IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.5, MAY 2015

1383

Scalable Distributed Processing of K Nearest
Neighbor Queries over Moving Objects

Zigiang Yu, Yang Liu, Member, IEEE, Xiaohui Yu, Member, IEEE, and Ken Q. Pu, Member, IEEE

Abstract—Central to many applications involving moving objects is the task of processing k-nearest neighbor (k-NN) queries. Most of
the existing approaches to this problem are designed for the centralized setting where query processing takes place on a single server;
it is difficult, if not impossible, for them to scale to a distributed setting to handle the vast volume of data and concurrent queries that are
increasingly common in those applications. To address this problem, we propose a suite of solutions that can support scalable
distributed processing of k-NN queries. We first present a new index structure called Dynamic Strip Index (DSI), which can better adapt
to different data distributions than exiting grid indexes. Moreover, it can be naturally distributed across the cluster, therefore lending
itself well to distributed processing. We further propose a distributed k-NN search (DKNN) algorithm based on DSI. DKNN avoids
having an uncertain number of potentially expensive iterations, and is thus more efficient and more predictable than existing
approaches. DSI and DKNN are implemented on Apache S4, an open-source platform for distributed stream processing. We perform
extensive experiments to study the characteristics of DSI and DKNN, and compare them with three baseline methods. Experimental
results show that our proposal scales well and significantly outperforms the alternative methods.

Index Terms—k nearest neighbor query, distributed query processing, moving objects

1 INTRODUCTION

PROCESSING k nearest neighbor (k-NN) queries over mov-
ing objects is a fundamental operation in many loca-
tion-based applications. For example, a location-based
social networking service may help a user find k other users
that are closest to him/her. In location-based advertising, a
store may want to broadcast promotion messages only to
the potential customers that are currently closest to the
store. Such needs can be formulated as k-NN queries, where
each user or customer can be considered as a moving object.

Consider a set of NV, moving objects in a two dimen-
sional region of interest. An object 0 can be represented
by a quadruple {id,, t, (0.,0,), (0;,0;/)}, where id, is the
identifier of the object, and ¢ is the current time; (o,, 0,)
and (0}, 0,) represent the current and previous positions
of o respectively. Without making any assumptions on
the motion of objects, we adopt the snapshot semantics in
this study. That is, the answer to query ¢ at time ¢ is only
valid for the past snapshot of the objects and ¢ at time
t — At, where At is the delay due to query processing. In
order to provide answers as fast as possible (i.e., reducing
At), we focus on main-memory-based solutions.
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A major challenge for processing k-NN queries lies in the
sheer volume of data and concurrent queries. A recent
study [1] estimates that the global pool of generated per-
sonal location data was at least 1PB in 2009 and that it is
growing by about 20 percent a year. The abundance of such
data gives rise to a variety of location-based applications
and services, which must be able to effectively handle a
large quantity of user-initiated concurrent queries (many of
which are £-NN queries) in addition to managing the vast
volume of data. For example, the number of users of
WeChat, a free social networking app installed on smart
phones, has exceeded 300 million as of January 2013 [2].
One of its functionalities is to allow the users to locate their
nearest fellow users upon request. In the new era of big
data, it is imperative to find solutions that can effectively
support the processing of many concurrent £-NN queries
over large volumes of moving objects data.

Most existing solutions to the problem of A-NN over
moving objects [3], [4], [5] are not designed to handle the
volume of data in the Internet scale, because they implicitly
assume a centralized setting, where the maintenance of the
object locations and query processing both take place at a
central place (i.e., a single server). While this is a reasonable
assumption for a small set of objects and a light update/
query workload, such approaches are no longer viable
when the volume of data and/or queries exceeds the capac-
ity of a single server. It is therefore necessary to develop dis-
tributed solutions that are able to scale as demands increase.

To study the distributed processing of k&-NN queries, we
assume a general model of a distributed cluster that consists
of a single master and multiple slaves. This model has been
used in many well-known systems including recently pro-
posed MapReduce [6] and Google File System [7]. Under
this model, the following important factors must be consid-
ered when designing methods to process k&-NN queries.
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1) Communication cost. Employing multiple servers to
process k-NN queries in parallel may incur excessive data
communication, which is very expensive compared with
CPU cost. For example, in a typical setting of two dual-core
2.4 GHz servers with Gigabit Ethernet interconnect, the
time of transmitting the information of a set of objects
between two nodes is two orders of magnitude greater than
that of sorting the same set of objects (based on their distan-
ces to a certain point) in a single server. Thus, reducing the
intra-cluster network communication becomes a critical
aspect of algorithmic design.

2) Maintenance cost. The movements of the large volume
of objects may lead to frequent updates to the indexes used
for processing k-NN queries. Therefore, the index structures
must be designed in such a way that query processing can
be supported efficiently and at the same time updates can
be handled quickly.

3) Load balancing. In reality, the moving objects and
queries are usually non-uniformly distributed. It is therefore
important to study how to store the objects and distribute
the query load to different nodes in the cluster to achieve
good load balancing.

Considering the aforementioned factors, we argue that
neither tree-based indexes (such as R-tree[8], R*-tree[9],
TPR*-tree[10] and Quad-tree[11]) nor grid indexes [3], [4],
[12], the two main types of indexes utilized in the existing
approaches to k-NN search, can be directly adopted in the
distributed setting. Tree-based indexes with complex struc-
tures are expensive to maintain in the presence of frequent
updates [13], [14], especially when deployed on a distrib-
uted cluster. On the other hand, grid-based approaches usu-
ally involve iteratively enlarging a search region to identify
the set of cells in the grid that are guaranteed to include
k-NNs. In general, the number of such iterations is uncer-
tain. More importantly, in a distributed setting, such itera-
tions can lead to excessive communication between the
nodes in the cluster and thus degrade the performance of
query processing. Therefore, there is an urgent need to
develop an index structure that is suitable for being
deployed in the distributed setting and performs well in
terms of maintenance and communication cost.

To address this challenge, we propose a distributed strip
index (DSI) that provides the basis for efficient distributed
k-NN search. DSI partitions (without overlap) the region of
interest along « and y dimensions respectively, resulting in
a set of vertical and horizontal rectangular-shaped strips.
The objects within each strip are indexed separately. More-
over, each strip of DSI has a maximum capacity and a mini-
mum occupancy, both of which are configurable thresholds
used to control the number of objects in each strip. As
objects move, the strips can be split (or merged) when the
number of objects in the strips goes beyond (or below) the
maximum capacity (or the minimum occupancy).

Based on DSI, we further propose a distributed filter-
and-refine algorithm, DKNN, that can support k-NN query
processing with only two iterations. For a given query g,
DKNN algorithm can use the DSI index to directly locate
the candidate strips that are guaranteed to contain % neigh-
bors of ¢q. The algorithm then chooses a set of objects that
are closest to ¢ from each candidate strip and identify the
kth nearest neighbor in these selected objects. Using this

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.5, MAY 2015

neighbor as a reference point, it can determine a search
region and compute the final k-NNs by calculating the dis-
tances between ¢ and the objects in this region.

The DSI structure and the DKNN algorithm strike a good
balance between the cost of index maintenance and that of
query processing. By having a less complex index structure
than the tree-based approaches, DKNN supports more effi-
cient updates. Meanwhile, compared with the grid-based
approaches that require an uncertain number of iterations
in query processing, the DKNN algorithm is able to identify
the final search space for each query with only two itera-
tions, leading to great savings in communication cost as
well as more predictable performance. Moreover, the DSI
index is more flexible than the grid index. The strips can be
dynamically merged or split as objects move to ensure that
the number of objects in each strip is always within a given
range. This, combined with the design of partitioning the
region into strips along both vertical and horizontal direc-
tions, reduces the impact of data skewness on query proc-
essing. By keeping the number of objects in each strip
within a given threshold, DSI distributes the objects more or
less evenly to the strips, making it amenable to load balanc-
ing in the distributed setting.

We implement DSI and DKNN on top of Apache S4 [15],
an open-source distributed stream processing platform, on
which we conducted extensive experiments to evaluate the
performance of our solutions.

Our main contributions can be summarized as follows.

e We propose DSI, a distributed strip index, for sup-
porting k-NN search over moving objects in a dis-
tributed setting.

e We develop DKNN, a distributed A-NN search
algorithm, which utilizes DSI to perform k-NN query
processing. With only two iterations, this algorithm
has a superior and more predictable performance
than existing grid-based approaches.

e We implemented DSI and DKNN on top of S4, and
conducted extensive experiments to evaluate the
performance of DSI and DKNN, which confirm its
superiority over existing approaches.

The rest of the paper is organized as follows. Section 2
provides an overview of related work. Section 3 analyses
the problems of existing indexes when they are adopted in
a distributed cluster. Section 4 introduces the DSI index
structure. Section 5 presents the DKNN algorithm. Section 6
discusses the implementation of DSI and DKNN on
Apache 54. Experimental results are presented in Section 7.
Section 8 concludes this paper.

2 RELATED WORK

The problem of k-NN query processing over moving objects
has attracted considerable attentions in recent years. In this
section, we present a brief overview of the literature. The
problems with the existing approaches will be discussed in
the next section.

2.1 Tree-Based Approaches

The R-tree and its variants are widely used to process spatial
queries. The R-tree has been adopted extensively (e.g., [16],
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[17], [18]) to answer nearest neighbor queries. Raptopoulou
et al. [19], Seidl and Kriegel [20], and Chaudhuri et al. [21]
use the TPR-tree to index moving objects and propose filter-
and-refine algorithms to find the k-NNs. Gedik et al. [22]
describe a motion-adaptive indexing scheme based on the R-
tree index to decrease the cost of update in processing k-NN
queries. Yu et al. [23] first partition the spatial data and
define a reference point in each partition, and then index the
distance of each object to the reference point employing the
Bt-tree structure to support k-NN queries.

2.2 Grid-Based Approaches

The grid index is widely used to process spatial queries. It
partitions the region of interest into equal-sized cells, and
indexes objects and/or queries (in the case of continuous
query answering) in each cell respectively [3], [4], [5], [24],
[25], [26], [27]. Zheng et al. propose a grid-partition index
for NN search in a wireless broadcast environment [4]. The
Broadcast Grid Index (BGI) method proposed by [5] is suit-
able for both snapshot and continuous queries in a wireless
broadcast environment. Sidlauskas et al. [26] propose
PGrid, a main-memory index consisting of a grid index and
a hash table to concurrently deal with updates and range
queries. Wang and Zimmermann [27] present a dual-index,
which utilizes an on-disk R-tree to store the network con-
nectivities and an in-memory grid structure to maintain
moving object position updates. Most of these approaches
are designed for the centralized setting, and cannot be
directly deployed on a distributed cluster, which will be dis-
cussed in the Section 3.

2.3 Scalable Incremental Approaches

The problem of scalable incremental processing of continu-
ous queries has been studied in the literature [24], [25], [28],
[29]. Mokbel et al. [24], Wu et al. [25] and Mokbel and Aref
[28] almost employ a shared execution paradigm on proc-
essing spatial queries to achieve better scalability. Nehme
and Rudensteiner [29] group moving objects and queries
based on common spatial-temporal properties to facilitate
the scalability. These proposals reduce resource usage
through sharing, but do not consider how to scale to multi-
ple servers. Moreover, they mainly focus on the incremental
processing of queries, but do not consider how to accommo-
date newly arrived queries.

2.4 Distributed Processing of Spatial Queries

A number of existing works [30], [31], [32], [33] have
explored distributed processing of spatial queries. All these
proposals focus on utilizing the computational power at the
mobile devices to obtain savings in terms of server load and
communication cost. In the works [30], [31], the moving
objects play an important role in processing queries. Wu
et al. [32] propose a distributed strategy for k-NN search, in
which the server and mobile devices collaborate to maintain
the £-NNs of a moving query point. Bamba et al. [33] pro-
cesses spatial alarms based on the safe region technique,
which enables resource-optimal distribution of partial tasks
from the server to the mobile clients. These approaches all
require the moving devices to have considerable computa-
tional capabilities, which restricts their applicability.
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Additionally, the unreliability of moving devices could seri-
ously affect the performance of these approaches. In con-
trast, our approach does not assume any computation
capabilities at the mobile objects other than reporting their
positions (e.g., the mobile object can be a simple GPS track-
ing device), and thus has wider applicability.

Some recent works [14], [34], [35] use MapReduce to pro-
cess k-NN joins. Zhang et al. [34] process parallel £-NN joins
with two phases of map-reduce operations based on the R-
tree index. Lu et al. [14] partition the sets of objects and
queries based on the Voronoi diagram in the first Map func-
tion, and then find k-NNs of each query by the second Map
and Reduce operators. Eldawy [35] propose a framework
called SpatialHadoop to support three kinds of spatial
queries including k-NN queries. However, such methods
are not suitable for real-time query processing as MapRe-
duce is a batch-oriented framework [15], unless non-trivial
modifications are made.

3 PROBLEMS WITH EXISTING APPROACHES

In this section, we analyze the existing tree-based and grid-
based approaches and explain why they are not suitable for
the distributed setting.

3.1 Problems with Tree-Based Approaches

When adopted in a master-slaves setting, the existing tree-
based approaches suffer from high maintenance cost. The
huge volumes of moving objects may incur intensive
updates to the indexes (such as R-tree, k-d tree, B*t-tree,
TPR-tree [10]), which are costly as they often involve fre-
quent split and merge of nodes. This issue has been noted
by a number of prior studies [13], [14]. In the distributed set-
ting, the problem becomes even more severe as the nodes
are likely to be distributed to different servers, leading to
frequent interactions between servers.

3.2 Problems with MapReduce-Based Approaches
While the MapReduce-based approach proposed in [14]
provides a scalable solution to the k&-NN search problem, it
cannot be directly applied to the problem of k-NN search
over moving objects, as it suffers from large preprocessing
and update costs. For one, this approach needs to select
multiple pivots, and all objects and queries need to be parti-
tioned beforehand based on the Voronoi diagram, which is
an expensive operation because it requires the calculation of
the pair-wise distances between each object and each pivot.
For another, the partitioning has to be constantly updated
as the objects move, which incurs inhibitive costs when the
number of objects is large.

SpatialHadoop [35], a MapReduce framework that can
support k-NN spatial queries, suffers from some critical
problems when applied to the processing of continuous
k-NN queries: 1) Since it is not specifically designed for
moving objects, SpatialHadoop does not consider the main-
tenance cost explicitly, and the index may not work well in
the presence of frequent position updates. For our problem,
the maintenance cost is a major concern as the objects are
constantly moving; 2) SpatialHadoop is not well suited
to the continuous processing of queries over moving
objects, because the MapReduce paradigm employed by
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SpatialHadoop is a batching-oriented processing paradigm
and is not good at handling the incremental changes to the
query results caused by numerous small updates.

3.3 Problems with Grid-Based Approaches

Most existing grid-based approaches to k-NN search [3],
[12] iteratively enlarge the search region to identify the
k-NNs. For example, given a new query g, the YPK-CNN
algorithm [3] initially locates a rectangle R, centered at the
cell covering g; it then iteratively enlarges Ry until it enclo-
ses at least k objects. Let p’ be the farthest object to query ¢
in Ry. The circle C, centered at g with radius || ¢ —p || is
guaranteed to contain the k-NNs of g, where || - || is the
Euclidean norm. The algorithms then computes the k-NNs
using the objects in the cells intersected with C,. The other
existing grid-based approaches are based on similar ideas.

When adopted in a master-slaves setting, such iterative
procedures may cause severe performance degradation.
Consider a reasonable adaptation that lets the master main-
tain the partitioning information (e.g., cell boundaries) and
the slaves maintain the indexes for individual cells. In this
case, each iteration requires one round of communication
between the master and the slaves holding the relevant cells
(i.e., transmitting the distances between the query and the
objects in each relevant cell), which is an expensive opera-
tion compared with other costs (e.g., the CPU cost of calcu-
lating distances). To make things worse, there is no
guarantee on the number of iterations required, making the
query performance unpredictable.

The main reason causing the uncertainty in the number
of iterations required is that the master cannot single-hand-
edly determine which cells should be involved in process-
ing a given query. To solve this problem, one might attempt
to augment the information kept in the master so that it can
directly distribute the queries to the subset of slaves
involved without iterations. The extreme solution would be
to let the master store the locations of all objects; however,
the master will then become a bottleneck and it defeats the
whole purpose of distributed computation.

A “milder” solution would be to make the master
aware of some aggregate information about each cell. But
it is also problematic. To illustrate this, we use the num-
ber of objects in each cell, which is probably the most
lightweight of such aggregate information, and consider
the following two cases.

Case 1: Each slave keeps the master updated about the
numbers of objects contained in each cell maintained by
that slave. With the objects frequently moving, the update
information would cause excessive communication cost.

Case 2: The master maintains an index on the number
of objects in each cell. However, updating this index also
involves considerable cost as the frequent movement of
the objects may result in constant changes in the number
of objects in each cell. This task puts a heavy burden on
the master, which must also take care of distributing the
queries to cells, making it prone to become a perfor-
mance bottleneck.

In summary, the existing grid-based approaches to k&-NN
query processing cannot be applied to the distributed set-
ting without non-trivial extensions.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.5, MAY 2015

b, ub,
Y \ 7 ¥ I;= {02,03,05,} b,
S |S: S; |Sy S T
00 °0; '
®0y T e 0 s ub
®0, °0s Sz ®0; 003 ! o
ogq 00 S; oq 00s
®0¢ 00y 005 00
00 00,
2
X
I ={o006} X

(a) Vertical strips (b) Horizontal strips

Fig. 1. The elements of the DSI index structure.

4 DyNAmiC STRIP INDEX (DSI)

We have analyzed the pitfalls of tree-based indexes and
grid-based indexes when applied to a distributed setting.
We argue that a distributed index for k-NN search over
moving objects must have the following properties: 1)
The index can be easily partitioned and distributed to dif-
ferent servers in a cluster; 2) It can be updated efficiently
as objects move continuously; 3) It can support efficient
k-NN search algorithms that involve few iterations. To
meet these requirements, we propose the Dynamic Strip
Index, a main-memory index structure to support distrib-
uted k-NN search.

4.1 Structure of DSI

In building DSI, the region of interest R in an Euclidean
space (normalized to the [0,1) square) is partitioned into
non-overlapping strips. The partition is done separately
along both the x and y axes (See Fig. 1). Therefore the result
of the partition is two sets of strips: vertical strips and hori-
zontal strips. In what follows, our description will be based
on vertical strips; the characteristics of the horizontal strips
are exactly the same except for the orientation.

A vertical strip S; (1 <1 < N,, where N, is the number of
vertical strips) in the index takes the form of {id;, Ib;, ub;,
I';}, where id; is the unique identifier of .S;, lb; and ub; are
the lower and upper boundaries of the strip respectively,
and I'; is an unordered list of objects that fall in S;. That is,
Vo € I';,Ib; < 0, < ub;. The strips are non-overlapping and
every object must fall in one strip. Thatis, 'y U---UT', = O,
where O is the set of all indexed objects, and I'; N T'; = ¢ for
any pair of strips S; and S; (i # j). Note that DSI is not a
space partitioning index but a data partitioning index,
which means that the boundaries of a strip are not simply
equally spaced; rather, they are determined dependent on
the data.

We require every strip to contain at least ¢ and at most 6
objects, i.e., £ < |I';| < 6 for all strips .S;. The strips are split
or merged as needed to ensure this condition is met when
object locations are updated. We call ¢ and 6 the minimum
occupancy and maximum capacity of a strip respectively. Typ-
ically £ << 6. In the rare case where the total number of
objects N, is less than &, the minimum occupancy require-
ment cannot be satisfied. This is handled as a special case in
query processing. To simplify our discussion, we assume
without loss of generality that at any time the total number
of objects N,, > &.
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Fig. 2. The split of S;.

We use a list Ly to store information related to the verti-
cal index, where each element corresponds to a strip. All
elements in this list are sorted in ascending order according
to their boundaries.

4.2 Insertion

An object is inserted into vertical strips based on its  coor-
dinate (y coordinate for the horizontal strips), i.e., an object
o is inserted into strip S; if o falls into its boundaries
(lb; < 0, < ub;). The insertion is done by appending its id,
into the object list I';. Initially, there is only one strip cover-
ing the whole region of interest.

When an object o is inserted into a strip S;, S; will be split
if the number of objects in it exceeds the maximum capacity,
ie., [I';] > 6. A split method that can adapt to the data distri-
bution is to split S; and generate two new ones that hold
approximately the same number of objects. In this method,
we first find an object o such that o, is the median of the z
coordinates of all objects in strip .5;, which implies that there
are approximately |I';|/2 objects whose = coordinates are
less than or equal to o,. This can be accomplished in O(|I’;|)
time using the binning algorithm. Next, we set the line
z = o, as the split-line, according to which S; can be split
into two new strips .5;; (to the left) and Sjs (to the right).

Once S; is split, the attributes of new strips need to be
determined. As shown in Fig. 2, the lower boundary of Sj;
is the same as that of .S;, and its upper boundary is the split-
line. For Sy, it uses the split-line as the lower boundary, and
the upper boundary of S; as its upper boundary. The id of
S; is inherited by S;1, and a new id is assigned to Sjs.

4.3 Deletion

When an object disappears or moves out of a strip, it has to
be deleted from the strip that currently holds it. We assume
that an object o about to disappear will notify this event to
the server by presenting itself as {id,t,(—1,—-1),(0},0,)},
where the coordinates (—1,—1) signify that the object will
disappear from the region. To delete an object o, we need to
determine which strip current holds it, which can be done
using its previous position (o), ;).

If after deleting an object, the strip S; has less than &
objects (i.e., S; has an underflow), it will be merged with an
adjacent strip. If S; has a strip to its left and another to its
right, then S; is to be merged with the one with fewer
objects. Ties are broken at random. Let this adjacent strip be
S;. S; will be deleted from the index, and the merged strip
will inherit the id of the S}, and its lower and upper bound-
aries are set to be the lower and upper boundaries of S; and

1387

S;, respectively. The object lists I'; and I'; are merged. In
case |I';| + |I';| > 0, the number of objects in the resulting
strip exceeds the threshold 6, triggering another split. How-
ever, since in general £ << 6, such situations rarely happen
and their impact on the overall performance is minimal.

4.4 Analysis of the DSI Structure
4.4.1 Time Cost of Maintaining DSI

Theorem 1. Let Np and N be the number of objects and strips
respectively, and assume that the objects are uniformly distrib-

N
uted. Then, T;nsert ~ Qg IOg N;, T‘delefe X a log ]\/v's + ag Aff:,
Topiit = a30 + aglogNg and Tperge = as€ + ag log N, where
Tinserts Tacieter Tspiit, and Thyerge are the time costs of the insert,

delete, split, and merge operations respectively, and
a;(i =1,...,6) are constants.
Proof. From the definitions of # and & we have

% <N, < % Inserting an object o involves finding the
right strip and appending it to the end of its object list;
therefore, Tinsert = aglogNs. To delete an object from a
strip, we need to first identify the strip and then remove

the object from its object list. The costs of these two oper-

ations are a; log Ny and anX—’: respectively. For a split
operation, we need to first identify the object whose posi-
tion is the median of all the object positions in the strip,
which takes linear time with respect to the number of
objects: aszf. On top of this, we need to insert this new
strip into the index, which takes time aslog/V,. Thus,
Topiir = a30 + a4 log N,. For a merge operation, we need
to append the object list of the old strip to that of the new
strip, which takes time proportional to the number of
objects in the old strip, i.e., a5, and we also need to
remove it from Ly (or Ly), which takes time ag log N,. O

4.4.2 Advantages of DSI

DSI forms the basis of our approach to distributed k-NN
processing, and has the following advantages.

e  Parallelizable. DSI's partitioning strategy makes it
easy to be deployed in a distributed system: individ-
ual strips can be maintained at different nodes in a
cluster. The strips do not overlap, making it possible
to perform query processing in parallel.

e  Scalable. Each server can handle a certain number of
strips of DSI. Since the number of objects in each
strip falls into a given range, the capacity of DSI is
directly proportional to the number of servers, lend-
ing it well to large-scale data processing.

e  Skew-resistant. The use of both a vertical and a hori-
zontal strip gives the index the ability to handle data
skew along = and y directions. As an example, con-
sider cases where all objects have very close y coordi-
nates but are more or less uniformly distributed
along the z axis. In this scenario, the horizontal index
does not provide an effective partitioning of the data.
Instead, the vertical index would provide a nice
partitioning.

o Light-weight. The index has a small storage overhead.
Besides a list of objects, we only need to store the id
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TABLE 1
Summary of Notations
Notation =~ Meaning
v the set of vertical candidate strips
cl the set of horizontal candidate strips
cr the set of all candidate strips
T the set of supporting objects
F the strips that intersect with C;

and two boundaries for each strip, this is a nice fea-
ture for an in-memory index.

e Efficient. Having a minimum occupancy for each
strip makes it possible to directly determine the
strips that can contain at least k£ neighbors of a given
query, without invoking excessive iterations. This
advantage will become more clear in next section.

5 A DISTRIBUTED K-NN SEARCH ALGORITHM

We propose a distributed k-NN search algorithm (DKNN
algorithm) that uses DSI for processing k-NN queries. The
notions used in this algorithm are summarized in Table 1.

5.1 The DKNN Algorithm

The DKNN algorithm follows a filter-and-refine paradigm.
For a given k-NN query ¢, the algorithm first prunes the
search space by identifying the strips that are guaranteed to
contain at least k£ neighbors of ¢. It then examines the objects
contained in this set of strips and identify the kth nearest
neighbor found so far. Using the position of this neighbor as
a reference point, we continue to identify the strips that can
potentially contain objects that are closer to ¢ than this refer-
ence point, and obtain the final result. The algorithm is pre-
sented in Algorithm 1. Now we present the details of the
algorithm. Without loss of generality, we assume that
N, > k where N, is the number of objects.

5.1.1 Calculating Candidate Strips

For a given query ¢, DKNN can directly identify the set of
strips that are guaranteed to contain k neighbors of ¢, which
we call the candidate strips. Here, we take determining ver-
tical candidate strips for instance.

Step 1: Calculating the number of candidate strips. Assume
that the number of candidate strips is c. The idea is that
from each strip we select x (1 < x < &) objects that have the
shortest Euclidean distances to g, such that x * ¢ > k, where
x can be specified by users. This way, we have found at least
k neighbors for ¢. Of course, these objects may not be the
final £-NNs, but they can help us prune the search space
and serve as the starting points for computing the final
k-NNs. Hence, the number of candidate strips c is set to be
[k/x]. In the rare case where ¢ > |Ly|, cis set to |Ly|, i.e., all
vertical strips will be considered as candidate strips.

One might wonder why we not choose to include all
objects in a candidate strip in this step but to include only x
objects from each strip. The reason is that by picking only x
objects from each strip, we can already guarantee that we
have found k neighbors of ¢. Choosing only the closest x
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Fig. 3. Determining the set of candidate strips.

objects to ¢ from each candidate strip helps narrow down
the searching space as small as possible for the next step.

Step 2: Identifying the set of candidate strips. In this step, we
identify the strips that are considered to be “closest” to ¢
based on their boundaries. We use d. and d! to denote the
distances from g to the lower and upper boundaries of .5;
respectively. For the example shown in Fig. 3, the line [; is
perpendicular to lb; of S; and the distance from g to b, is db.
The distance between S; and ¢ is defined to be
dist(S;, q) = max{d.,d"}.

K]

Algorithm 1. DKNN Algorithm

Input:
The query q (g,, g,); vertical strips Ly; horizontal strips
Lp; the parameter x
Output::
k nearest neighbors of g.
1: Set both the number of vertical and horizontal candidate
strips to ¢;
: CV=DCS(q,, qy, Lv, ©);
: Compute C* in the same way;
Setc! =" ucH;
cife < |CT| < 2c then
Find x supporting objects in every candidate strip,
and put them into Y;
7:  Compute the distances from the supporting objects in
Ttog
8:  Let o be the k-th nearest neighbor of
q@3S;eCl st.0eT))
9:  Setr, = distance(o, ¢);
10:  Determine circle C, centered at ¢ with radius r,;
11:  Let F = {S|S € Ly U Ly, S intersects C,};
12:  Find A-NNs from the objects covered by strips in F;
13: end if
14: if 0 < |C"| < c then
15:  Search all strips in Ly or Ly to obtain £-NNs;
16: end if
17: Return k-NNs;

If query ¢ is located in S;, then S; is automatically a
candidate strip and inserted into C'. Next, we decide
whether its neighboring strips are candidate strips. Start-
ing from the immediately adjacent strips, we expand the
scope of search, adding to C" the strip j that has the next
least dist(S},q). This procedure terminates when |CV| = ¢
or all the strips have been processed. Fig. 3 gives an
example, in which S3 is determined to be a candidate
strip first. Then by comparing d, with d%, we decide S, to
be the next candidate strip. Next, we find S; also a
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Fig. 4. An example of finding three-NN using DKNN.

candidate strip. The algorithm of determining the vertical
candidate strips is shown in Algorithm 2. The horizontal
candidate strips can be computed in the same way.

Algorithm 2. DCS Algorithm
Input:
The query q (g., g,); Lv; c.
Output::
vertical candidate strips V.
=9
: Sort Ly according to the low boundaries of strips;
. if strip S; satisfies Ib; < g, < ub; then
Insert S; into the set C";
C"=findCS(i — 1, + 1);
end if
if There exist two strips S;, Si;1, which satisfy
Siub < Qe < Sprl.lb then
8 CV=findCSGi —1,i+1);

A o e

9: else
10: if VS; 0<i< 77,), S;.lb > qr then
11: Insert the first ¢ elements of Ly into C";
12:  else
13: VS; (0 <i<n) S;ub< q,
14: Insert the last ¢ elements of Ly into C";
15:  endif
16: end if

17: return C¥;

This procedure describes the details of DCS algorithm
and it can be implemented on the master-slaves setting as
shown in Fig. 5a. The DSI index is maintained in a distrib-
uted fashion by multiple slaves, where each slave is respon-
sible for a set of strips. The master is the entry point for the
queries and object updates. It maintains Ly and Ly, the lists
of strip ids and their boundaries. When the master receives
a query g, it can immediately determine the candidate strips
by running the DCS algorithm, and then send g to the
shaded slaves that hold the candidate strips.

5.1.2 Determining the Final Search Region

After the candidate strips are determined, we form the set of
supporting objects T by selecting from each candidate strip x
objects that are closest to g. We then identify the supporting
object 0 € T that is the kth closest to ¢. Let the distance
between o and ¢ be r,. The circle with (g,,g,) as the center
and 7, as the radius is thus guaranteed to cover the A-NNs of
g. Next, we identify the set of strips F (including both verti-
cal and horizontal strips) that intersect with this circle, and
search for Fig. 4 shows an example, where the query g is a
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Fig. 5. Processing queries on the master-salves model.

three-NN query and y = 1. We find three closest supporting
objects (03, 02, 04) in its candidate strips {5, 53,54} and set
the radius r, to be the distance between q and os. The circle
C, is guaranteed to contain the three-NNs of ¢. After scan-
ning all objects that are located within C, (by examining all
strips intersecting C,), we find that the three-NNs are o, 03,
and oy. r the final £.-NNs within the objects in F. Since some
of the strips in F are also in ' = " UC” and therefore the
distances between the objects in C’ and g are already com-
puted, we do not need to repeat the computation. We only
have to compute the distances between ¢ and the objects in
the set 7 - C*. The set of k-NNs can be obtained by maintain-
ing a priority queue of objects based on their distances to q.
Note that the reason of maintaining two strip lists (both
horizontal and vertical) instead of one becomes even more
clear with the description of DKNN. This strategy is able to
better handle the skewness in data distribution. Very often,
it can help to determine a smaller circle C, than what a sin-
gle index can do. Fig. 6 shows an example. We assume g is a
three-NN query and x =1. If there are only horizontal
strips, we have to select {01, 02,04} to determine the circle
C) as the region for the final k-NN search. However, if

Vertical Candidate Strips

y —_—
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o0z @
02 N 8=
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i 1 Q
&g :
2 1 q 3
\ N BNN) ) g
v ~l__ 7 O
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Fig. 6. Benefits of having both vertical and horizontal indexes.
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vertical strips exist, we can determine the circle Cy accord-
ing to objects {01, 02, 03}. Cs is obvious smaller than C, and
can therefore lead to less strips having to be examined.

Fig. 5b shows this step running in the master-slaves set-
ting. The shaded slaves that maintain the candidate strips
choose x supporting objects of query g from each of their
respective candidate strips, and send these supporting
objects to the slave A. This slave can then compute the circle
C, and identify the final set of strips F intersected by C,
that are guaranteed to contain the £-NNss. It sends C, to the
slaves holding the strips in F. Finally, k£ nearest neighbors
are chosen from each strip in F (or all the objects in the strip
if it contains less than k objects) and sent to slave B, where
the final £-NNs are computed.

5.2 Analysis of the DKNN Algorithm
5.2.1 The Correctness of DKNN

Theorem 2. For a given query g, the algorithm is guaranteed to
find its k nearest neighbors, if every strip contains at least £
objects.

Proof. Assume that x (x < &) objects are selected from each
candidate strip as supporting objects. If we choose [k/ x]
vertical candidate strips, then ¢¥ must contain
[k/x] - x > k neighbors of ¢. Since the center of circle C,
is the point (g,, ¢,) and the radius is the distance from the
k-th closest supporting object to g, C, contains at least k
neighbors. We obtain the final k&-NNs from the objects
that are contained in the strips intersecting C,. Assume
that there exists an object o € S; where S; does not inter-
sect Cj, and o€ k-NN of ¢ then we must have
dist(o,q) < ry. Contradiction. Therefore, the DKNN
algorithm is correct. ]

5.2.2 Time Cost of the DKNN Algorithm

Theorem 3. Let N, and N, be the number of objects and strips
respectively. For a given k-NN query q, the query processing
time (barring the communication cost) by DKNN is
Tpery =Ty +T.+T), where Ty~ aplogNs+ai[k/x],
T. ~ as[k/x] - Np/Ns - x + asklogk,

Ty = ayNy+\/k/(wNy)logk, and a;(i = 1,...,4) are constants.

Proof. Let T; be the time of determining the candidate
strips, 7. be the time of obtaining the circle C,, and T;
be the time of searching k-NNs from F (the set of
strips covered by C,). The time of finding the strip
covering g is aplogN,, and the time of finding the
remaining candidate strips is ai[k/x]; therefore,
Ty =~ aglog Ny + a1 [k/x]. To compute the circle C;, we
need time as[k/x]|-N,/Ns-x to find the x closest
objects (to ¢) from each candidate strip. Obtaining the
radius of the circle C, then takes time azklogk. There-

fore, T, ~ as[k/ x| J\LZ X + asklogk. Finally, as we assume
a uniform distribution of the data, the expected area
of Cy, is k/N,. Thus, the radius r, = \/k/(7N,). Then,

C, covers approximately 2[N;\/k/(nN,)]| vertical
strips. Therefore, the time of obtaining the k-NNs

T = ayNy\/k/(wN,)log k. O
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5.2.3 Effects of ¢ and 6

The minimum occupancy ¢ influences the frequency of the
merge operation. To simplify the analysis, we assume that
the N, objects are uniformly distributed in a unit square,
and the width of any strip s; is ws. Then for a given object,
the probability that it falls into s; is w,. Thus, the probability
of ¢ objects falling into s; is w$(1 — w,)"* . Therefore, the
probability that s; contains less than & objects (and thus has
to be merged) is Zf;ll wi(l— w,)""™'. We can infer that
more merges will happen when ¢ increases. On the other
hand, there will be a negative impact on the query perfor-
mance if £ is too small. Recall that in DKNN, the number of
candidate strips for a k&-NN query is [k/x] (x < &), which
means that excessive strips have to be processed as candi-
date strips if £ is too small.

The maximum occupancy 6 affects the splitting of strips.
The probability that s; contains more than 6 objects is 1-
S wi(1 —wy)"? ™, which indicates that more strips will
be split when 6 decreases. Meanwhile, an overly large 6 will
also affect the cost of query processing. This is because for
any candidate strip, the distances between the objects con-
tained therein and query points need to be calculated, and a
larger 6 will lead to more objects in each strip.

5.2.4 Advantages of DKNN

The most notable advantage of DKNN is that even though
the master node does not store the positions of objects, it
can still determine the search space that contains the £-NNs
in just two steps, by first directly determining the candidate
strips using the DCS algorithm, and then identifying the
final set of strips to search by computing the circle C,. This
is highly beneficial when the algorithm is running in a dis-
tributed system.

In contrast, most existing search algorithms do not have
this property. With those algorithms, the master cannot
determine the final region for A-NN search without involv-
ing an uncertain number of rounds of communication
between the master and slaves, incurring significant com-
munication costs.

To be more specific, we take YPK-CNN as an example
and compare it with DKNN in terms of computation time.
As explained in Section 1, the communication cost is the
dominating factor. Therefore, we only consider the commu-
nication cost in the following analysis. DKNN can process
an arbitrary query ¢ with only four rounds of communica-
tion, which is shown as Fig. 5. The first round involves the
master sending the query ¢ to the slaves that hold the candi-
date strips. In the the second round the slaves receiving the
query g send to a slave A the supporting objects of ¢ selected
from their respective candidate strips. In the third round,
slave A sends C,, the final search region, to the slaves that
hold the strips in F that are intersected with C,. In the last
round, k£ neighbors are chosen from each strip in F (or all
the objects in the strip if it contains less than k& objects) and
sent by the salves maintaining them to another slave B,
where the final £-NNs can be obtained.

In contrast, YPK-CNN algorithm requires an uncertain
number of iterations of enlarging the search region to pro-
cess a newly arrived query ¢. In the best case that the initial
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rectangle R, already contains k£ neighbors of ¢, the number
of iterations can be equal to 1. But this happens only when
the data is uniformly distributed and the cell size is per-
fectly optimized, which is rare in practice. In the worst case,
the number of iterations can reach (1 + maz{[(q, —1/2)/8],
(1 —a. = 1/2)/51,[(ay = 1/2/8)], [(1 = gy = 1/2)/5]}), Where
l is the size of R, and § is the step size for the enlargement
of Ry in each iteration. When [ and § take the typical values
of 0.02 and 0.01 respectively and the location of ¢ is (0.3,
0.4), the number of iterations is 70, which is much larger
than that of DKINN.

Algorithm 3. findCS Algorithm

Input:

int j, h. /[j and h are the indexes of strips
Output::

vertical candidate strips set C".
1: while j > 0and h < nand |C"] < ¢ do
2 if dist(s;, q)<dist(s;, q) then
3 ¢’ =C"US;j++;
4:  else
5
6

¢" =C" U Sy; h++;
end if

7: end while

8: return C';

5.2.5 Scalability of DKNN

The DKNN algorithm is easily parallelizable and scales well
horizontally (scale-out) with respect to the number of serv-
ers to handle increases in data volumes. Let F be the set of
candidate strips for a given query. These strips in general
reside on different servers, and the the process of searching
them for the k-NNs can take place simultaneously on indi-
vidual servers. More processing power can be obtained by
simply adding more servers to the cluster. The throughput
of DKNN is roughly proportional to the number of servers.

6 IMPLEMENTATION ON THE S4 PLATFORM

We implement our method on Apache 54, an open-source
general-purpose distributed platform originally developed
by and successfully deployed at Yahoo! in the context of
search applications. The main reason for choosing S4 as the
basis for our implementation is that it allows for the process-
ing of unbounded streams data, which is a desirable property
in spatio-temporal applications. While 54 is chosen as the
implementation platform, other similar stream processing
engines such as Storm [36] can also be used for this purpose.

6.1 Overview of S4 and Deploying DSI

54 adopts the Actor model, and data flow within the system
as “events”. An event takes the form of (event type, a key-
value pair, message entity). The basic logical computing unit
in 54 is called a Processing Element (PE). A PE can selectively
consume events output from other PEs, and emit new
events that contain new messages, which can then be con-
sumed by other PEs. PEs are designed to be very light-
weight; thus one server (called a processing node) can run
thousands of PEs.
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The task of deploying DSI on 54 involves two types of PEs,
EntrancePE and IndexPE. The EntrancePE stores the lists Ly
and Ly. IndexPEs are assigned to different nodes in the clus-
ter through hashing, and each IndexPE manages one strip.

6.2 Deploying DKNN

We now discuss how to run the DKNN algorithm on 54 to
process k-NN queries. The DKNN algorithm can be decom-
posed into several steps, and each step can be handled by a
particular type of PEs. We call the resulting scheme DKNN-
S4. In what follows, we explain in more detail this platform.

6.2.1 The Functionality of EntrancePE

The EntrancePE is the entrance to receive all object updates
and queries. It sends NewObEvents and OldObEvents to
the corresponding IndexPE to update the locations of
objects. In addition, when a query ¢ (g,,q,) arrives, the
EntrancePE will send 2[k/x]| QueryPieceEvents that carry
the information of g to the corresponding IndexPEs that
should process q.

6.2.2 The Functionalities of IndexPE and RadiusPE

Each IndexPE maintains only one strip. An IndexPE
receives the NewObEvent and the OldObEvent to insert or
delete the corresponding object. When ipe; receives a Quer-
yPieceEvent, it will process this query, then send a SingleO-
bEvent to the RadiusPE.

When RadiusPE receives all SingleObEvents about query
g, it will compute the radius r,. Next, the it determines
which IndexPEs should continue to compute kK NNs for g,
and sends a RadiusEvent to them. When these IndexesPEs
receive the RadiusEvent, they will find the objects within
the circle C, and send a CanObEvent containing these
objects to the MergePE.

6.2.3 The Functionalities of MergePE and OutputPE

When a MergePE receives all CanObEvents regarding g, it
will compute the k nearest neighbors of 4. Then the Out-
putPE outputs the results to the client.

7 EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the proposed DSI
index and DKNN algorithm. For DSI, we mainly test two
aspects: 1) the performance of DSI, and 2) the effect of vari-
ous parameters on the performance.

To evaluate the performance of DKNN, we implement
three other algorithms on 54 as baseline methods. The first
method, NS, is a naive search algorithm which does not use
any index. For any object, it uses a hash function to deter-
mine which server should store it. Processing the k-NN
queries thus involves scanning objects stored in all servers.
The second method, Grid, is a distributed search algorithm
that employs the same search strategy proposed by [3]
based on the grid index, as discussed in Section 3. In the
Grid algorithm, we set the length of cells as 0.001. In the
third method, Grid-Modified, each server maintains a copy
of a grid index on all of the objects, and queries are ran-
domly routed to different servers for processing using the
YPK-CNN method [3].
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Fig. 7. Computation time for building DSI.
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Fig. 8. Maintenance cost w.r.t velocity.

For the DKNN algorithm, we first evaluate its perfor-
mance with varying parameter values, and then compare it
with other three algorithms. Every experiment is repeated
10 times, and the average values are recorded as the final
results.

7.1 Experimental Setup

The experiments are conducted on a cluster of 16 Dell R210
servers with Gigabit Ethernet interconnect. Each node has a
2.4 GHz Intel processor and 8 GB of RAM.

We use the German road network data to simulate four
different datasets for our experiments. In all datasets, all
objects appear on the roads only. In the first dataset (UD),
the objects follow a uniform distribution. In the second data-
set (GD1), 70 percent of the objects follow the Gaussian dis-
tribution, and the other objects are uniformly distributed.
The third dataset (GD2) also has 70 percent of the objects
following the Gaussian distribution, but they are more con-
centrated. The objects in the fourth dataset conform to the
Zipf distribution and is generated in the following way. We
first rank the roads in descending order based on their
length. For any road r;, we use h; to represent its rank and
assign to it a probability P(r;) = &, where C and « are con-

stants set as 0.001 and 0.9 respectively. Next, we let the per-
centage of objects appearing on road r; be equal to P(r;),
and the objects are randomly distributed on r;. In all four
datasets, the whole area is normalized to a unit square, and
the objects move along the road network, with the velocity
uniformly distributed in [0, 0.002] unless otherwise
specified.

7.2 Performance of Index Construction
and Maintenance

Time of building DSI. We first test the time of building DSI
from scratch to index different numbers of objects. Fig. 7
shows the time of building DSI as we vary the number of
objects. In our study, the size of each object is approximately
50 B. So in this experiment we handle about 10 GB of data
when the number of objects takes the maximum value. The
time it takes to build the index increases almost linearly
with the increasing number of objects. The time is slightly
higher for GD2, indicating that a more clustered
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distribution may lead to a higher cost of building DSL
Unless otherwise noted, the following results are based on
experiments carried out using the GD2 dataset.

Effect of the velocity of objects. Fig. 8 demonstrates the effect
of the velocity of objects on the computation time for main-
taining DSI based on four datasets. In this set of experi-
ments, we first build the DSI for 1 M objects, and then 100 K
object are chosen to move continuously with varying veloci-
ties. As expected, the faster the objects move, the more split
and merge operations happen, leading to an increase in
maintenance time.

Scalability of DSI. Fig. 9 shows the scalability of DSI with
varying number of servers, where the number of objects to
be indexed is 100K. As shown in Fig. 9, the time for building
the index drops almost linearly and the maximum size of
the queue that buffers the objects to be processed also
decreases notably when the number of servers increases,
testifying to the good scalability of the index.

Effect of 6 on DSI. We next study the effect of various
parameters of DSI on its performance. Fig. 10 shows the effect
of the maximum capacity, 6, on the frequency of split. The
number of moving objects indexed is 100 K. As can be
observed from Fig. 10, the split frequency is approximately
reversely proportional to the value of 6; a greater 6 value
would result in a reduction in the number of splits. Of course,
0 cannot be overly large, because that will increase the time
for processing queries, which will be shown in the following
experiments. In addition, we find that the split frequency is
also influenced by the distribution of objects. Since the objects
are more clustered in GD2, there is a higher probability of
some strip becoming full, which results in more splits.

Effect of ¢ on DSI. Fig. 11 shows the influence of the mini-
mum occupancy, £, on the frequency of merge operations.
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Fig. 14. The largest datasets supported by DKNN and Grid-Modified.

A larger value of { means that underflow will occur more
often and thus cause more merge operations.

Effect of update frequency. The cost of DSI maintenance is
also affected by the number of objects to be updated at
each step. Here, we first build the DSI for 100 K objects,
and vary the percentage of objects whose positions are
concurrently updated with the maximum velocity being
0.002. As can be observed from the results shown in
Fig. 12, the time for maintaining DSI grows almost line-
arly with the percentage of objects with position updates,
regardless of the data distribution.

Comparison of DKNN and Grid-Modified. We evaluate the
maintenance costs of DKNN and Grid-Modified using the
same experimental setting as the preceding experiment, i.e.
we vary the percentage of objects with concurrent position
updates, and the results are shown in Fig. 13. For a given set
of objects to be updated, the maintenance cost includes the
time of transmitting these objects from the master to the cor-
responding slaves and the time of accomplishing the
updates of all objects by all slaves. The results demonstrate
that the maintenance cost of Grid-Modified increases line-
arly with the percentage of objects with position updates,
but the maintenance cost of DKNN is only slightly influ-
enced by the varying number of objects. The reason is that
the set of moving objects are separately maintained by mul-
tiple servers with DSI in DKNN and each server only needs
to handle a subset of the moving objects, while in the case of
Grid-Modified, every server has a complete index and thus
needs to update the positions of all moving objects.

We further measure the largest datasets that can be sup-
ported by DKNN and Grid-Modified with varying number
of servers, where each objects contains only its identifier
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and location, and the results are shown in Fig. 14. With
more servers being used, the size of the largest dataset sup-
ported by Grid-Modified almost does not change because it
is determined by the size of the main memory of a single
server, while the scale of the largest dataset that DKNN can
support increases linearly, as the data are distributedly
indexed. Although the size of the largest dataset supported
by Grid-Modified seems huge in this evaluation, the real
dataset that Grid-Modified can support cannot hardly reach
this massive scale because the objects in real datasets not
only contain the identifier and location but also include
more information. For example, the volume of the Tiger
Files that is utilized in SpatialHadoop [35] reaches 60 GB
with only 70 million spatial objects. Therefore, the largest
dataset that Grid-Modified can support will be in general
much smaller than that in Fig. 14.

7.3 Performance of Query Processing
We now perform experiments to evaluate the performance
of the DKNN algorithm.

Processing time. We feed a batch of queries into our sys-
tem in one shot, and measure the time between the first
query entering the system and the k-NN results of all
queries having been obtained. We vary the number of
queries and data distributions, and the results are shown in
Fig. 15. As can be observed from Fig. 15, DKNN achieves
similar performance for different distributions, with GD2
being slightly more time consuming. This is because every
strip in DSI contains at most 6 objects and typically each
query only involves a few strips. Therefore, the data distri-
bution only has a slight impact on the query processing
time. This is in contrast to space-partitioning approaches
such as the grid index, which cannot adapt to data
distributions.

Throughput of DKNN. We record the maximum sustain-
able query arrival rate (with NV, = 20M) for varying number
of servers, and the results are shown in Fig. 16. The maxi-
mum sustainable rates are determined by observing
whether an overflow has occurred in a processing node’s
buffer queue, which is used to buffer queries yet to be proc-
essed by the server. As can be observed from Fig. 16, the
maximum query arrival rate of Grid-Modified increases
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Fig. 19. Performance of DKNN w.r.t 6.

linearly as more nodes are used and it is greater than that of
other methods. Because each server in Grid-Modified pro-
cesses queries independently, its throughput grows propor-
tionally to the number of servers. The throughput of DKNN
is not as good, but close to that of Grid-Modified, because as
a distributed solution, more communication cost is
involved. The trend, however, is still roughly linear with
respect to the number of servers.

Comparison of communication and computing costs. We eval-
uate the communication and computing time of processing
one query with DKNN and Grid approaches based on four
datasets in Fig. 17. The experimental results show that the
communication cost is almost two orders of magnitude
greater than the computing cost for processing one query,
which verify our view that the communication between dif-
ferent servers in a distributed cluster is very expensive com-
pared with the CPU cost.

Effect of x on DKNN. In DKNN, we select x objects from
each candidate strip to form the set of supporting objects.
Fig. 18 shows the influence of x on the cost of processing
queries. In this set of experiments, we feed 100 queries
into the system and record the average processing time of
a query. The results show that x has little effect on the
processing time when k takes smaller values (3 and 5).
When k increases, the influence becomes more obvious.
This observation confirms our analysis about x in Sec-
tion 5. In general, x does not have a significant impact on
the performance of DKNN.

Effect of 6 on DKNN. Fig. 19 shows that the value of maxi-
mum capacity, 6, has a clear effect on the performance of
query processing regardless of the data distribution. The
processing time increases rapidly with increasing 6. Recall
from a previous set of experiments that increasing 6 reduces
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the number of splits in DSI. Therefore, the optimal value of
0 has to be chosen based on the actual workload.

7.4 Comparison with Baseline Methods
In this section, we compare DKNN with three baseline
methods, NS, Grid and Grid-Modified.

Scalability w.r.t. number of servers. We evaluate the scal-
ability of the four algorithms with respect to available hard-
ware. We vary the number of servers, and measure the
average response time per query. As shown in Fig. 20, with
more servers being employed, DKNN and NS algorithms
all enjoy a decrease in processing time, but DKNN performs
much better than NS. The processing time of Grid-Modified
stays level as we vary the number of servers. The reason is
that Grid-Modified handles each query in a centralized way
by a single server; thus the number of servers has little
impact on the average response time per query. Further-
more, the performance of Grid deteriorates when the num-
ber of servers increases, because it involves more iterative
communications among more servers. In this evaluation,
the performance of DKNN gets very close to that of Grid-
Modified with more than four servers.

Effect of the number of objects. Next, we examine the influ-
ence of the number of objects on the performance of the
four algorithms. As shown in Fig. 21, the NS algorithm suf-
fers greatly from an increasing number of objects, because
without an index, it has to go through all objects. The
indexes employed by DKNN, Grid, and Grid-Modified all
can prune the search space, and therefore they are not
heavily affected by the number of objects. In this experi-
ment, DKNN still performs close to Grid-Modified.

Effect of k. Finally, we study the influence of k on the four
algorithms. In Fig. 22, the processing time of DKNN almost
remains unchanged as k increases, the reason being that we
can adjust the value of x accordingly to accommodate the
increase in processing time. When k increases, Grid needs
more iterations to compute the results, and thus its process-
ing time increases more rapidly than the other methods. For
the same reason, the performance of Grid-Modified also
degrades with increasing k£ and it takes more time than
DKNN to process the queries with k being 15. Because NS



YU ET AL.: SCALABLE DISTRIBUTED PROCESSING OF K NEAREST NEIGHBOR QUERIES OVER MOVING OBJECTS

8 servers, Np=20M, Ng=100
—o—DKNN = - NS -a-Grid - @ - Grid-Modified
40

Average time of one query (ms)
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always searches all objects for each query, k& only slightly
influences its performance.

In the above experiments, we find that Grid-Modified per-
forms slightly better than DKNN in terms of query process-
ing cost, but it incurs higher maintenance cost than DKNN
for updating the same scale of moving objects and the largest
dataset that Grid-Modified can support is bounded by the
available memory in a single server. Compared with DKNN,
each server in Grid-Modified has to consume more memory
and has a higher maintenance cost to index all objects, which
restricts its scalability to handle the datasets with massive
volumes because the huge datasets can hardly fit in the main
memory of a single server. In summary, DKNN is more suit-
able for processing k-NN queries over large volumes of mov-
ing objects using a distributed cluster.

8 CONCLUSIONS

The problem of processing k-NN queries over moving
objects is fundamental in many applications. The large
volume of data and heavy query workloads call for new
scalable solutions. We propose DSI, a distributed strip
index, and DKNN, a distributed k-NN search algorithm,
to address this challenge. Both DSI and DKNN are
designed with distributed processing in mind, and can be
easily deployed to a distributed system. DSI is a data par-
titioning index and is able to adapt to different data distri-
butions. Based on DSI, we present the DKNN algorithm
that can directly determine a region that is guaranteed to
contain the k-NNs for a given query with only two itera-
tions. This has a clear cost benefit when compared with
existing approaches, such as grid-based methods, which
require an uncertain number of iterations. We show how
the proposed index and algorithm can be implemented
with S4. Extensive experiments confirm the superiority of
the proposed method.

For future work, we would like to explore how to evalu-
ate continuous k-NN queries over moving objects using the
strip index. For a given k-NN query g, it is very possible
that its result (a list of objects) remains relatively stable
when objects move with reasonable velocities. Therefore, it
is promising to investigate how the k-NN results can be
incrementally updated as objects move.
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