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a b s t r a c t

Next location prediction has been an essential task for many location based applications
such as targeted advertising. In this paper, we present three basic models to tackle the
problem of predicting next locations: the Global Markov Model that uses all available
trajectories to discover global behaviors, the Personal Markov Model that focuses on
mining the individual patterns of each moving object, and the Regional Markov Model
that clusters the trajectories to mine the similar movement patterns. The three models are
integrated with linear regression in different ways. We then seek to further improve the
accuracy of prediction by considering the time factor, with a focus on clustering the
trajectories in different time periods, and present three methods to train the time-aware
models to mine periodic patterns. Therefore, our proposed models have the following
advantages: (1) we consider both individual and collective movement patterns in making
prediction, (2) we consider the similarity between different trajectories, (3) we consider
the time factor and build models that are suited to different time periods. We have
conducted extensive experiments on a real dataset, and the results demonstrate the
superiority of our proposed models over existing methods.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the wide spread use of positioning technology, it is
increasingly possible to track themovement of people and other
objects (e.g., vehicles), giving rise to a dazzling array of location-
based applications. For example, GPS tracking using positioning
devices installed on the vehicles is becoming a preferred
method of taxi cab fleet management. The data collected by
the location-based social applications (e.g., Foursquare) can also
help with location-aware recommendations or advertising. As
an example, let us say that Lily has just shared her current
location through her favorite social application. If the area she
will pass by is known in advance, it is possible to push plenty of
. Chen),
information to her, such as the most popular restaurant and the
products on promotions in that area.

Moreover, in an increasing number of cities, vehicles
are photographed when they pass the surveillance cam-
eras installed over highways and streets, and the vehicle
passage records including the vehicle IDs, the locations of
the cameras and the time are transmitted to the data
center for storage and further processing. If we could
predict the next locations of vehicles on the road, then
we will be able to forecast the traffic conditions and
recommend more reasonable routes to drivers to avoid
or alleviate traffic jams.

In particular, both types of data contain three main
attributes: the object, the location and the time-stamp.
The availability of such spatial and temporal data gives rise
to a large volume of applications, such as urban computing
[1–3], finding popular routes [4,5], location-based recom-
mendations [6,7], and route planning [8–12]. One key
operation in such applications is next location prediction.
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Fig. 1. An example of next location prediction.
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The existing methods to next location prediction are to
mine movement patterns with historical trajectories, and
most of which fall into one of two categories: (1) methods
that use only the historical trajectories of individual objects
to discover individual movement patterns [13,14], and (2)
methods that use the historical trajectories of all objects to
identify collective movement patterns [15,16]. For both
categories, the majority of the existing methods rely on
mining frequent patterns and/or association rules to dis-
cover movement patterns for prediction. If the current
trajectory sequence matches part of a movement pattern,
we then make prediction using it. As shown in Fig. 1, there
are four trajectories: T1 ¼ 〈u1;u2;u3〉, T2 ¼ 〈u1;u4;u5〉,
T3 ¼ 〈u5;u2;u3〉, T4 ¼ 〈u5;u6〉. Each trajectory is represented
by a different type of line. If someone just drives from u1 to
u4, since the trajectory sequence 〈u1;u4〉 matches part of
historical trajectory T2, the next location of T2 (i.e., u5) will
be the predicted next location of 〈u1;u4〉. In practice, many
historical trajectories contain this trajectory sequence
〈u1;u4〉, and the most popular next location is returned.

However, the existing methods have a few drawbacks.
First, prior studies on the location prediction have used the
individual patterns or the collective patterns to predict the
next locations, but very often the movements of objects
are affected by both individual and collective properties.
Second, similarities often exist between the trajectories.
For example, the trajectory T1 ¼ 〈u1;u2;u3〉 is similar to
T3 ¼ 〈u5;u2;u3〉, and they both have the same pattern
〈u2;u3〉. Considering the similarity between trajectories
may help mine the moving patterns more effectively and
efficiently. Finally, the existing methods do not give proper
consideration to the time factor. Different movement
patterns exist in different time, for example, as shown in
Fig. 1, during the non-rush hours, drivers who would like
to go to Region A from Region B can choose the trajectory
T4. However, during the rush hours (e.g., 8:00–10:00), no
turns are allowed at u5, and drivers have to resort to a
different (although a bit longer) trajectory T3. Failing to
take time factor into account would result in higher error
rates in predicting the next locations.

In this paper, we propose three models to predict the
next locations of moving objects given past trajectory
sequences: the Global Markov Model (GMM) that uses all
available trajectories to discover global behaviors of the
moving objects based on the assumption that they often
share similar movement patterns (e.g., people driving from
A to B often take the same route), the Personal Markov
Model (PMM) that focuses on modeling the individual
patterns of each moving object using its own past trajec-
tories, and the Regional Markov Model (RMM) that takes
the similarity between trajectories into consideration and
clusters the trajectories to mine the movement patterns.
Each model can return the probabilities of the predicting
next locations, and we combine them using linear regres-
sion in different ways to produce more complete and
accurate predictors. Given a partial trajectory sequence,
we can use the predictor obtain the probability of reaching
each possible next location, and the top ranked ones are
returned as answers.

In addition, the time factor also plays an important role in
the next location prediction problem, and periodicity is an
oft-occurring phenomenon in the movement of objects [17].
The movement patterns of objects vary from one time period
to another (e.g., weekdays vs. weekends). Meanwhile, simi-
larities also exist for different time periods (e.g., this Monday
and next), and the movement patterns of moving objects
tend to be cyclical. We consider three possible methods to
partition the time dimension into smaller units so that more
refined models can be built for each unit. We first propose a
naive method, Time Binning, which partitions the time span
into equi-sized time bins, and each trajectory is assigned to
one of the time bins according to its time-stamp. A major
drawback of this method is that its flexibility is limited, as
the sizes of the time bins are fixed and equal. Therefore, we
propose two improved methods: (1) Distribution Clustering,
which clusters the time bins based on the similarity of the
probability distributions of trajectories in them, and (2)
Hierarchical Clustering, which merges the time bins to gen-
erate clusters hierarchy.

The performance of the proposed models is evaluated
on a real dataset consisting of the vehicle passage records
over a period of 31 days (1/1/2013–1/31/2013) in the City
of Jinan. The experimental results confirm the superiority
of the proposed methods over existing methods.
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The contributions of this paper can be summarized as
follows.
�
 We propose three models to predict the next location
of a moving object: the GMM that uses all available
trajectories to discover collective patterns, the PMM
that models the individual patterns of each moving
object using its own past trajectories, and the RMM that
clusters the trajectories to mine the movement pat-
terns. We combine the three models in different ways
to obtain new models. To the best of our knowledge,
the proposed models are the first ones that take a
holistic approach and consider individual, collective
movement patterns and the similarity between trajec-
tories in making prediction.
�
 Based on the important observation that the movement
patterns of moving objects often change over time, we
propose methods that can capture the relationships
between the movement patterns in different time
periods, and use this knowledge to build more refined
models that are better suited to different time periods.
�
 We conduct extensive experiments using a real dataset
and the results demonstrate the effectiveness of the
proposed models.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 gives the pre-
liminaries of our work. Section 4 describes our approach of
Markov modeling. Section 5 presents methods that take
the time factor into consideration. The experimental
results and performance analysis are presented in
Section 6. Section 7 concludes this paper.

2. Related work

There have appeared a considerable body of work on
knowledge discovery from trajectories, where a trajectory
is defined as a sequence of locations ordered by time-
stamps. In what follows, we discuss two categories of
studies that are most closely related to us.

2.1. Trajectory mining

Route planning: Several studies use GPS trajectories for
route planning through constructing a complete route
[18,4,19]. Chen et al. [18,4] search the k Best-Connected
Trajectories from a database and discover the most popu-
lar route between two locations. Yuan et al. [19] find the
practically fastest route to a destination at a given depar-
ture time using historical taxi trajectories.

Long-range prediction: Long-range prediction is studied
in [20–23], where they try to predict the whole future
trajectory of a moving object. Krumm [20] proposes a
Simple Markov Model that uses previously traversed road
segments to predict routes in the near future. Froehlich
and Krumm [21] use previous GPS traces to make a long-
range prediction of a vehicle's trajectory. Alvarez-Garcia
et al. [22] present a system based on the generation of a
Hidden Markov Model from the past GPS log and current
location to predict the destination of a user when
beginning a new trip. Simmons et al. [23] build a hidden
Markov model (HMM) of the routes and destinations used
by the driver with a low-cost GPS sensor and a map
database.

Short-range prediction: Short-range prediction has been
widely investigated [13–16], which is concerned with the
prediction of only the next location. Some of these
methods make prediction with only the individual move-
ments [13,14], while others use the historical movements
of all the moving objects [15,16]. Xue et al. [13] construct a
Probabilistic Suffix Tree (PST) for each road using the taxi
traces and propose a method based on Variable-order
Markov Models (VMMs) for short-term route prediction.
Jeung et al. [14] present a hybrid prediction model to
predict the future locations of moving objects, which
combine predefined motion functions using the object's
recent movements with the movement patterns of the
object. Monreale et al. [15] use the previous movements of
all moving objects to build a T-pattern tree to make future
location prediction. Morzy [16] uses a modified version of
the PrefixSpan algorithm to discover frequent trajectories
and movement rules with all the moving objects'
locations.

All above works use historical trajectories to make
location prediction, but there are some other studies
which improve the accuracy of predicted locations with
external information in addition to historical trajectories.
For example, the length of trajectory, travel time, accident
reports and driving habits have been incorporated into
corresponding models to compute the probabilities of
predicted locations [24–26]. Similarly, context information
such as time-of-day, day-of-week, and velocity has been
incorporated as the features in training the prediction
model to help improve the accuracy [27,13]. However,
since these studies mainly focus on utilizing external
information, the proposed methods have little benefit in
the absence of the aforementioned external information.
Our work aims to solve a general next location prediction
problem with three basic attributes (e.g. the id of moving
object, location and time) that different kinds of trajec-
tories always have. Therefore, the above studies which
consider the external information are not applicable to our
problem.

2.2. Social-media mining

In addition to the trajectories of moving objects, there
has also appeared work on trajectory mining using social-
media data [28,29,12]. The increasingly popular social-
local-mobile applications have generated data such as geo-
tagged photos and check-in locations, which can be
regarded as sequences of visited locations. Zheng et al.
[28] mine interesting locations and classical travel
sequences in a given region with multiple users' GPS
trajectories. Yin et al. [12] investigate the problem of
trajectory pattern ranking and diversification based on
geo-tagged social media. Hasan et al. [29] analyze urban
human mobility and activity patterns using location-based
data collected from social media applications.

Probably more related to the problem addressed in this
paper is the work [30,31] on predicting next locations with
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semantic trajectories, where semantic trajectories are a
sequence of visited places tagged with semantic informa-
tion. Ye et al. [30] discover the underlying user movement
pattern with the check-in category information. They first
predict the category of user activities with a hidden
Markov model and then predict the most likely location,
given the estimated category distribution. Ying et al. [31]
combine semantic information about the places with
location data to improve the accuracy of predicting future
locations. They first store the semantic trajectories in a
tree-like structure and then choose the closest trajectory
to make prediction by relying on the geographical and
semantic features for the given trajectory sequence.

3. Preliminaries

In this section, we will explain a few terms that are
required for the subsequent discussion, and define the
problem addressed in this paper.

Definition 1 (Sampling location). For a given moving
object o, it passes through a set of sampling locations,
denoted by l, where each sampling location refers to a
point or a region (in a two-dimensional area of interest)
where the position of o is recorded.

For example, the positions of the cameras in the traffic
surveillance system can be considered as the sampling
locations. The sampling location hereinafter is also
referred to as the location when the meaning is clear from
the context.

Definition 2 (Trajectory unit). For a given moving object o,
a trajectory unit, denoted by u, is the basic component of its
trajectory. Each trajectory unit u can be represented by
u:l;u:tð Þ, where u.l is the id of the sampling location of the
moving object at time-stamp u.t.

Definition 3 (Trajectory). For a moving object, its trajec-
tory T is defined as a time-ordered sequence of trajectory
units: 〈u1;u2;…;un〉.

For a trajectory, the time difference between two
neighbor trajectory units ui and uiþ1 should be less than
a threshold (e.g., 1 hour), and the length of threshold is
usually data-dependent. From Definition 2, T can also be
represented as 〈 u1:l;u1:tð Þ; u2:l;u2:tð Þ;… un:l;un:tð Þ〉 where
ui:touiþ1:t ð1r irn�1Þ.

Definition 4 (Candidate next locations). For the sampling
location li, we define a sampling location lj as a candidate
next location of li if a moving object can reach lj from li
without going through another sampling location first.

The set of candidate next locations can be obtained
either by prior knowledge (e.g., locations of the surveil-
lance cameras combined with the road network graph) or
by induction from historical trajectories of moving objects.

Definition 5 (Sampling location sequence). For a trajectory
T ¼ 〈 u1:l;u1:tð Þ; u2:l;u2:tð Þ;…; un:l;un:tð Þ〉, its sampling loca-
tion sequence Tl refers to a sequence of sampling locations
appearing in the trajectory, denoted as 〈u1:l;u2:l;…;un:l〉.
Definition 6 (Prefix sequence). For a sampling location li
and a given sampling location sequence Tl ¼ 〈l1; l2;…; ln〉,
its prefix sequence Li

j
refers to a length-j subsequence of Tl

ending with li.

Given such a trajectory sequence T ¼ 〈u1;u2;…;un〉, the
next location prediction problem is to predict the location
that the moving object will arrive at next.

4. Markov modeling

We choose to use Markov models to solve the next
location prediction problem. Specifically, a state in the
Markov model corresponds to a sampling location, and
state transition corresponds to moving from one sampling
location to the next.

In order to take into consideration both the collective,
the individual movement patterns and the similarity
between trajectories in making prediction, we propose
three models: a Global Markov Model (GMM) to model the
collective patterns, a Personal Markov Model (PMM) to
model the individual patterns, and a Regional Markov
Model (RMM) to infer some unseen patterns through
modeling the similar trajectories. They are combined using
linear regression to generate different predictors.

4.1. Global Markov model

The movements of objects often exhibit strong collec-
tive characteristics. For example, the trajectories of differ-
ent moving objects traveling from one location A to
another location B usually bear considerable similarities.
One possible reason is the restrictions imposed by the road
networks (e.g., only a limited number of possible routes
from A to B). Another possible reason is that people tend to
follow the crowd, and the majority of people usually prefer
to take the well-beaten, typical path, especially when in an
unfamiliar place. As a result, we decide to build a Global
Markov Model (GMM) using the trajectories of all objects.

Using historical trajectories, we can train an order-N
GMM to give a probabilistic prediction over the next
sampling locations for a moving object, where N is a
user-chosen parameter. For a given sampling location
sequence T ¼ 〈l1; l2;…; ln〉, let p lnþ1jTð Þ be the probability
that the object will arrive at location lnþ1 next. Then the
location lnþ1 is given by

lnþ1 ¼ arg max
lAL

p lnþ1 ¼ ljTð Þ� �
¼ arg max

lAL
p lnþ1 ¼ ljLNn
� �n o

; ð1Þ

where L is the set of all locations. Essentially, this
approach for each location l computes its probability of
next visit, and selects the one that has the highest
probability. The order-N GMM implies that the probability
of arriving at a location l is independent of all but the
immediately preceding N locations.

In order to use the order-N GMM, we learn lnþ1 for each
prefix sequence of N locations, LNn ¼ ln�ðN�1Þ;…; ln�1; ln

� �
,

by estimating the various conditional probabilities,
p lnþ1 ¼ ljLNn
� �

. The most commonly used method for
estimating these conditional probabilities is to use the
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maximum likelihood principle, and the conditional prob-
ability p lijLNn

� �
is computed by

p lijLNn
� �

¼ ♯ðLNn ; liÞ
♯ðLNn Þ

; ð2Þ

where ♯ðLNn Þ is the number of times that prefix sequence Ln
N

occurs in the training set, and ♯ðLNn ; liÞ is the number of
times that location li occurs immediately after Ln

N
.

Nonetheless, there are some problems with the order-N
GMM. On one hand, having a fixed N for all cases makes
the model too rigid to account for the variability in the
characteristics of different sampling locations. On the
other hand, for a particular sampling location li, the
trajectories containing li with lengths less than N cannot
be used in the model. Therefore, we propose to train a
variable-order GMM, which can model sequential data of
considerable complexity. In contrast to the order-N GMM,
the variable-order GMM learns such conditional distribu-
tions with a varying N in response to the available statistics
in the trajectories. Thus, a variable-order GMM provides
the means of capturing different orders of Markov depen-
dencies based on the observed data.

The orders in a variable-order GMM are bounded by a
pre-determined constant N. To train a variable-order GMM,
we start with a first-order GMM, followed by a second-
order GMM, etc, until the order-N GMM has been obtained.
There exist many ways to utilize the variable-order GMM
for prediction. Here we adopt the principle of longest
match to predict next locations. That is, for the given
sequence, we first try to make prediction using the order-N
GMM. If this model does not contain the corresponding
state, we then try to predict next locations using the order-
ðN�1Þ GMM, and so on.
4.2. Personal Markov model

In addition to collective patterns in the trajectories,
moving objects often have their own individual movement
patterns. For example, the majority of people's movements
are routine (e.g., commuting), and most people tend to stick
with the routes they are familiar with in the past, even
when more reasonable routes exist in certain situations (e.
g., traffic jam). In addition, about 73% of trajectories in our
dataset contain only one point, but they also can reflect the
characteristics of the moving objects' activities. For exam-
ple, someone who lives in the east part of the city is
unlikely to travel to a supermarket 50 km away from his
home. Therefore, we propose a Personal Markov Model
(PMM) for each moving object to predict next locations.

The training of PMM consists of two parts: training a
variable-order Markov model for every moving object
using its own trajectories which contain at least two
locations, and a zero-order Markov model for every mov-
ing object using the trajectory units.

For training the variable-order Markov model, we
construct the prefix sequences for every moving object
using its own trajectories, and then we compute the
probability distribution of the next sampling locations.
Specially, we iteratively train a variable-order Markov
model with order ranging from 1 to N using the trajec-
tories of one moving object.

We train a zero-order Markov model using the trajec-
tory units. For a moving object, let Nðl0Þ denote the number
of times a sampling location l0 appears in the training
trajectories. Let L be the set of distinct sampling locations
appearing in the training trajectories. Then we have

P l0
� �¼ Nðl0ÞP

lALNðlÞ
: ð3Þ

The zero-order Markov model can be seamlessly inte-
grated with the variable-order Markov model to obtain the
final PMM.
4.3. Regional Markov model

GMM uses the trajectories of all moving objects to mine
the collective patterns of people. But it makes predictions
at too coarse a granularity and does not consider the
inherent similarity between different trajectories. Further-
more, similarities often exist between the trajectories in
the same region of an urban area. For example, as shown
in Fig. 1, compared to T4, T1 is more similar to T3, as they
contain the same pattern 〈u2;u3〉. Based on this observa-
tion, we propose to cluster the trajectories and train
separate models for each individual cluster. For a given
trajectory, we can then find the most relevant cluster and
use the corresponding model for prediction. Another
benefit of trajectory clustering is that by partitioning the
set of trajectories into subsets, we can reduce the number
of possible state transitions in the Markov model and
make the training more efficient. We call the proposed
model the Regional Markov Model (RMM).

To train the RMM, we first compute the similarity
between trajectories and cluster the trajectories accord-
ingly. Then we train a variable-order Markov model for
every cluster using the trajectories contained therein. For a
given trajectory, we first identify its most relevant cluster
and then make prediction of the next location using the
corresponding model of the cluster.

For clustering the trajectories, it is necessary to mea-
sure the similarity between two trajectories under some
metric. Although Euclidean distance and Dynamic Time
Warping can be used here, they are all sensitive to noises
existing in trajectory data. Therefore, we choose to use Edit
Distance on real sequences [32] to measure the distance
between two trajectories.

The edit distance between a pair of trajectories Ti and Tj
is formalized as follows:

EDðTi; TjÞ ¼

jTij if jTjj ¼ 0
jTjj if jTij ¼ 0
EDðrestðTiÞ; restðTjÞÞ if firstðTiÞ ¼ firstðTjÞ
min EDðrestðTiÞ; restðTjÞÞþ1;

�
EDðrestðTiÞ; TjÞþ1; otherwise
EDðTi; restðTjÞÞþ1

�

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where jT j is the length of trajectory T. EDðTi; TjÞ measures
the distance between trajectory Ti and Tj, in which rest(T) is
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the subsequence of T without the first location, and first(T)
is the first location in trajectory T.

With the distance metric defined, we can perform
clustering on the trajectories. As the volume of trajectories
is huge and new trajectories are generated continuously,
we propose a Trajectory Clustering method similar to
Trajectory Micro-Clustering used in [33].

Algorithm 1. Trajectory clustering.
Input: distance threshold δ, trajectory set T ;
Output: the trajectory clusters;

1:
 sample some trajectories and initialize clusters

C ¼ fC1 ;C2 ;…;Cng through hierarchical clustering;

2:
 for every trajectory T in T do

3:
 compute the pairwise edit distance with the representative

trajectory Tn

i of every cluster Ci according to Eq. (4);

4:
 choose the cluster Ci with the minimum edit distance

EDðT ; Tn

i Þ;

5:
 if EDðT ; Tn

i Þoδ then

6:
 add T into Ci and update Ci accordingly;

7:
 else

8:
 create a new cluster for T;

9:
 end if

10:
 end for

11:
 return the clusters;
Algorithm 1 shows the general work flow of trajectory
clustering. We first sample some trajectories from the
trajectory set and get initial clusters through hierarchical
clustering. Each cluster holds and maintains a set of
trajectories, and has a representative trajectory, which is
the one that has the minimum sum of distances with the
other trajectories in the cluster. Next, for each newly
arrived trajectory T, we compute its closest cluster Ci. If
the distance between T and Ci is less than a distance
threshold (δ), T is added into Ci, and the cluster is updated
accordingly. Otherwise, a new cluster will be created for T.
Finally, the clusters with similar trajectories are returned.

The result of the clustering process is a set of clusters,
each containing a set of similar trajectories. We then train
a variable-order Markov model with order ranging from 1
to N for every cluster using only the trajectories contained
therein, where N is user-specified. When making predic-
tions, we first identify the cluster that is most relevant to
the trajectory under consideration, Ttest, using the follow-
ing formula:

C ¼ arg min 8 i ¼ 1;…;NcED Tn

i ; Ttest
� �

; ð5Þ
where Nc is the number of clusters, and Tn

i is the repre-
sentative trajectory of cluster Ci.

4.4. Integration of models

It has been shown that the combination of multiple
predictors can lead to significant performance improve-
ment over the individual algorithms [34]. There are many
methods to combine the results from a set of predictors.
For our problem, we choose to use linear regression to
integrate the models we have proposed.

For the given i-th trajectory sequence, every model can
get a vector of probabilities, pw

i ¼ pi1; p
i
2;…;pim

� �0
(w repre-

sents the wth model), where m is the number of the
sampling locations, and pj
i
is the probability of location j

being the next sampling location. We also have a vector of
indicators yi ¼ ðyi1; yi2;…; yimÞ0 for the i-th trajectory
sequence, where yij ¼ 1 if the actual next location is j and
0 otherwise. We can predict yi through a linear combina-
tion of the vectors generated by different models:

ŷ i ¼ β01þ
Xr

w ¼ 1

βwp
w
i ; ð6Þ

where 1 is a unit vector and r is the number of models, and
β0, βw are the coefficients to be estimated.

Given a set of n training trajectories, we can compute
the optimal values of βi through standard linear regression
that minimizes

Pn
i ¼ 1 Jyi� ŷ i J , where J � J is the Eucli-

dean norm. The βi values thus obtained can then be used
for prediction. For a particular trajectory, we can predict
the top k next sampling locations by identifying the k
largest elements in the estimator ŷ .

5. Time factor

The movement of human beings demonstrates a great
degree of temporal regularity [35,36]. In this section, we
will first discuss how the movement patterns are affected
by time, and then show how to improve the predictor
proposed in the preceding section by taking the time
factor into consideration. Specifically, the choice of the
next location is affected by both the sequence of sampling
locations that the moving object has just passed, and the
time when this movement to next location is made. The
sequence of past locations is considered in the Markov
model; now we focus on the effect of the time factor.

5.1. Observations and discussions

We illustrate how time could affect people's movement
patterns through two examples.

Example 1. Bob is going to leave his house. If it is 8 a.m.
on a weekday, he is most likely to go to work. But if it is
11:30 a.m., he is more likely to go to a restaurant, and he
may go shopping if it is 3 p.m on weekends.

This example illustrates that people tend to have
different movement patterns due to work or life habits.

Next, we use the real dataset consisting of the vehicle
passage records to analyze the movement patterns at
different time periods.

Example 2. There are seven candidate next locations for a
particular location, and the probability distributions of the
next sampling locations over seven different time periods
are shown in Fig. 2. In this case, the distributions over
those locations do differ from one period to another. For
instance, vehicles are most likely to arrive at the fifth
sampling location during the period from 9:00 to 10:00,
whereas the most probable next location is the second for
the period from 14:00 to 15:00.

The above examples show that time plays an important
role in people's routing choices, and the movement pat-
terns do differ from time to time. As such, the prediction
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Fig. 2. An example of time affecting people's movement patterns.
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model should be made time-aware, and one way to do this
is to train different models for different time periods.
However, it is non-trivial to determine the suitable time
periods. One could attempt to divide the timeline into very
fine-grained periods to account for all the changes in
movement patterns, but if the time period is too small,
there will be only very few trajectories or none in each
time period, resulting in severe under-fitting of the mod-
els. On the other hand, we cannot always use only one
period either, because in general that will be too coarse-
grained to capture any changes in movement patterns.

In what follows, we will explore a few methods to tackle
this challenge. Here, we choose day as the whole time span, i.
e., we study how to find movement patterns within a day.
However, any other units of time, such as hour, week or
month, could also be used depending on the scenario.

5.2. Time binning

A straight-forward approach is to partition the time
span into a given number (M) of equi-sized time bins, and
all trajectories are mapped to those bins according to their
time stamps. A trajectory spanning over more than one bin
is split into smaller sub-trajectories such that the trajec-
tory units in each sub-trajectory all fall in the same bin. We
then train M variable order Markov models, each for a
different time bin, using the trajectories falling in each bin.
Prediction is done by choosing the right model based on
the time-stamp. We call this approach Time Binning (TB).

However, this approach has some serious limitations. In
particular, the boundaries of the time bins are all fixed
once M is given, making it too rigid to partition the time
span at the “true” boundaries, i.e., the boundaries where
the movement patterns start to change. Moreover, the
sizes of all time bins are equal, rendering it difficult to find
the correct bin sizes that fit all movement patterns in the
time span, as some patterns manifest themselves over
longer periods whereas others shorter.

One possible improvement to TB is to start with a small
bin size, and gradually merge the adjoining time bins if the
patterns for those bins are considered similar by some
metric. The problem with this approach is that the
patterns for the adjoining bins may not be similar to each
other, whereas those for the bins apart from each other
may be similar instead. For example, in Fig. 2, the dis-
tribution for the period of “11:00–12:00” is different from
the one for “10:00–11:00”; rather, it is similar to the one
from “14:00–15:00” (e.g., they both have the maximum
probability at the second sampling location). This calls for
a more sophisticated method to take care of the simila-
rities between time bins.

5.3. Distribution clustering

We propose a method called Distribution Clustering (DC)
to perform clustering of the time bins based on the
similarities of the probability distributions in each bin.
The probability distribution refers to the transition prob-
ability from one location to another. Here, we use cosine
similarity to measure the similarities between the distri-
butions, but the same methodology still applies when
other distance metrics such as the Kullback–Leibler diver-
gence [37] are used.

As the time bins of similar patterns may be different for
different locations, we propose to cluster the bins for each
location. For an object o appearing at a given sampling
location l with a time point falling into the ith time bin, let
Pi be an m-dimensional vector that represents the prob-
abilities of o moving from l to another location, where m is
the total number of sampling locations. We measure the
similarity of two time bins i and j (with respect to o) using
the cosine similarity

cos ij ¼
Pi UPj

Pij jU Pj
�� ��: ð7Þ

With the similarity metric defined, we can perform clus-
tering for each sampling location l on the time bins. The
algorithm is detailed in Algorithm 2. The results will be a
set of clusters, each containing a set of time bins, for the
sampling location l.

Algorithm 2. Distribution clustering.

Input: cluster number Q, time bins number M and the probability

distributions of trajectories in each time bin;
Output: the clusters;

1:
 random select Q time bins as the initial cluster centers;

2:
 repeat



M. Chen et al. / Information Systems 54 (2015) 156–168 163
3:
 calculate the similarity of the probability distributions of
trajectories in each time bin and the cluster centers;
4:
 assign each time bin to the cluster center with the maximum
similarity;
5:
 recalculate the probability distributions of trajectories in the
cluster centers;
6:
 until clusters do not change or the maximum number of
iterations has been reached
7:
 return the clusters;
Algorithm 2 illustrates the clustering method for a
location l. It chooses Q time bins as the initial clusters
(Line 1), and a cluster is defined as a collection of time
bins. At each iteration, the time bin is assigned to the
cluster with the maximum pairwise cosine similarity
(Lines 3–6). When they are merged, the new cluster
inherits the probability distribution Pi of the original
cluster i and Pj of the time bin j, and the probability
distribution P of the new cluster is computed by the
following updating rule:

P¼ PinCountiþPjnCountj
CountiþCountj

; ð8Þ

where Counti and Countj represent the total number of
trajectories in cluster i and time bin j respectively.
5.4. Hierarchical clustering

Suppose there exist Q underlying periodic patterns, we
can use DC to group the patterns into Q clusters. However,
the number of underlying periodic patterns is usually
unknown. So we propose a hierarchical agglomerative
clustering method to group the patterns. At each iteration
of the hierarchical clustering, two clusters with the max-
imum cosine similarity are merged. We iterate the proce-
dure until the termination condition (e.g., similarity
threshold) is met, and the final clusters are obtained. We
will describe the clustering method in Algorithm 3.

Algorithm 3. Hierarchical clustering.
Input: similarity threshold ξ, time bins number M and the
probability distributions of trajectories in each time bin;

Output: the clusters;

1:
 initialize M time bins as the initial clusters;

2:
 repeat

3:
 compute the pairwise cosine similarities among every cluster;

4:
 merge clusters i and j with the maximum pairwise similarity

to generate a new cluster;

5:
 recalculate the probability distributions of trajectories in the

new cluster;

6:
 until cos ijoξ or clusters do not change

7:
 return the clusters;
5.5. Next location prediction

After obtaining the final clusters, we start to train the
new model with the trajectories of every cluster. For a
given location l, supposed we have got Q clusters, we need
to train Q variable-order Markov models from the first-
order to the Nth-order with trajectories in every cluster.
For cluster q, the location lnþ1 that the object will arrive at
next is given by

lnþ1 ¼ arg max
lAL

p lnþ1 ¼ lijLNn ; T q
l

� �n o

¼ arg max
lAL

♯ðLNn ; li; T q
l Þ

♯ðLNn ; T q
l Þ

( )
; ð9Þ

where T q
l is the training set of trajectories in cluster q for

location l, and ♯ðLNn ;T q
l Þ is the number of times that prefix

sequence Ln
N
occurs in T q

l , and ♯ðLNn ; li; T q
l Þ is the number of

times that location li occurs immediately after Ln
N
in T q

l .
In the new models, the sequence of just-passed loca-

tions and the time factor are both utilized by combining
clustering and Markov model.
6. Performance evaluation

We have conducted extensive experiments to evaluate
the performance of the proposed models using a real
vehicle passage dataset. In this section, we will first
describe the dataset and experimental settings, followed
by the evaluation metrics to measure the performance. We
then show the experimental results.
6.1. Datasets and settings

The dataset used in the experiments consists of real
vehicle passage records from the traffic surveillance sys-
tem in the City of Jinan with a 6-million population. The
dataset contains 10,344,058 records during a period of 31
days (from January 1, 2013 to January 31, 2013). Each
record contains three attributes, the license plate number
of the vehicle, the ID of the location of the surveillance
camera, and the time of vehicle passing the location. There
are about 300 camera locations on the main roads. The
average distance between a neighboring pair of camera
locations is approximately 3 km.

We divide the dataset into three subsets. The training
set consists of the records for the first 20 days; the
developing set for tuning combination parameters consists
of the next 7 days' records; the last 4 days' records are
used as the testing set. When testing, we merge the
training set and the developing set to train the final
predictor.
6.2. Pre-processing

We pre-process the dataset to form trajectories, result-
ing in a total of 6,521,841 trajectories. As shown in Fig. 3
(a), the trajectories containing only one point account for
about 73% of all trajectories. We take the rest of 1,760,897
trajectories with the length greater than one to calculate
the number of candidate next locations for every sampling
location. As shown in Fig. 3(b), about 86.3% of the
sampling locations have more than 10 candidate next
sampling locations, and the average number of candidate
next locations is about 43.
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6.3. Evaluation metrics

Our evaluation uses the following metrics that are
widely employed in multi-label classification studies [38].

Prediction coverage: It is defined as the percentage of
trajectories for which the next location can be predicted
based on the model. Let c lð Þ be 1 if it can be predicted and 0
otherwise. Then coverageT ¼ 1

jT j
P

lAT c lð Þ, where jT j denotes
the total number of trajectories in the testing dataset.

Accuracy: It is defined as the frequency of the true next
location occurring in the list of predicted next locations.
Let p lð Þ be 1 it does and 0 otherwise. Then accuracyT ¼
1
jT j
P

lAT p lð Þ.
One-error: It is defined as the frequency of the top-1

predicted next location not being the same as the true next
location. Let e lð Þ be 0 if the top-1 predicted sampling
location is the same as the true next location and 1
otherwise. Then one�errorT ¼ 1

jT j
P

lAT e lð Þ.
Average precision: Given a list of top-k predicted next

locations, the average precision is defined as
apT ¼ 1

jT j
P

lAT
p ið Þ
i , where i denotes the position in the pre-

dicted list, and p ið Þ takes the value of 1 if the predicted location
at the i-th position in the list is the actual next location.

6.4. Evaluation of the proposed models

We evaluate the performance of GMM, PMM, RMM, and
their different integrations. For each experiment, we per-
form 50 runs and report the average of the results. In the
three variable-order Markov model, there are several user-
chosen parameters (e.g., the order N of Markov model, the
distance threshold δ in RMM) that provide the flexibility to
fine tune the model for optimal performance. We study
how the choice of these parameter values affects the
performance of the models.

First, we study the effect of the order of the Markov model
by varying N from 1 to 5 (with fixed δ¼6 in RMM), and
predict top-5 and top-10 next locations with PMM, GMM and
RMM respectively. As shown in Fig. 4(a), the accuracy has an
apparent improvement when the order N increases from 1 to
2, and starts to decline when N increases further, which
indicates that next location is mainly affected by the two
preceding locations only. The effect of the order N to average
precision is shown in Fig. 4(b), all the models achieves its
maximum average precision at the point of N¼2. As we can
see from Fig. 4(c), PMM and RMM obtain the best perfor-
mance when N is 2, and GMM gets the minimum one-error
when N is 3, but it is merely a slight improvement compared
with the one-error obtained atN¼2. As can be observed from
Fig. 3. Characteristic
Fig. 4(d), the coverages of all the models almost have no
change as N increases from 1 to 5, and they are approximately
equal to 1. In addition, the size of the variable order of
Markov model grows with respect to N. If N gets too large, it
may incur a high training cost in terms of time and space.
Taking these factors into consideration, we set N to 2 in the
following experiments.

We then vary the value of the distance threshold δ in
RMM, with fixed N (N¼2), to predict top-5, top-10 next
locations and study how it affects the performance of
RMM. A number of interesting observations can be made
from Fig. 5. On one hand, the accuracy, average precision
and coverage improve as we increase the value δ, though,
after a certain point (δ¼6), they start to decrease slightly.
On the other hand, the one-error of RMM decreases
gradually in general with some small fluctuations around
δ¼6, and the best performance is obtained when δ is set
to 6. This suggests that δ should be large enough to put a
sufficient number of trajectories in each cluster to reveal
meaningful patterns, but not too large to put dissimilar
trajectories in the same cluster to affect the prediction
accuracy.

Using the optimal values of N and δ, we predict the top-
k next locations, and evaluate the performance of the
proposed models with the mentioned metrics. We first
show the accuracies of all the models for different k in
Fig. 6, from which we can observe that the accuracies
improve as k increases. The accuracy of GMM and RMM is
significantly better than that of PMM, and the best result is
given by RMM. The reason is that sometimes the individual
trajectories are so sparse that PMM is not able to detect
some latent patterns. GMM performs better because it is
less susceptible to the data sparsity problem, and may
discover collective patterns which have more important
influence on the driving routes. The best result is given by
RMM, since RMM clusters trajectories to make the similar
movement patterns clearer.

We combine the basic models with linear regression
and obtain four composite models PG (PMMþGMM), PR
(PMMþRMM), GR (GMMþRMM) and PGR (PMMþ
GMMþRMM). Obviously, the composite models enjoy
higher accuracy than the basic models. Furthermore, PR
performs better than PG and GR, which indicates that the
next locations are mainly affected by both the individual
patterns and the aggregated patterns of similar trajec-
tories. When we combine GMM and PR, the accuracy only
has a slight improvement, as the collective patterns are
similar to the patterns mined by RMM. The optimal
prediction accuracy is obtained at k¼10 by PGR. Since
s of the Dataset.
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the average number of candidate next locations is 43
(meaning there are 43 possibilities), the accuracy of
90.3% is surprisingly good.

We then set k at 10, and evaluate the coverage, one-
error and average precision of the proposed models, as
shown in Fig. 7. We observe that the coverages of all
models are approximately equal to 1. GMM and RMM
obtain such good performance as they train the model
with the global trajectories, while PMM obtains high
coverage as the training of the zero-order Markov model.
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In addition, we observe that PR and PGR are generally
superior to the other models, confirming the effectiveness
of the integration of models.

6.5. Effect of the time factor

We finally consider the time factor in the optimal model
PGR and evaluate the performances by predicting top 10 next
locations. Fig. 8(a) shows the effect of bin size on PGR-TB
(which stands for the integration of PMM, GMM and RMM with
Time Binning). The performance of PGR-TB starts to deteriorate
when the bin size becomes less than 8, because when the bins
get smaller, the trajectories in them become too sparse to
generate a meaningful collective pattern. Fig. 8(b) shows the
effect of the number of clusters on PGR-DC (which stands for
the integration of PMM, GMM and RMM with Distribution
Clustering). When it is set to 1, the model is the same as PGR.
The one-error rate declines and the average precision improves
as the number increases from 1 to 5. When it continues to
increase, the result starts to get worse. This is because having
too many or too few clusters with either hurts the cohesive-
ness or the separation of the clusters. Fig. 8(c) shows the effect
of different similarity thresholds on PGR-HC (which stands for
the integration of PMM, GMM and RMM with Hierarchical
Clustering). The one-error rate declines and average precision
improves when the threshold increases to 0.9.

We evaluate the performance of PGR, PGR-TB, PGR-DC
and PGR-HC with the optimal values of those parameters.
As shown in Fig. 8(d), PGR-TB, PGR-DC and PGR-HC perform
better than PGR, which is because we can get a more
refined model by adding the time factor and generate
more accurate predictions. PGR-DC performs best, validat-
ing the effectiveness of the method of distribution cluster-
ing. It will be used in the following comparison with
alternative methods.

6.6. Comparison with existing methods

We compare the proposed PGR-DC with the state-of-
the-art approaches VMM [13] and WhereNext [15]. VMM
uses individual trajectories to predict the next locations,
whereas WhereNext uses all available trajectories to dis-
cover collective patterns. In this experiment, considering
the characteristic of VMM andWhereNext, we predict top-1
next location. So the one-error and average precision are
same as top-1 accuracy, and wewill show the performance
comparison of VMM, WhereNext and PGR-DC in terms of
prediction coverage and top-1 accuracy.

We choose the optimal parameters for VMM and Where-
Next after many experiments. The parameters of VMM are set
as follows: memory length N¼2, σ¼0.3, and Nmin ¼ 1. For
WhereNext, the support for constructing T-pattern tree is set
as 20. For the PGR-DC, the setting is that the order N¼2, the
distance threshold δ in RMM is 6 and the number of clusters
in Distribution Clustering is set at 5.

As shown in Fig. 9(a), VMM has the least prediction
coverage, because it only uses individual trajectories and
the location sequence of a given trajectory has to match
the PST completely in VMM, which becomes less frequent
when the sampling locations are sparse. In contrast, both
WhereNext and PGR-DC obtain a prediction coverage of 1.0
as the global information is used. Moreover, VMM also has
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a lower accuracy, as plenty of historical trajectories are
pruned away in the process of building PSTs. Without a
matching PST, VMM cannot make prediction, leading to
poor overall accuracy. WhereNext makes prediction based
on collective patterns, and thus performs better than VMM.
PGR-DC performs the best, which can be attributed to the
combination of individual and collective patterns as well
as the consideration of time factor. Fig. 9(b) shows that the
accuracy of each model improves as the size of training set
increases. It is worth mentioning that PGR-DC performs
better than VMM and WhereNext in terms of accuracy for
any training set size.

7. Conclusion

In this paper, we have proposed three basic models to
predict the next sampling location that a moving object
will arrive at. GMM discovers global behaviors with all
available trajectories; PMM models the individual patterns
of each moving object using its own past trajectories; RMM
clusters the trajectories to model the regional/local move-
ment patterns. The three models are integrated with linear
regression in different ways. The time factor is also added
to the models, and we propose three methods to partition
the whole time span into periods of finer granularities,
including Time Binning, Distribution Clustering and Hier-
archical Clustering. New time-aware models are developed
accordingly. We have evaluated the proposed models
using a real vehicle passage record dataset, and the
experiments show that the proposed predictor signifi-
cantly outperforms the state-of-the-art methods (VMM
and WhereNext).
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