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Abstract—Tag-based image retrieval (TBIR) has drawn much
attention in recent years due to the explosive amount of digital
images and crowdsourcing tags. However, the TBIR applications
still suffer from the deficient and inaccurate tags provided by
users. Inspired by the subspace clustering methods, we formulate
the tag completion problem in a subspace clustering model which
assumes that images are sampled from subspaces, and complete
the tags using the state-of-the-art Low Rank Representation
(LRR) method. And we propose a matrix completion algorithm
to further refine the tags. Our empirical results on multiple
benchmark datasets for image annotation show that the pro-
posed algorithm outperforms state-of-the-art approaches when
handling missing and noisy tags.

Index Terms—Image Annotation, Subspace Clustering, Low
Rank Representation, Matrix Completion, Tag Completion, Tag
Refinement

I. INTRODUCTION

The prevalence of social network and digital photography
in recent years makes image retrieval an urgent need. Im-
age retrieval methods can be classified into two categories:
content-based image retrieval (CBIR) and tag-based image
retrieval (TBIR). The performance of CBIR algorithms are
limited due to the semantic gap between the low-level visual
features used to represent images and the high-level semantic
meaning behind images.

Tags can represent the semantics of image more precise
than low-level visual features, giving rise to research on
TBIR. Basing on text processing techniques, TBIR systems
are usually more accurate and efficient in identifying relevant
images and retrieving relevant images [1]. However, tags are
usually noisy and incomplete due to the arbitrariness of user
tagging behaviors, leading to performance degradations of
TBIR systems. What’s more, manual annotation is laborious,
error prone, and subjective, making automatic image annota-
tion an attractive research field.

Many machine learning methods have been developed for
image annotation. They can be roughly grouped into three
categories: discriminative methods, generative methods and
search-based methods.

Discriminative methods use the classified images and tags
to train a dictionary of concept models and formulate image

annotation as a supervised learning problem. They annotate
images using the likelihood between images and tags.

Generative methods learn the joint probability of image
regions and words. Images are represented by properties of
each of their segments, or blobs. Once all the images are seg-
mented, quantization can be used to obtain a finite vocabulary
of blobs. Thus, the images are treated as bags of words and
blobs, each of which are assumed to be generated by hidden
variables. Once the joint word-blob probabilities are learned,
the annotation problem for a query image is formulated as
a likelihood problem relating blobs to words. [2], [3] extend
the LDA model and propose the Correlation LDA method. [4]
introduces the cross-media relevance models (CMRM).

Search-based methods always search in the feature space to
find the most relevant images to the query image, and transfer
tags to it using various tag transfer algorithms [5], [6], [7]. JEC
[6] demonstrates that simple baseline algorithm can achieve
high performance. TagProp [5] applies metric learning in the
neighborhood of the feature space to annotate query images.

Most annotation methods only complete tags or refine tags,
or tackle both simultaneously. However, tag completion aims
at adding missing tags and tag refinement focuses on remov-
ing noisy ones. To resolve the contradiction, we propose a
Subspace Clustering and Matrix Completion (SCMC) method.
SCMC performs tag completion and refinement sequentially.
The refinement benefits from the completion.

We first perform tag completion for further refinement. We
cluster images and share tags in each cluster. Here we model
the tag completion task in a subspace clustering framework,
which can model the distribution of the image features more
precisely than classical clustering algorithms. Besides, sub-
space clustering algorithms do not need to measure similarity
between different features. We assume that images are sampled
from a union of multiple linear (or affine) subspaces and
images, as well as their corresponding tags, should form a
compatible (low rank) submatrix. Thus we can segment the
subspaces and cluster images by the state-of-the-art method
LRR [8]. Then we adopt a tag transfer algorithm [6] to
complete tags in each cluster separately.

Most tag refinement methods are region-based, depending
heavily on the image segmentation accuracy. To avoid the
segmentation procedure, we introduce an inductive matrix
completion (IMC) [9] model to refine the tags, making the



model robust and efficient. IMC has been successfully applied
to predict gene-disease associations, which share the same
nonlinear property with image-tag associations. The main
contributions of our research are summarized as follows:
• We formulate the tag completion task as a subspace

clustering framework, which is different from all the
other subspace clustering based algorithms in the tag
completion field.

• We refine the tag matrix using a matrix completion model
to overcome the semantic gap as well as the sparsity of
the tag matrix. Our approach is a novel application of the
IMC method to the tag refinement field.

II. ANNOTATION BASED ON SUBSPACE CLUSTERING AND
MATRIX COMPLETION

The proposed annotation framework is illustrated in Fig. 1.
We summarize the flowchart as follows:

Fig. 1: The flowchart of the proposed SCMC

(a) (b) (c)

Fig. 2: Subspace clustering and the block-diagonal property
of the affinity matrix: a mixture of subspaces consisting of
a 2D plane and two 1D lines. (a) The samples are strictly
drawn from the underlying subspaces. (b) The samples are
approximately drawn from the underlying subspaces. (c) The
block-diagonal property of the affinity matrix, each submatrix
corresponds to a subspace [8].

A. Image Preprocessing

We adopt a subset of the image features exploited in [5].
Namely, 1 GIST descriptor and 8 bag-of-features (2 features
types × 2 descriptors × 2 layouts). These features include
global descriptors such as GIST and local descriptors such as

SIFT and robust HUE descriptor. We adopt PCA to perform
dimensionality reduction separately for all features, which are
then concatenated to form the unique visual feature vectors
for corresponding images.

B. Tag Completion

Here we apply LRR to cluster the visual feature vectors into
different subspaces. The algorithm outputs a block-diagonal
affinity matrix, each submatrix of which corresponds to a
subspace (cluster), as shown in Fig. 2c [8]. Then we can
cluster images according to the affinity matrix and perform
tag completion by transferring tags in each cluster separately.
Here we use only visual features for clustering since the tags
may be too noisy and too incomplete.

1) Subspace Clustering: In the image annotation field, one
usually needs a parametric model to characterize the user-
provided images. Researchers have exploited the RPCA model
[1] to decompose the tag matrix into a low-rank refined tag
matrix and a sparse error matrix. However, a given image
dataset is seldom well described by a single subspace. It is
more reasonable to assume that images belonging to differ-
ent categories are approximately sampled from a mixture of
several low-dimensional subspaces, as shown in Fig. 2b [8],
and the membership of the data points to the subspaces might
be unknown, leading to the challenging problem of subspace
clustering. Here, the goal is to cluster data into k clusters with
each cluster corresponding to a subspace. When the cluster
number is one, the subspace clustering model reduce to the
RPCA model. Note that by clustering tagged images into
clusters, we perform classification simultaneously.

A number of approaches to subspace clustering have been
proposed in the past two decades. One of the state-of-the-art
method is the LRR model [8], which performs robust subspace
clustering and error correction in an efficient and effective
way. LRR seeks the lowest rank representation among all
the candidates that can represent the data samples as linear
combinations of the basis in a given dictionary [8].

We denote the set of image feature vectors as X =
[x1, x2, . . . , xn], drawn from a union of k subspaces {Si}ki=1.
Each column of X is a feature vector in RD and can be repre-
sented by a linear combination of the basis in a “dictionary”.
The LRR model just uses the matrix X itself as the dictionary
and takes error into consideration:

min
Z,E
‖Z‖∗ + µ‖E‖2,1,

s.t.,X = XZ + E.

where Z = [z1, z2, . . . , zn] is the coefficient matrix with each
zi being the representation of xi and E is the sparse error
matrix. LRR solves the problem by LADM [10] efficiently. We
can define the affinity matrix of an undirected graph using the
lowest-rank representation (denoted by Z∗). The data vectors
correspond to the vertices and affinity between xi and xj
is computed by | [Z∗]ij | + | [Z∗]ji |. LRR uses the spectral
clustering algorithm Normalized Cuts to perform the final seg-
mentation. Fig. 2c demonstrates the block-diagonal property



of the affinity matrix, where each submatrix corresponds to
a subspace [8]. Images belonging to the same subspace are
clustered together.

2) Tag Transfer: In this work, we just construct tag matrices
for each cluster and improve the simple and intuitive algorithm
proposed in [6] to transfer tags in each cluster separately.
For each cluster, we rank all the tags in the cluster, taking
tag frequency, tag co-occurrence and local frequency into
consideration. Then we can transfer the highest ranking tags
to each image depending on the original tags. The tag matrix
after tag sharing is no longer a 0/1 valued matrix and the
values (between 0 and 1) can represent their confidence level.

C. Tag Refinement

Tag refinement aims to correct noisy tags. The problem can
be regarded as designing a recommender system where the
goal is to predict the ‘preference’ that a user (image) would
give to an item (tag). An important formulation used in rec-
ommender systems is matrix completion, where the problem
is to ‘delete’ the noisy ones in the user-item preference matrix
and ‘complete’ the missing ones given a sample of observed
preferences. However, the tag matrix may be so sparse that
some columns have at most one known entries and some rows
have no known entries. The extreme sparsity makes traditional
matrix completion methods [1] not applicable. Since we have
performed tag completion to make the tag matrix much more
complete to overcome the extreme sparsity, we can overcome
the difficulty and employ the matrix completion method.

We construct a tag matrix P ∈ RNim×Ntg , where each row
corresponds to one image (the number of images is Nim),
and each column corresponds to one tag (the number of tags
is Ntg), such that Pij = 1 if image i is annotated with tag
j and 0 otherwise. Denote the set of observed entries by Ω,
i.e. Ω = {(i, j)|Pij > 0}. We adopt the IMC method for tag
refinement, which assumes that the tag matrix is generated
by applying feature vectors associated with its row as well as
column entities to the underlying low-rank matrix Z [9].

Let xi ∈ Rfim denote the feature vector of image i,
and yj ∈ Rftg denote the feature vector of tag j, which
could be computed from pre-trained word2vec [11]. Let X ∈
RNim×fim denote the feature matrix of Nim images, where
the i-th row is the image feature vector xi, and Y ∈ RNtg×ftg

denote the feature matrix of Ntg tags, where the i-th row
is the tag feature yi. Our goal is to recover the low-rank
matrix Z ∈ Rfim×ftg using the observed entries from the
tag matrix P , where Pij is modeled as Pij = xTi Zyj . The
idea is illustrated in Figure 3.

We formulate the matrix completion problem in a multi-
label regression framework:

min
Z∈Rfim×ftg

∑
(i,j)∈Ω

loss(Pij , x
T
i Zyj) + λrank(Z)

The loss function loss penalizes the deviation of estimated
entries from the observations. The regularization parameter
λ trades off losses on observed entries and the low-rankness
constraint. A common choice for loss function is the squared

Fig. 3: The idea of the low-rank modeling of tag matrix. The
shaded region in the tag matrix P corresponds to the underlying
low-rank matrix Z.

loss function given by losssq(a, b) = (a − b)2. The low-
rankness constraint on Z is NP-hard to solve. So we replace
it with the standard relaxation, the trace norm, i.e. sum of
singular values. Then we get the final object function:

min
Z∈Rfim×ftg

∑
(i,j)∈Ω

(Pi,j − xTi Zyj)2 + λ‖Z‖∗

Note that the object function is convex. So we can use the
LADM [10] method to solve the problem.

III. EXPERIMENTAL EVALUATION

The SCMC algorithm is evaluated on two well known
benchmark datasets: MIRFlickr-25K and Corel5K.

A. Datasets and Experimental Setup

The MIRFlickr-25K dataset is collected from Flickr. Com-
pared to the Corel5K dataset, tags in MIRFlickr-25K are
rather noisy and many of them are misspelled or meaningless
words. Hence, a pre-processing procedure is performed. We
match each tag with entries in a Wikipedia thesaurus and only
retain the tags in accordance with Wikipedia. We use the pre-
trained word and phrase vectors [11] to extract tag vectors
from the tags in these two datasets. As to the parameters in
the LRR algorithm, we just adopt their default values. We
may extend our model by establishing the latent connection
between sub-images and corresponding tags by means of
statistical machine translation [12], [13], [14], or exploring
embedding approaches [15], [16], [17] that simultaneously
learn the distributed representations for both the image and
its tags in the further.

TABLE I: Statistics of Two Datasets

Statistics Corel5K MIRFlickr-25K
No. of images 4,918 25,000

Vocabulary Size 260 1,386
Tags per Image (mean/max) 3.4/5 12.7/76
Images per Tag (mean/max) 65.3/1,120 416.5/76,890

B. Comparisons to State-of-the-art Annotation Methods

We compare the proposed SCMC algorithm to the state-
of-the-art methods, including LRR based model DFC-LRR
[18], RPCA based model LRES [1], search-based algorithms



(i.e. JEC [6], TagProp [5], and TagRelevance [7]), mixture
models (i.e. CMRM [4] and MBRM [19]), tag recommenda-
tion approaches (i.e. Vote+ [20] and Folk [21]) and Bayesian
network model InfNet [22]. Note that the parameters of
adopted baselines are also carefully tuned on the validate set
of Corel5K with corresponding proposed tuning strategy. We
further compare the tag transfer algorithm employed by SCMC
with the graph-based tag propagation algorithm proposed
by an LRR-based method, DFC-LRR, which is much more
complex. To make a fair comparison, the two algorithms run
on the same affinity matrix calculated by LRR.

We measure all the algorithms in terms of average pre-
cision@N (i.e. AP@N ), average recall@N (i.e. AR@N )
and coverage@N (i.e. C@N ). In the top N completed tags,
precision@N is to measure the ratio of correct tags in the
top N competed tags, recall@N is to measure the ratio of
missing ground-truth tags, both averaged over all test images.
Coverage@N is to measure the ratio of test images with at
least one correctly completed tag.

Table II and III demonstrate comparisons on performance.
Due to the limitation of space, we only report results when
N = 2, 3. We observe that: 1) Generally algorithms achieve

TABLE II: Performance Comparison on Corel5K

Corel5K
(N = 2) (N = 3)

AP AR C AP AR C
SCMC 0.27 0.42 0.50 0.23 0.50 0.59
DFC-LRR [18] 0.26 0.41 0.50 0.22 0.50 0.59
LRES [1] 0.27 0.39 0.47 0.23 0.47 0.57
JEC [6] 0.23 0.34 0.39 0.19 0.40 0.47
TagProp [5] 0.27 0.40 0.50 0.22 0.48 0.57
TagRel [7] 0.27 0.41 0.48 0.22 0.47 0.57
CMRM [4] 0.16 0.20 0.23 0.13 0.24 0.27
MBRM [19] 0.20 0.29 0.35 0.17 0.34 0.42
Vote+ [20] 0.23 0.34 0.40 0.19 0.40 0.48
Folk [21] 0.19 0.29 0.34 0.16 0.34 0.41
InfNet [22] 0.15 0.19 0.24 0.12 0.22 0.29

TABLE III: Performance Comparison on MIRFlickr-25K

MIRFlickr-25K
(N = 2) (N = 3)

AP AR C AP AR C
SCMC 0.25 0.38 0.42 0.20 0.41 0.54
DFC-LRR [18] 0.25 0.34 0.40 0.19 0.40 0.53
LRES [1] 0.25 0.35 0.42 0.20 0.39 0.53
JEC [6] 0.20 0.30 0.32 0.16 0.38 0.45
TagProp [5] 0.23 0.35 0.39 0.19 0.42 0.51
TagRel [7] 0.24 0.34 0.37 0.20 0.43 0.52
CMRM [4] 0.12 0.15 0.16 0.11 0.21 0.24
MBRM [19] 0.13 0.16 0.18 0.14 0.30 0.35
Vote+ [20] 0.19 0.29 0.33 0.14 0.33 0.40
Folk [21] 0.12 0.16 0.19 0.13 0.22 0.36
InfNet [22] 0.09 0.10 0.14 0.07 0.18 0.24

better performance on Corel5K, since tags in MIRFlickr-25K
are more noisy. 2) Compared to the traditional mixture model
baselines, search-based methods generally have remarkably
better performance. 3) Subspace-based method, such as SCMC

and LRES, always achieve the best performances, confirming
our assumption on the subspace clustering property of the
image datasets. 4) The tag transfer procedure in SCMC is
a simpler algorithm with comparable performance. 5) SCMC
nearly outperforms all the other algorithms in all cases. 6)
Performance on MIRFlickr-25K in some sense provides an
evidence for the robustness of SCMC.

IV. CONCLUSION

In this paper, we propose an effective approach SCMC
for automatic image tag completion and refinement. SCMC
performs tag completion and tag refinement sequentially. It
clusters images using LRR and shares tags using voting algo-
rithm, then refines tags by IMC. Our model achieves the state-
of-the-art performance in extensive experiments conducted on
benchmark datasets for image annotation.
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