterion (see Definition 6), i.e.,
8p 2 Scr ; p0 2 Sc � Scr , lðpÞ > lðp0Þ or lðpÞ ¼ lðp0Þ ^ sðpÞ > sðp0Þ.
Note that, when jScj 6 k; Sc is the result set, i.e., Scr ¼ Sc .

The CMDSO query only returns the MDSO in a specified con-
strained region. For ease of understanding, Fig. 4 depicts an exam-
ple of the CMDSO query, in which the shaded area represents the
constrained region CR. As shown in Fig. 4, objects p9 and p6 are
returned as the most desirable 2 skyline objects. The skyline object
p1 is located outside CR. Thus, it cannot be the final answer objects.
Since both p9 and p6 dominate three points, while p2 only domi-
nates two points, p2 is not the final answer object based on the
ranking criterion. The CMDSO query has a large application base.
Take the web-based recommender system again. The user may also
want to the desired hotel whose distance to the beach is no more
than one kilometer.

5.2. Algorithms for finding CMDSO

In this subsection, we present three efficient algorithms,
namely, Constrained Cell Based algorithm (CCB), Constrained Sweep
Based algorithm (CSB), and Constrained Reuse Based algorithm
(CRB), for finding the CMDSO, and then analyze their correctness
and complexities, respectively.

The CMDSO query is a natural extension of the MDSO query.
Therefore, the algorithms designed for MDSO retrieval can also
be extended to handle the CMDSO query. The only difference with
respect to the aforementioned MDSO query processing algorithms
(i.e., CB, SB, and RB) is that the algorithms for the CMDSO query
have to consider the constrained region.

Table 3
Top-14 most desirable skyline records on the NBA data set.

NBA Player/Year GP PTS REB AST lðsÞ sðsÞ

Wilt Chamberlain/1967 82 1982 1952 702 14962 131
Kareem Abdul-Jabbar/1975 82 2275 1383 413 14392 121
Larry Bird/1985 82 2115 805 557 14286 131
John Havlicek/1971 82 2252 762 614 13862 131
Kareem Abdul-Jabbar/1969 82 2361 1190 337 13828 114
Wilt Chamberlain/1966 82 1956 1957 630 13457 131
Kareem Abdul-Jabbar/1970 82 2596 1311 272 13116 110
Michael Jordan/1989 82 2753 565 519 13078 131
Gary Payton/1999 82 1982 529 732 13035 98
Kareem Abdul-Jabbar/1971 81 2822 1346 370 12936 115
John Havlicek/1970 81 2338 730 607 12934 131

Table 2
Parameter statistics.

Parameter Range Default

k 10, 20, 30, 40, 50 30
Dimensionality 2, 3, 4, 5 3
Cardinality 250 K, 500 K, 1000 K,

2000 K, 4000 K
4

Constrained region (% of full space) 15, 30, 45, 60, 75 100

Fig. 5. Illustration of synthetic dataset distributions.

258 Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264
Specifically, there are three approaches to extend the traditional
MDSO query algorithms to develop the algorithms for CMDSO
query algorithms. (i) We first call the traditional MDSO query algo-
rithms to get the whole most desirable skyline objects (i.e. the
entire skyline with computed dominating scores and preference
scores) without considering the constrained region. Then, we
obtain the k skyline objects that are within the constrained region
according to the ranking criterion. (ii) We first index the objects
inside a specified constrained region in a single R-tree or aR-tree,
and then, we perform the MDSO query on the constructed R-tree
or aR-tree to get the final result. (iii) We integrate the constrained
region examination into the conventional MDSO query processing
algorithms, i.e., the entries not intersecting the constraint region
are pruned away. For the first method, its final result may be not
correct. This is because the CMDSO query only considers the data
objects in the constrained region. If we firstly get the skyline of
the whole dataset, it means that we expand the qualified datasets,
i.e., the datasets fall into the constrained region. It will lead to
enlarge some skyline objects’ dominating scores and preference
scores. Therefore, the final result is not correct. For instance, in
Fig. 4, if we adopt the first approach, we firstly get the skyline
set S ¼ hp9; 5; 61=30i; hp2; 4; 61=30i; hp10; 3; 6=5i; hp6; 4; 23=15i;f
hp1;1;1=5ig. Since p1 and p10 are out of the constrained region,
these two points are discarded. For the rest of the objects, accord-
ing to their values of dominating scores and preference scores, the
objects with p9 and p2 are returned as the final result. However, the
correct result should be p9 and p6 due to lðp9Þ ¼ 2; lðp6Þ ¼ 3, and
lðp9Þ ¼ 3. Consequently, the first method is infeasible. As for the
second approach, it needs to create another index. Once the con-
strained region is changed, the index needs to be rebuilt. Thus,
the second method is not efficient, and can be used as an alterna-
tive. For the third method, it integrates the constrained region
checking into the traditional MDSO query processing, which can
guarantee the correctness of the final result. In addition, it uses
the index containing the entire dataset, which is not affected by
the change of the constrained region. In summary, the third
approach is superior to other two methods in both correctness
and effectiveness. Therefore, in this paper, we adopt the third
method to adapt the MDSO query algorithms in order to form
the CMDSO query algorithms. Before presenting our algorithms,
we present the following lemma.

Lemma 5. Given a set P of data objects organized by an index (R-tree
or aR-tree) and a constrained region CR, if an R-tree (or aR-tree) node
does not cross CR, the node cannot contain any constrained most
desirable skyline object.
Alex English/1982 82 2326 601 397 12847 119
Michael Jordan/1988 81 2633 652 650 12692 131
Oscar Robertson/1962 80 2264 835 758 12618 111
Proof. The proof is straightforward, and thus omitted. h
Lemma 5 ensures that the entries located outside the con-
strained region can be safely pruned because it does not contribute
to the final result. Next, we propose our algorithms in details.

Our first algorithm, namely, Constrained Cell Based algorithm
(CCB), is based on the CB algorithm. The basic idea of CCB is to
compute the constrained skyline CS using BBS algorithm, and then,
for each skyline object cs 2 CS, calculate its dominating score lðcsÞ
and preference score lðcsÞ respectively, and finally return the top-k
skyline objects in CS according to our proposed ranking criterion
(see Definition 6). It is worth noting that, when computing the
dominating score lðcsÞ and preference score sðcsÞ, we only con-
sider the points in the constrained region. Since the algorithm of
CCB is similar to CB algorithms, the pseudo-code of CCB is ignored.
Here we only discuss the differences between CCB and CB algo-
rithms. The first difference is that in line 3 of Algorithm 1, the
CCB algorithm should ‘‘compute constrained skyline CS using BBS
algorithm with H0’’ rather than ‘‘compute skyline S using BBS algo-
rithm with H0’’. For the second difference, when CCB gets a
non-skyline object, the algorithm needs to determine whether it
is inside the constrained region (line 6 of Algorithm 1). If no, it
can be discarded. When encountering an intermediate node,
except to examine its location with respect to the cell (line 11 of

Fig. 7. MDSO query cost vs. varying k (dimensionality = 3, cardinality = 1000 K).

Fig. 6. MDSO query cost vs. varying k (dimensionality = 4).

Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264 259
Algorithm 1), CCB also requires the constrained region checking. If
the intermediate node needs to be expanded, CCB also examines
whether or not its children are within the constrained region.
Anyway, any entry needs constrained region examination before
it is inserted into H and after it is popped from H.

Since the CCB algorithm needs to traverse the index twice for
getting the final result, we propose another more efficient algo-
rithm, i.e., Constrained Sweep Based algorithm (CSB), which only tra-
verses the index a single once to retrieve the result. CSB algorithm
is adapted from the SB algorithm by employing the third method
mentioned previously. The main idea of CSB is to identify skyline
objects in a specified constrained region and meanwhile calculate
their dominating scores and preference scores, via a single traversal
of the R-tree R used to organize a data set P. Compared with SB
algorithm, there are two differences between CSB and SB algo-
rithms. The first one is that, when evaluating a data object (line
5 of Algorithm 2), CSB has to determine whether it is inside the
constrained region or not. The other is that, in line 16 of

Fig. 8. MDSO query cost vs. varying dimensionality (k = 30, cardinality = 1000 K).

260 Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264
Algorithm 2, when expanding an intermediate node, CSB needs to
examine whether or not its children entries intersect or falls into
the constrained region.

Our third algorithm, i.e., Constrained Reuse Based Algorithm
(CRB), is the customization of the RS algorithm. CRB also uses the
aR-tree as the index and employs the reuse technique. The basic
idea of CRB is, like CCB, to compute the constrained skyline CS
using BBS algorithm, but unlike CCB, during this computation, all
the data objects and node MBRs, which are dominated by some
skyline objects in CS and within the constrained region, need to
be kept. Then, for each skyline object cs 2 CS, CRB calculates its
dominating score lðsÞ and preference score sðsÞ respectively, using
the visited nodes stored in the previous step. Finally, CRB returns
the top-k skyline objects in CS according to our proposed ranking
criterion. The pseudo-code of CRB is similar as that of RB except
that, in Algorithm 3, lines 3, 6, 11, and 16 require constrained
region checking, and thus skipped.

Next, we analyze the correctness of the algorithms for CMDSO
queries.

Lemma 6. The CCB algorithm traverses the index on the data set P
two times, and both CSB and CRB algorithms traverse the index over P
a single once.
Proof. It is evident that CCB first traverses the aR-tree aR to obtain
the constrained skyline CS, and then, for each skyline objects
cs 2 CS, it computes lðsÞ and sðsÞ by traversing aR once. Thus, the
CCB algorithm traverses aR two times. CSB algorithm is based
on the sweep line, which identifies constrained skyline objects
and calculates their dominating scores and preference scores
simultaneously. CRB algorithm utilizes the reuse technique.
Therefore, both CSB and CRB algorithms traverse the index only
once. h
Lemma 7. All the entries in the heap H cross the specified constrained
region.
Proof. The proof is obvious because, in our algorithms, when a
node entry is expanded, we only en-heap those child entries that
are located inside or intersect the constrained region CR. h
Theorem 4. All the three presented algorithms can find exactly the
constrained most desirable k skyline objects.
Proof. It is guaranteed by Theorem 1 and Lemma 5. h

Fig. 9. MDSO query cost vs. varying cardinality (k = 30, dimensionality = 3).

Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264 261
6. Experimental evaluation

This section experimentally evaluates the effectiveness of our
devised ranking criterion and the performance of our proposed
algorithms in terms of both efficiency and scalability. In what fol-
lows, we first describe the experimental settings in Section 6.1, and
then we show the effectiveness of ranking criterion in Section 6.2.
Considerable experimental results and our findings for MDSO and
CMDSO queries are reported in Sections 6.3 and 6.4, respectively.
6.1. Experimental setup

We use both real NBA data and synthetic datasets. Specifically,
the NBA data set records the NBA players’ technical statistics from
1946 to 2004. It is available at the NBA official website
(www.databasebasketball.com), and frequently adopted in the
skyline literature [6,7,14,20,21,26]. NBA contains 15,280 records
about 3542 players on 17 attributes (e.g., number of steals, number
of blocks, and number of fouls, etc.) from regular seasons. Each
record provides statistics of a player in a season. Consequently, a
player may have several records if he played in NBA for more than
one season. We selected the four attributes, namely, number of
games played (GP), total points (PTS), total rebounds (REB), and
total assists (AST), in our experiments. According to the semantics
of this data set, the larger the attribute values are, the better the
player is. Hence, player A dominates player B if A is not smaller
than B on all attribute values and greater than B on at least one
attribute value. In addition to the NBA data set, we also created
Independent, Correlated, and Anti-correlated datasets with dimen-
sionality varied from 2 to 5 and cardinality in the range
[250 K,4000 K]. Our generation follows exactly the description in
[5]. In Independent, all attribute values are independent and uni-
formly distributed; the Correlated dataset represents an environ-
ment where points which are good in one dimension are also
good in the other dimensions; in Anti-correlated, all attribute val-
ues are anti-correlated, meaning that if an object has a small value
on one attribute, it tends to have a large value on at least another
attribute. Fig. 5 shows the three distributions of the dataset with
100000 2D points.

Every dataset is indexed by an R⁄-tree [4] or an aR-tree [31]
with a disk page size of 4096 bytes. We verify the effectiveness
of our presented ranking criterion, and evaluate the efficiency
and scalability of our proposed algorithms under several factors,
including k, dimensionality, cardinality, and constrained region.
Note that, in each experiment, only one factor varies, whereas
the others are fixed to their default values. The range of the param-
eters and their default values are listed in Table 2. The number of

http://www.databasebasketball.com

Fig. 10. CMDSO query cost vs. constrained region (k = 30, dimensionality = 3, cardinality = 1000 K).

262 Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264
node/page accesses (i.e., I/O cost), wall clock time (i.e., the sum of
I/O cost and CPU time, where the I/O cost is computed by charging
10 ms for each page access, as with [28]), and the maximal space
consumption are employed as the major performance metrics.
Recall that the MDSO query takes a different perspective on the
problem of controlling the size of skyline object set, and hence,
we do not compare it with other methods, which return the fixed
size of skyline, in our experiments.

All algorithms were implemented in C++, and all experiments
were conducted on the PC with an Intel Core 2 Duo 2.13 GHz
CPU and 2 GB RAM, running Microsoft Windows XP Professional
Edition.

6.2. Effectiveness of ranking criterion

This set of experiments aims at evaluating the effectiveness of
our proposed ranking criterion. Table 3 shows the top-14 most
preferable skyline records on the NBA data set, together with their
corresponding dominating scores and preference scores listed in
the sixth and seventh columns, respectively. Note that, in this
NBA data set, we identify 50 skyline records in the full
4-dimensional spaces, since it is fairly correlated as pointed out
in [2,6,7]. It is observed that, we successfully find the superstars
in NBA’s history, such as Wilt Chamberlain, Kareem
Abdul-Jabbar, and Michael Jordan. Most of readers who follow
the basketball will agree that this is a reasonable set of great
NBA players of all time. Those records not only have good attribute
values so that they are in the skyline, but also dominate many
other non-skyline records such that they have high dominating
scores. Consequently, our devised ranking criterion is reasonable.
In addition, compared with the top-14 players in NBA history
selected by http://www.nba.com, the accuracy of MDSO is 71.4%,
which can also demonstrate the quality of MDSO query results.

6.3. Results on MDSO queries

In this subsection, we present the experimental results on
MDSO queries with respect to k, dimensionality, and cardinality,
respectively.

The first set of experiments evaluates the effect of the number k
of required skyline objects on the efficiency of the algorithms.
Figs. 6 and 7 depict the results on NBA dataset and synthetic data-
sets, respectively. Specifically, each diagram plots the number of
node accesses, wall clock time (in seconds), and space (in
Kbytes), respectively, with respect to k for 4D NBA dataset and
3D synthetic datasets with cardinality = 1000 K. From the number
of node accesses and the wall clock shown in the figures, we can
observe that RB outperforms SB, and both them are better than
CB. The reason behind is that CB requires traversing the R-tree R
two times, which incurs a large number of redundant node

http://www.nba.com

Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264 263
accesses and high wall clock time cost. Hence, CB is the worst for
all cases. As discussed in Section 4.4, both RB and SB traverse the
index only once. Moreover, RB also employs the aR-tree (instead
of the R-tree) to further reduce the number of node accesses.
Therefore, RB exceeds SB. Notice that, there is an exception for
theAnti-correlated dataset. It may caused by its data distribution.
As shown in Figs. 6(c) and 7(c), (f), and (i), the space requirement
of CB, SB, and RB is significantly less than the original dataset size.
Note that, the space requirement of CB and RB are the same. This is
because the space required to execute the ObjectCount function is
very small, and thus can be ignored. It is observed that, the perfor-
mance of CB, SB, and RB is not sensitive to different k, since they
obtain the final query result from all ordered skyline objects no
matter how large k is.

Next, we investigate the impact of the dimensionality on the
efficiency of the algorithms, by fixing k = 30, cardinality = 1000 K,
and changing dimensionality between 2 and 5. Fig. 8 illustrates
the experimental results on synthetic datasets. As expected, the
performance of CB and SB degrades with the growth of dimension-
ality. This generation is due to the growth of the skyline size and
the poor performance of R-trees in high dimensions. SB and RB
are better than CB at the most of cases, and their difference
increases with dimensionality. A crucial observation is that, for
CPU time and space, CB is comparable to SB in a 2D space. This is
owing to the super-efficient BBS algorithm and numerous R-tree
nodes located inside a single cell.

Finally, we study the influence of the dataset cardinality on the
performance of the algorithms. Towards this, we fix k at 30 and use
3-dimensional synthetic datasets whose cardinality varies from
250 K to 4000 K. Fig. 9 shows the performance of CB, SB, and RB
as a function of cardinality. Again, RB and SB outperform CB in
all cases. Furthermore, the cost of CB, SB, and RB ascends as cardi-
nality grows. This is because the size of skyline increases with
cardinality.

To summarize, from the above experimental results on both
real and synthetic datasets, we can conclude that: (i) the I/O over-
head and the wall clock time of RB and SB are always less than
those of CB, and RB is better than SB in most cases; (ii) the I/O over-
head and the wall clock time of CB is comparable to those of SB in a
2D space, while SB significantly outperforms CB in high dimen-
sions; (iii) the space requirement of CB, SB, and RB is negligible
compared to the dataset size; and (iv) the space requirement of
CB and RB are almost the same.

6.4. Results on CMDSO queries

In the third set of experiments, we verify the performance of the
algorithms for CMDSO queries. It is worth mentioning that (i) the
ratio of the constrained region is the percentage of the volume of
the data universe; (ii) each value reported in the following dia-
grams is the average of 100 queries; and (iii) the locations of con-
strained regions were uniformly generated [32].

Having confirmed the efficiency of CB, SB and RB for conven-
tional MDSO retrieval in Section 6.3 and the algorithms for
CMDSO queries are adapted from traditional MDSO query algo-
rithms, thus, one parameter is employed in this part’s experiments,
i.e., the constrained region, which varies from 15 to 75 (% of full
space). Fig. 10 plots the number of node accesses, wall clock time,
and space respectively, with respect to the constrained region for
3D synthetic datasets with k = 3 and cardinality = 1000 K. Once
more, from the figure, we can observe that both CSB and CRB are
better than CCB in terms of the number of node accesses and wall
clock time. The number of node accesses of CSB and CRB are almost
the same for Independent and Anti-correlated datasets, but the wall
clock time of CRB is better than that of CSB because CSB takes more
CPU time. In addition, with the growth of the constrained region,
all the three performance metrics increase. The reason is that, as
the constrained region expands, it contains more objects, and thus,
more objects need to be checked, which results in higher I/O, wall
clock time, and space.

To sum up, from the experimental results above, we can con-
clude that: (i) CRB and CSB are always better than CCB in terms
of the I/O overhead and the wall clock time; (ii) CRB and CSB are
comparable with respect to wall clock time; and (iii) the space
requirement of our proposed algorithms is much smaller than
the original dataset.
7. Conclusions

The skyline of a dataset might have an overwhelming number
of skyline objects. Returning all of them may make it difficult for
a user to make a good, quick selection. In this paper, we introduce
a new operator, namely, the most desirable skyline object (MDSO)
query, for finding manageable size of the most preferable/interest-
ing skyline objects. First, we formalize the ranking criterion and
the MDSO query, respectively. Then, three algorithms, i.e., CB, SB,
and RB, are developed for efficiently processing MDSO queries. As
a second step, we propose a variant of MDSO queries, i.e., the con-
strained most desirable skyline object (CMDSO) query, and extend
our techniques to tackle it efficiently. Finally, extensive experimen-
tal evaluation on both real and synthetic datasets demonstrates
that our presented ranking criterion is reasonable, and our pro-
posed algorithms are efficient and scalable.

The work reported in this paper presents our first step with
respect to the MDSO operator. In the future, we plan to develop
more efficient algorithms for answering MDSO queries by using
preprocessing. In addition, we also intend to investigate MDSO
queries on arbitrary subspace, uncertain data, and so forth.

Acknowledgments

This work was supported in part by the National Basic Research
Program of China (973 Program) No. 2015CB352502 and
2015CB352503, National Natural Science Foundation of China
(NSFC Grants) No. 61379033 and 61472348, and the
Fundamental Research Funds for the Central Universities.

References

[1] W.-T. Balke, U. Guntzer, C. Lofi, Eliciting matters – controlling skyline sizes by
incremental integration of user preferences, in: Proc. Int. Conf. Database
Systems for Advanced Applications (DASFAA), 2007, pp. 551–562.

[2] I. Bartolini, P. Ciaccia, M. Patella, Efficient sort-based skyline evaluation, ACM
Trans. Database Syst. 33 (4) (2008) 1–45.

[3] I. Bartolini, Z. Zhang, D. Papadias, Collaborative filtering with personalized
skylines, IEEE Trans. Knowl. Data Eng. 23 (2) (2011) 190–203.

[4] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, The R⁄-tree: an efficient and
robust access method for points and rectangles, in: Proc. ACM SIGMOD Int.
Conf. Management of Data (SIGMOD), 1990, pp. 322–331.

[5] S. Borzsony, D. Kossmann, K. Stocker, The skyline operator, in: Proc. Int. Conf.
Data Engineering (ICDE), 2001, pp. 421–430.

[6] C.-Y. Chan, H.V. Jagadish, K.-L. Tan, A.K.H. Tung, Z. Zhang, Finding k-dominant
skylines in high dimensional space, in: Proc. Int. Conf. Very Large Data Base
(VLDB), 2006, pp. 503–514.

[7] C.-Y. Chan, H.V. Jagadish, K.-L. Tan, A.K.H. Tung, Z. Zhang, On high dimensional
skylines, in: Proc. Int. Conf. Extending Database Technology (EDBT), 2006, pp.
478–495.

[8] L. Chen, B. Cui, H. Lu, Constrained skyline query processing against distributed
data sites, IEEE Trans. Knowl. Data Eng. 23 (2) (2011) 204–217.

[9] L. Chen, X. Lian, Efficient processing of metric skyline queries, IEEE Trans.
Knowl. Data Eng. 21 (3) (2008) 351–365.

[10] J. Chomicki, P. Godfrey, J. Gryz, D. Liang, Skyline with presorting, in: Proc. Int.
Conf. on Data Engineering (ICDE), 2003, pp. 717–719.

[11] A. Das Sarma, A. Lall, D. Nanongkai, R.J. Lipton, J. Xu, Representative skylines
using threshold-based preference distributions, in: Proc. Int. Conf. on Data
Engineering (ICDE), 2011, pp. 387–398.

[12] E. Dellis, B. Seeger, Efficient computation of reverse skyline queries, in: Proc.
Int. Conf. Very Large Data Base (VLDB), 2007, pp. 291–302.

http://refhub.elsevier.com/S0950-7051(15)00259-2/h0010
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0010
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0015
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0015
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0040
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0040
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0045
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0045

264 Y. Gao et al. / Knowledge-Based Systems 89 (2015) 250–264
[13] D. Fuhry, R. Jin, D. Zhang, Efficient skyline computation in metric space, in:
Proc. Int. Conf. Extending Database Technology (EDBT), 2009, pp. 1042–1051.

[14] Y. Gao, J. Hu, G. Chen, C. Chen, Finding the most desirable skyline objects, in:
Proc. Int. Conf. Database Systems for Advanced Applications (DASFAA), 2010,
pp. 116–122.

[15] Y. Gao, Q. Liu, B. Zheng, G. Chen, On efficient reverse skyline query processing,
Expert Syst. Appl. 41 (7) (2014) 3237–3249.

[16] Y. Gao, X. Miao, H. Cui, G. Chen, Q. Li, Processing k-skyband, constrained
skyline, and group-by skyline queries on incomplete data, Expert Syst. Appl. 41
(10) (2014) 4959–4974.

[17] P. Godfrey, R. Shipley, J. Gryz, Maximal vector computation in large data sets,
in: Proc. Int. Conf. Very Large Data Base (VLDB), 2005, pp. 229–240.

[18] K. Hose, A. Vlachou, A survey of skyline processing in highly distributed
environments, VLDB J. 21 (3) (2012) 359–384.

[19] Z. Huang, H. Lu, B.C. Ooi, A.K.H. Tung, Continuous skyline queries for moving
objects, IEEE Trans. Knowl. Data Eng. 18 (12) (2006) 1645–1658.

[20] V. Koltun, C.H. Papadimitriou, Approximately dominating representatives, in:
Proc. Int. Conf. Database Theory (ICDT), 2005, pp. 204–214.

[21] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: an online algorithm
for skyline queries, in: Proc. Int. Conf. Very Large Data Base (VLDB), 2002, pp.
275–286.

[22] H.T. Kung, F. Luccio, F.P. Preparata, On finding the maxima of a set of vectors, J.
ACM 22 (4) (1975) 469–476.

[23] M.-W. Lee, S.-W. Hwang, Continuous skylining on volatile moving data, in:
Proc. Int. Conf. on Data Engineering (ICDE), 2009, pp. 1568–1575.

[24] J. Lee, S. Hwang, Scalable skyline computation using a balanced pivot selection
technique, Inf. Syst. 39 (2014) 1–21.

[25] J. Lee, S. Hwang, Toward efficient multidimensional subspace skyline
computation, VLDB J. 23 (1) (2014) 129–145.

[26] J. Lee, G.W. You, S. Hwang, Personalized top-k skyline queries in high-
dimensional space, Inf. Sci. 34 (1) (2009) 45–61.

[27] K.C.K. Lee, B. Zheng, H. Li, W.C. Lee, Approaching the skyline in z order, in: Proc.
Int. Conf. Very Large Data Base (VLDB), 2007, pp. 279–290.

[28] X. Lian, L. Chen, Reverse skyline search in uncertain databases, ACM Trans.
Database Syst. 35 (1) (2010) 3.

[29] X. Lin, Y. Yuan, W. Wang, H. Lu, Stabbing the sky: efficient skyline computation
over sliding windows, in: Proc. Int. Conf. Data Engineering (ICDE), 2005, pp.
502–513.

[30] X. Lin, Y. Yuan, Q. Zhang, Y. Zhang, Selecting stars: the k most representative
skyline operator, in: Proc. Int. Conf. on Data Engineering (ICDE), 2007, pp. 86–
95.

[31] D Papadias, P Kalnis, J Zhang, Y Tao, Efficient OLAP operations in spatial data
warehouses, in: Proc. Int. Symposium Spatial and Temporal Databases (SSTD),
2001, pp. 443–459.
[32] D. Papadias, Y. Tao, G. Fu, B. Seeger, Progressive skyline computation in
database systems, ACM Trans. Database Syst. 30 (1) (2005) 41–82.

[33] J. Pei, B. Jiang, X. Lin, Y. Yuan, Probabilistic skylines on uncertain data, in: Proc.
Int. Conf. Very Large Data Base (VLDB), 2007, pp. 15–26.

[34] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, Towards multidimensional
subspace skyline analysis, ACM Trans. Database Syst. 31 (4) (2006) 1335–
1381.

[35] N. Sarkas, G. Das, N. Koudas, A.K.H. Tung, Categorical skylines for streaming
data, in: Proc. ACM SIGMOD Int. Conf. Management of Data (SIGMOD), 2008,
pp. 239–250.

[36] K.L. Tan, P.K. Eng, B.C. Ooi, Efficient progressive skyline computation, in: Proc.
Int. Conf. Very Large Data Base (VLDB), 2001, pp. 301–310.

[37] Y. Tao, L. Ding, X. Lin, J. Pei, Distance-based representative skyline, in: Proc. Int.
Conf. on Data Engineering (ICDE), 2009, pp. 892–903.

[38] Y. Tao, D. Papadias, Maintaining sliding window skylines data streams, IEEE
Trans. Knowl. Data Eng. 18 (3) (2006) 377–391.

[39] Y. Tao, X. Xiao, J. Pei, Subsky: efficient computation of skylines in subspaces,
in: Proc. Int. Conf. on Data Engineering (ICDE), 2006, pp. 65–65.

[40] G. Trimponias, I. Bartolini, D. Papadias, Y. Yang, Skyline processing on
distributed vertical decompositions, IEEE Trans. Knowl. Data Eng. 25 (4)
(2013) 850–862.

[41] A. Vlachou, C. Doulkeridis, M. Halkidi, Discovering representative skyline
points over distributed data, in: Proc. Int. Conf. Scientific and Statistical
Database Management (SSDBM), 2012, pp. 141–158.

[42] A. Vlachou, M. Vazirgiannis, Ranking the sky: discovering the importance of
skyline points through subspace dominance relationships, Data Knowl. Eng.
(DKE) 69 (9) (2010) 943–964.

[43] T. Xia, D. Zhang, Y. Tao, On skylining with flexible dominance relation, in: Proc.
Int. Conf. on Data Engineering (ICDE), 2008, pp. 1397–1399.

[44] M.L. Yiu, N. Mamoulis, Efficient processing of top-k dominating queries on
multi-dimensional data, in: Proc. Int. Conf. Very Large Data Base (VLDB), 2007,
pp. 483–494.

[45] Y. Zhan, W. Zhan, X. Lin, B. Jiang, J. Pei, Ranking uncertain sky: the probabilistic
top-k skyline operator, Inf. Sci. 36 (5) (2011) 898–915.

[46] Z.J. Zhang, X.Y. Guo, H. Lu, A.K.H. Tung, N. Wang, Discovering strong skyline
points in high dimensional spaces, in: Proc. ACM Int. Conf. Information and
Knowledge Management (CIKM), 2005, pp. 247–248.

[47] W. Zhang, X. Lin, Y. Zhang, W. Wang, J.X. Yu, Probabilistic skyline operator over
sliding windows, in: Proc. Int. Conf. Data Engineering (ICDE), 2009, pp. 1060–
1071.

[48] S. Zhang, N. Mamoulis, D.W. Cheung, Scalable skyline computation using
object-based space partitioning, in: Proc. ACM SIGMOD Int. Conf. Management
of Data (SIGMOD), 2009, pp. 483–494.

http://refhub.elsevier.com/S0950-7051(15)00259-2/h0075
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0075
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0080
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0080
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0080
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0090
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0090
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0095
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0095
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0110
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0110
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0120
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0120
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0125
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0125
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0130
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0130
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0140
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0140
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0160
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0160
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0170
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0170
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0170
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0190
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0190
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0200
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0200
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0200
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0210
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0210
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0210
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0225
http://refhub.elsevier.com/S0950-7051(15)00259-2/h0225

	Efficient algorithms for finding the most desirable skyline objects
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Ranking criterion
	3.2 Problem formulation

	4 MDSO query processing
	4.1 Cell based algorithm
	4.2 Sweep based algorithm
	4.3 Reused based algorithm
	4.4 Discussion

	5 CMDSO query processing
	5.1 Problem formulation
	5.2 Algorithms for finding CMDSO

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Effectiveness of ranking criterion
	6.3 Results on MDSO queries
	6.4 Results on CMDSO queries

	7 Conclusions
	Acknowledgments
	References

