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Abstract

In this paper we present a novel strategy for modelling
the motion of local patches for single object tracking that
can be seamlessly applied to most part-based trackers in the
literature. The proposed Adaptive Local Movement Mod-
elling (ALMM) method is able to model the local spatial
distribution of the image patches defining the object to track
and the reliability of each image patch. Given the output
of a base tracking algorithm, a Gaussian Mixture Model
(GMM) is first used to model the distribution of the move-
ment of local patches relative to the gravity center of the
tracked object. Then, the GMM is combined with the base
tracker in a boosting framework, which gives a novel inte-
grated boosting classifier for the tracking task. This pro-
vides a robust procedure to detect outliers in the local mo-
tion of the patches. The algorithm is highly configurable
with the possibility to change the number of local patches
used for tracking and to adapt to the variations of the
tracked object. Tracking results on standard datasets show
that equipping state-of-the-art trackers with our tehcnique
remarkably improves their performance.

1. Introduction

Visual object tracking is important in most existing Com-

puter Vision systems[1, 3]. Recent and much progresses in

object tracking was yielded, but designing a robust tracker

to track the objects of partially occluded and deformable

targets is still a big challenge. In particular object represen-

tation and motion modelling are two main issues in visual

tracking.

To address the appearance variation problems, researchers

have developed many appearance models and correspond-

ing methods for adapting these models during tracking. No-

ticeably, several methods based on discriminant features

have been proposed recently [4, 5, 6]. Learning-based

methods are one of the most promising ways in dealing with

these tracking issues, since they can adapt to the rigid and

non-rigid object texture and shape variations. Other works

[7, 8] use a discriminative classifier to distinguish the object

from the background.

Structured learning has shown good results on tracking a

whole target, but its complexity increases when modelling

the relationships between patches. In [4], a method that

models unknown parts is proposed to predict the location

of the specific regions with latent part variables. Despite

many advances made in this area, deformable targets and

partial occlusions are still key problems in visual tracking

[21] [16][2].

The other major issue in the tracking task is the mo-

tion modelling of the single object position and its parts

defined as a set of image patches. Probabilistic estimation

frameworks, such as the Kalman or particle filters, are

consolidated techniques for motion prediction [3]; unfor-

tunately, the methods are widely known for suffering the

drifting problem.

On the other hand, data association techniques [10, 11, 12]

can find the motion pattern based on the detection in-

formation. Another probabilistic approach [13] exploits

displacements as a distribution matrix, and introduces a

filter and related tools that work directly on the matrix. In

[10], the authors propose to extract discriminative features

and associate similar trajectories to detect individual mov-

ing objects. In this method, possible motion inconsistencies

between different body parts may cause wrong object

tracking. The method proposed in [14] learns a single

motion distribution at each frame location from videos of a

urban traffic. The work in [15] also uses similar usage of

local motion patterns to improve the tracking performance.

From the literature review, one can notice a trend emerg-

ing where trackers tend to become heavily dependent on a

complicated learning methods; “Is this really necessary?”,

“Can complex learning methods employed in real time ap-
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Figure 1. Overview of the proposed approach (ALMM): The ap-

proach uses as input a set of image patches, b) extracted from a

detection a). The assumption of ALMM is that displacement of

patches wrt the gravity center, follows a Gaussian mixture model

(c). The proposed ALMM method gives more weights to the more

robust patches given the output of the tracker and the local motion

model based on GMM.

plications?”. In this paper we follow the opposite direction

and show that modelling the simple intrinsic local motion

can significantly improve the tracking performance. In par-

ticular, with local movement we refer to the motion of a

local patch center relative to the gravity center of the whole

tracked object as llustrated by Fig. 1a-c. The basic idea of

our approach is that the distribution of the movements of the

local patches is easier to model instead of the whole object

motion. Therefore first, we first calculated this distribution

and subsequently we use it to verify whether a local patch

is coming from the tracked object or not. This last step is

called as the detecting outlier patches stage.

This paper directly addresses the local motion modelling

problem and is proposes an Adaptive Local Movement

Modelling (ALMM) method that includes a classifier which

considers both object representation and local motion in a

unified way. Fig. 1 shows a sketch of the idea underlying

our approach. Given an input video sequence with the tar-

get object initialization including the corresponding image

patches, we first perform tracking of the local patches us-

ing a base tracker (e.g., any off-the-shelf tracking algorithm

would work and in this paper we considered [17, 19]) to cal-

culate the position and the validity of each image patch. As

second step, locations of the patches are further corrected

using an outlier detection process based on a Gaussian Mix-

ture Model (GMM)[20,22] that prunes the patches that di-

verge from the current statistics. Finally, after the GMM

fitting, we assign a weight to each patch which is then used,

together with the base tracker output, to decide whether a

patch should be kept or discarded in computing the gravity

center.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce local patch movement modelling based

on Gaussian mixture models. The adaptive local movement

modelling based on the integrated boosting classifier is de-

scribed in Section 3. Experimental results are reported in

Section 4. Finally, we conclude the paper also envisaging

the future work in Section 5.

2. Local patch movements using Gaussian mix-
ture models

The traditional trackers are generally based on learning

new object models using the image texture and this suf-

fers from failures when the texture information is severely

changed or even missing. In these situations, the local rela-

tive position information can be used to check whether the

tracked result is correct. To fully exploit the local move-

ment information in a tracking problem, we must solve the

following issues:

1. Calculate the gravity center G of the whole tracked

object based on the relative positions of local patches,

also when only partial information is available.

2. Model the local movement of the patches in an online

framework with a Gaussian Mixture model

Gravity center calculation based on local patches. We

define the positions of the N local patches onto the image

plane at frame t as zt1, . . . , z
t
n, . . . z

t
N where each ztn is a 2

dimensional x,y vector ztn = [ztx,n, z
t
y,n] computing taking

the lower-left point of the detection window as origin as

illustrated by Fig.2. The global gravity center position Gt

for the tth frame is then estimated as:

Gt
x =

1∑
n v

t−1
n

·
N∑

n=1

vt−1
n · G

t−1
x

zt−1
x,n

· ztx,n

Gt
y =

1∑
n v

t−1
n

·
N∑

n=1

vt−1
n · G

t−1
y

zt−1
y,n

· zty,n (1)

In the last equation, vt−1
n is a validity flag equal to 1 or

0 indicating respectively if a patch was considered valid

or noisy and suppressed by our framework; the decision is

taken by a boosting framework as explained later in the text.

The initial position G0 is defined during the initialization

stage, which lasts about 15 frames and the validity flags v0n
are initalized as 1.

Local patches position information. We modeled dis-

placement of the local image patches from the gravity center

with a Gaussian mixture model (GMM) of K components

of means μk, standard deviations σk and mixing coefficients

πk.

At each frame time, patch and center, we compute G(kt|ztn)
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Figure 2. Local movement and gravity center illustration. a) A

video frame with a tracked pedestrian and a patch. b) Local move-

ment vector �t.

equal to 1 if the current sample falls inside 2.5 standard de-

viations σt
k from the mean μk and 0 otherwise. Then we

update mean and variance of the GMM as follows

μt
k,x = (1− ρ) · μt−1

k,x (2)

+ρ · 1∑
n G(kt|ztn)

·
N∑
n

G(kt|ztn) · �tx,n

σ2, t
k,x = (1− ρ) · σ2, t−1

k,x + (3)

+ρ · 1∑
n G(kt|ztn)

·
N∑
n

G(kt|ztn) · (�tn,x − μt
k,x)

2

Similarly for the y-coordinate. The values �tn,x represent

the displacements, i.e., the current relative positions of the

patches relative to the gravity center such that

�tx,n = ztx,n −Gt
x and �ty,n = zty,n −Gt

y

as illustrated by Fig. 2a-b.

To make the calculation more efficient, the above process is

implemented along x, y directions, individually.

Finally, each weight πt
k of the kth Gaussian component at

the time t is obtained as:

πt
k = (1− ρ) · πt−1

k + ρ ·
∑N

n G(kt|ztn)
N

(4)

In our experiments we set ρ = 0.1, which acts as a learning

rate.

Once we have fit the GMM using Eqs. 2-4, we can detect

outlier patches by using the following decision function D,

which is similar to what already proposed in [20]

D(zt) =
{
1 (local movement) if

∑
k π

t
k · Nk(z

t) > 0.7

0 (outlier) otherwise

(5)

where Nk(z) is equal to 1 if the current sample falls inside

2.5 standard deviations σ from the mean, and 0 otherwise.

If D(zt) = 1, we can consider that the local patch zt comes

from from the tracked object, otherwise we consider it as an

outlier, as illustrated by Fig.3 where the cyan patches shown

on the two frames on the right of the figures are considered

outliers.

3. The integrated boosting classifier (ALMM)

After defining the local patches motion, we report here

how to include the tracker information in an integrated

boosting classifier.

In practice, the output of the base tracker and the outlier

detection process aforementioned (Eq. 5), are both used to

calculate a weight wt
n of each local patch, which is then

combined together into a decision stump classifier; while

the base tracker decides if the given patch has a stable

appearance in terms of texture, the GMM analyzes it in

terms of displacement with respect to the gravity center.

The aim of this step is to “promote” patches that are stable

in time because of good behavior in both motion and

appearance and used them for a better estimation of the

gravity center. The patches are weighted by errors of weak

learners to promote patches which are correctly classified.

We define B(zt) as the output of the base tracker, which

is equal to 1 if it has given a successful target position that

falls inside the given searching region, and 0 otherwise.

Again, it is important to note that any part-based tracker

can be used.

Now, let wt
n be the weight for the nth patch at the iteration

t. Similariy to boosting we initialize the weights as:

w0
n =

1

N
n = 1, . . . , N. (6)

The classification performance is actually a weighted

sum of a local patch classifier at the iteration t. To update

the weights, we first define H to be equal to

H(zt) =

{
1 if B(zt) ∧ D(zt)
−1 otherwise

(7)

The value H(z) is decided on the basis of both the base

tracker outcome, i.e., if it has given a successful target posi-

tion in the next frame, and the GMM fitting, i.e., if the target

undergoes a good fit given the current GMM configuration,

as defined in the previous section.

Then we define the error associated

εtn =
∑
t′<t

wt′
n · [H(zt

′
n ) = −1] (8)

where εn is the statistical error of the nth patch and [·] is the

indicator function, equal to 1 if the condition is true. Even-

tually the sum in Eq.8 can be windowed, considering only

the previous T frames although experimentally we did not

appreciated any change in perofrmance. Finally It is worth

noticing that Eq. 8 can be efficiently computed recursively

summing the error ε at time t− 1 and an error term at time

t, e.g., εtn = εt−1
n + et
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Figure 3. Modeling the patch misplacement with a Gaussian mixture model. The blue line represents �tn,x for the cyan patch shown in the

exemplar frames. Green and Red lines are the means of two centers of the GMM across the frame. After around frame 220, the patch

diverge and it is not used to deremine the update the position of the gravity center.

Each candidate window in the tracking procedure is con-

sidered in the above boosting process such that:

wt
n =

wt−1
n · e−αt−1·H(zt−1

n )∑
n w

t−1
n

with αt−1 =

√
log

1− εn
εn

(9)

A stronger weight is assigned patches with a more stable

performance, and the corresponding positions are used to

find the gravity center of the whole tracked object. In fact,

after we calculate the weight for each local patch, the va-

lidity of each patch at time t is based on a decision stump

classifier:

vtn =
[
wt

n · [D(ztn) ∧ B(ztn)]
]
≥ 1/2N (10)

The rationale for Eq.10 is that local patches with smaller

weights may be noisy for the gravity center calculation, and

so they are neglected from the gravity center calculation as

illustrated by Eq.1.

In the time t, we also check the local movement based on

the calculated gravity center, if it is not consistent with the

GMM model, we also delete the patch with the smallest

weight and re-calculate again.

4. Experimental results
To demonstrate the effectiveness of the proposed ap-

proach, we perform extensive experiments on six sequences

from two public datasets. We especially focused on the

complex problem of pedestrian motion tracking, although

the method we proposed can be applied to any object. In

the supplemental material we show videos of the tracking

results for the different approaches.

Patch 1

Patch 2

Patch 3

Patch 4

Patch 5

Patch 6

+
G

a)

b)

Figure 4. The configuration of the patches zn (n = 1 . . . 6) for an

exemplar target.

Initialization and set-up: To avoid the arbitrary influ-

ence from using an object detector for initialization, we

manually initialized the target objects, however automatic

algorithms can be used in practical applications. We initial-
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ized the Gaussian mixture model1 using the displacements

�t=1−15
n of the first 15 frames and we set K=3 (three com-

ponents), this value loosely depends on the object and the

number of patches. Note that the global tracker can be sta-

ble in the initial part of the process, but that’s a common

assumption of most of the tracking algorithms.

We extracted six overlapping local patches N = 6, rigidly

dividing bounding box of the targets as illustrated by Fig.

4a-b. Different selections are of course possible however

we did not observed much variations, as long as the patches

are sufficiently big (at least one fourth of the target win-

dow). We described each patch with a stable texture fea-

ture information; again, our hypothesis is that by using the

combination of several patches, we are able to capture the

structure information of the tracked object.

Dataset and evaluation protocol: We compare our algo-

rithm with several base trackers such as the Compressive

Tracking [17], Fragtrack [4], Particle filter [18], tracking-

learning-detection (TLD) [9] and the STC tracker [19] be-

cause they represents the state-of-the-art in the field and be-

cause their source codes are freely available from the au-

thors’ websites.

Regarding evaluation, image sequences are selected from

two public datasets, PETS09 and Robust Fragments. The

selected video sequences consists of a variety of challeng-

ing cases in complex environments, i.e., occlusions among

objects, scale and orientation variations, lighting changes,

and clutter given by the background. The first frame of

each sequence is shown in Fig.5a. To quantitatively eval-

uate the performance, we employed tje Displacement Error

Rate (DER) for the central location between the tracking

result and the ground-truth, in formulae:

DER =
d(Ot

x,y,GTt
x,y)√

AGT
=

√
(x0 − xGT)

2 + (y0 − yGT)
2√

AGT
,

where Ot
x,y is the tracking result, GTt

x,y is the correspond-

ing ground-truth, and AGT represents the area of GTt
x,y cal-

culated by the width and height of the bounding box (same

for all the methods). The lower the DER is, the more accu-

rate the tracking performance is.

ALMM performance: We performed the evaluation on

six test sequences characterized by occlusion, quick motion

and texture variations. Occlusion is the key issue for the in-

accurate localization and instability of tracking algorithms.

Another problem is that the textural information may not be

powerful enough and here we test whether the local move-

ment information is effective for the detection of the outliers

caused by the local tracker.

1We used the standard OpenCV implementation

Kalman filter and particle filter are two well-acknowledged

tracking algorithms which can handle to some extent par-

tial occlusions, being the latter the be more powerful one.

Therefore, in our evaluation, we compare the proposed

method with the particle filter based tracking algorithm. As

base trackers for our frameworks we exploited STC tracker

and Compressive Tracker. Finally, to present a more com-

prehensive experimental section, we also added the com-

parisons with TLD and Fragtrack as they are well known

tracking algorithms.

Results are reported in Fig.6 and Tab.1; our goal here is

to show how ALMMM helps to solve tracking divergence,

therefore results must be appreciated in that sense.

In the sequences selected from PETS09 set, basketball
and man A-B, we have to follow the target in a crowded

environment (check Fig. 5 for a sample of key-frames). For

this reason, during the tracking process, the object is sub-

ject to severe image quality deterioration. These sequences

are also quite challenging because the background in the

scene provides clutter and many objects are similar to the

target in appearance. Moreover, severe occlusions occur

to the target, which results in the degeneration of its ap-

pearance representation in pixel-level space. However, the

proposed tracker can handle this issue robustly. From the

sequences as shown in Fig. 6, we can conclude that the

proposed tracker is effective for visual object tracking and

outperforms or equal the state-of-the-art results. Both lo-

cal movement modelling based methods can achieve better

performances than other base trackers, which demonstrates

that the proposed approach is more robust to the appear-

ance variation and able to discriminate the target during the

tracking.

In the sequence dubbed red woman, both ALMMs

achieve much better performance than the comparative

methods especially at the last frames of the video sequence.

The particle filter method also achieves a similar perfor-

mance as the TLD tracker (sometimes) and compressive

tracker. Notice that for this sequence, there is a strong oc-

cluding effect caused by crowd. In such regard, local patch

based methods can solve this kind of problem in a certain

extent.

Finally, from the analysis of the last 2 sequences, ALMM

results also robust to textural changes white woman, fast

motion basketball and camera deterioration woman (in

the last two cases we also have occlusions). Figure 5b re-

ports examples the aforementioned problematic scenarios

(occlusions etc) that tracking algorithms may not be able

to deal with. As final consideration, the TLD tracker has

the strength to relocate on the tracked object when it loses

it occasionally. This behavior is fit in the case of a long-

time tracking task and it might be included in our approach

as future work. Our method achieves in general a high

performance, which further demonstrates that the proposed
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Figure 5. a) The first frame and the tracking target for each sequence considered. b) Key frames where one of the tracking algorithm fails.

As visibile failing are mostly due to occlusions or textural issues.

method is more robust to the appearance variation even with

severe texture variations and capable to discriminate the tar-

get stably during the tracking.

In Table 1, we reported the average and variance of DER

of the test data are also used as the measurements to com-

pare the performance of the ALMMs with other trackers.

The results confirm that local movement modelling can im-

prove the performance of the tracking system. For exam-

ple, ALMM with STC tracker achieves a better performance

than others, i.e. the variance of ALMM (with STC) is much

smaller than that of the base STC tracker on the red woman

sequence.

5. Conclusions and future work

This paper presented ALMM, a new framework for ob-

ject tracking based on adaptive local movement modelling

of the local patch. Patch based methods are supposed to

be robust to occlusion, but sometime they are not powerful

enough since the appearance only information might not be

reliable. Our idea was to exploit a local movement model

to increase the performance of the patch based tracking
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Figure 6. Results for the tracking accuracy in the different tested sequences for our ALMM algorithm, Compressive Tracking [17], Fragtrack

[4], Particle filter [18], tracking-learning-detection (TLD) [9] and the STC tracker [19]. The x-axis indicates the number of frames in the

sequence while the y-axis refers to the frame number in the sequence. The frames marked with Is.N (issue) are reported in Fig.5b where

one can appreciate one a tracking algorithm may diverge

system. In this way a tracking system based on two ele-

ments, texture and local movement modelling, embedded

into an integrated classifier is verified to be effective in the

tracking task. ALMM can be used in conjunction with any

part-based tracker, in our experiments we evaluated it with

STC and the Compressive trackers. Experimental results

unequivocally demonstrate how ALMM alleviated several

problems in critical tracking situations, like occlusions.

Regarding future work, we will evaluate the proposed

method on more datasets with worse image quality and we

will develop novel strategies in order to deal with longer

video sequences.
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