Hybrid 3D Representations for **3D Understanding**

Qixing Huang July 17th 2020

(d) Symmetry correspondences

(e) Groud-truth pose

(f) Predicted pose

Ranking

The only top-10 program within 1000 miles

Live in Austin

3D Vision

Recovering the Underlying 3D structures from Images

Pose Estimation

Structure-from-motion

Multi-view Stereo

RGB images RGB-D images

Large-scale 3D repositories

3D Warehouse

3M models in more than 4K categories

3D-FRONT [Fu et al. 17] 70k Indoor Scenes

ScanNet [Dai et al. 17] 1k Indoor Scenes

3D Vision (2015-)

Pose Estimation

Structure-from-motion

Multi-view Stereo

Classification

Segmentation

Detection

2D Vision versus 3D Vision

2D Vision

3D Vision

Classification

Segmentation

Detection

The notion of representation

Input and output 3D Representations

Volumetric

Triangular mesh

Point cloud

Parametric surfaces

Constructive solid geometry

Multi-view

Scene-graph

Semantic segments

Input and output 3D Representations

[Zhang et al. 20]

Theme: hybrid representations

Hybrid Representation

Semi-supervised

Supervised

Hybrid Representations in Graphics

Mesh + Spatial Data Structure for collision detection Explicit + Implicit Reps. for Fluid Simulation [Bargteil et al. 06]

Figure credit: https://blog.kitware.com/octree-collision-imstk/

HybridPose: 6D Object Pose Estimation Under Hybrid Representations [Song, Song, H., CVPR 2020]

Github: <u>https://github.com/chensong1995/HybridPose</u>

Task

Input image

Output pose

A popular framework

Keypoints

Pose regression

Intermediate supervision

Feature learning + geometric constraints

Hybrid intermediate representations

Keypoints

Edge vectors: edges between keypoints

Sym corres.: corres. of the underlying reflect. sym.

Each intermediate representation tends to learn different features All provide meaningful constraints on the underlying pose

Neural architecture

PVNet [Peng et al. 19] as the back-bone network architecture

Point-based pose estimation

Slide credit: <u>https://docs.opencv.org/4.3.0/dc/d2c/tutorial_real_time_pose.html</u>

Pose regression

Geometric constraints:

$$\begin{array}{ll} \text{Keypoints:} & \overline{\boldsymbol{r}}_{R,\boldsymbol{t}}^{\mathcal{K}}(\boldsymbol{p}_{k}) \coloneqq \hat{\boldsymbol{p}}_{k} \times (R\overline{\boldsymbol{p}}_{k} + \boldsymbol{t}) \\ \text{Edge vectors:} & \overline{\boldsymbol{r}}_{R,\boldsymbol{t}}^{\mathcal{E}}(\boldsymbol{v}_{e},\boldsymbol{p}_{e_{s}}) \coloneqq \hat{\boldsymbol{v}}_{e} \times (R\overline{\boldsymbol{p}}_{e_{t}} + \boldsymbol{t}) + \hat{\boldsymbol{p}}_{e_{s}} \times (R\overline{\boldsymbol{v}}_{e}) \\ \text{Sym. corres.:} & r_{R,\boldsymbol{t}}^{\mathcal{S}}(\boldsymbol{q}_{s,1},\boldsymbol{q}_{s,2}) \coloneqq (\hat{\boldsymbol{q}}_{s,1} \times \hat{\boldsymbol{q}}_{s,2})^{T} \boldsymbol{R} \overline{\boldsymbol{n}}_{r} \end{array}$$

Regression objective:

$$\begin{split} \min_{R, \boldsymbol{t}} \sum_{k=1}^{|\mathcal{K}|} \rho(\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{K}}(\boldsymbol{p}_{k})\|, \beta_{\mathcal{K}})\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{K}}(\boldsymbol{p}_{k})\|_{\Sigma_{k}}^{2} \\ &+ \frac{|\mathcal{K}|}{|\mathcal{E}|} \sum_{e=1}^{|\mathcal{E}|} \rho(\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{E}}(\boldsymbol{v}_{e})\|, \beta_{\mathcal{E}})\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{E}}(\boldsymbol{v}_{e})\|_{\Sigma_{e}}^{2} \\ &+ \frac{|\mathcal{K}|}{|\mathcal{S}|} \sum_{s=1}^{|\mathcal{S}|} \rho(r_{R, \boldsymbol{t}}^{\mathcal{S}}(\boldsymbol{q}_{s, 1}, \boldsymbol{q}_{s, 2}), \beta_{\mathcal{S}}) \end{split}$$

Robust norm: $\rho(x,\beta) := \beta_1^2/(\beta_2^2 + x^2)$

EPnP [Lepetit et al. 09] for initialization

Gauss-Newton for refinement

	keyp	oints	keypoints +	full model		
	Rot.	Trans.	Rot. Trans.		Rot.	Trans.
ape	1.914°	0.107	1.809°	0.113	1.543°	0.092
can	1.472°	0.059	1.710°	0.073	0.912°	0.041
cat	1.039°	0.119	0.888°	0.117	0.751°	0.055
driller	1.180°	0.057	1.180°	0.057	0.803°	0.027
duck	1.773°	0.116	1.679°	0.115	1.439°	0.068
eggbox	1.675°	0.107	1.587°	0.105	1.052°	0.052
glue	1.796°	0.097	1.681°	0.099	1.224°	0.066
holepuncher	2.319°	0.141	2.192°	0.140	1.704°	0.051
mean	1.648°	0.100	1.590°	0.102	1.179°	0.057

Linmod-Occlusion: the median of absolute angular error in rotation, and the median of relative error in translation with respect to object diameter. Hybrid

H3DNet: 3D Object Detection Using Hybrid Geometric Primitives

[Zhang, Su, Yang, H., ECCV 2020]

Github: <u>https://github.com/zaiweizhang/H3DNet</u>

Task

3D Scene -> Oriented object bounding boxes

Object detection as regression

Extremal and/or center based [Zhou et al. 19a, Zhou et al. 19b, Duan et al. 19] Voting from input point cloud

3D detection output

VoteNet [Qi et al. 19]

Regression depends on bounding box representations

Our approach

[Zhang et al. 20]

Different representations suitable for different object instances

Network architecture

Continuous optimization for object proposals

Aggregate contextual information for proposal refinement

	Input	mAP@0.25	mAP@0.5	
DSS	Geo + RGB	15.2	6.8	
F-PointNet	Geo + RGB	19.8	10.8	
GSPN	Geo + RGB	30.6	17.7	
3D-SIS	Geo + 5 views	40.2	22.5	
VoteNet	Geo only	58.7	33.5	
Ours	Geo only	67.2	48.1	
w\o refine	Geo only	60.2	37.3	

3D object detection results on ScanNet V2 val dataset

	Input	mAP@0.25	mAP@0.5
DSS	Geo + RGB	42.1	-
COG	Geo + RGB	47.6	-
2D-driven	Geo + RGB	45.1	-
F-PointNet	Geo + RGB	54.0	-
VoteNet	Geo only	57.7	32.9
Ours	Geo only	60.1	39.0
w\o refine	Geo only	58.5	34.2

3D object detection results on SUN RGB-D V1 val dataset

	RGB	cab	bed	chair	sofa	tabl	door	wind	bkshf	pic
3DSIS-5	✓	19.8	69.7	66.2	71.8	36.1	30.6	10.9	27.3	0.0
3DSIS	X	12.8	63.1	66.0	46.3	26.9	8.0	2.8	2.3	0.0
Votenet	X	36.3	87.9	88.7	89.6	58.8	47.3	38.1	44.6	7.8
Ours	X	49.4	88.6	91.8	90.2	64.9	61.0	51.9	54.9	18.6
w o refine	×	37.2	89.3	88.4	88.5	64.4	53.0	44.2	42.2	11.1

	RGB	cntr	desk	curt	fridg	showr	toil	sink	bath	ofurn
3DSIS-5	✓	10.0	46.9	14.1	53.8	36.0	87.6	43.0	84.3	16.2
3DSIS	X	6.9	33.3	2.5	10.4	12.2	74.5	22.9	58.7	7.1
Votenet	X	56.1	71.7	47.2	45.4	57.1	94.9	54.7	92.1	37.2
Ours	X	62.0	75.9	57.3	57.2	75.3	97.9	67.4	92.5	53.6
w\o refine	X	51.2	59.8	47.0	54.3	74.3	93.1	57.0	85.6	43.5

3D object detection results on ScanNet V2 val dataset

Qualitative results on ScanNet v2

GT

Ours

Qualitative results on ScanNet v2

Ours

GT

Qualitative results on ScanNet v2

Ours
Qualitative results on ScanNet v2

GT

Qualitative results on ScanNet v2

GT

Qualitative results on ScanNet v2

GT

Qualitative results on SUNRBGD v1

GT

Qualitative results on SUNRBGD v1

Ours

GT

Qualitative results on SUNRBGD v1

Analysis of Hybrid 3D Representations

Argument I: Different reps. learn different features and have different gen. behavior

Prediction errors of geometric primitives of four categories from the ScanNet dataset

Adaptative feature selection via robust optimization and geometric constraints

6D Pose estimation
– Geman Mcclure loss

(b) Keypoints

(e) Groud-truth pose

(a) Input image

(c) Edge vectors

(f) Predicted pose

3D object detection
– Truncated L2 loss

Argument II: Predictions under different representations are not strongly correlated

 In the over-parameterized regime, the optimal network parameters are close to the initial network parameters [Du et al. 19...]

 Therefore, if the network parameters under different representations are initialized independently, then the resulting network parameters are not strongly correlated, so do the predictions.

Argument II: Predictions under different representations are not strongly correlated

[Zhang et al. 20]

Left: covariance matrix of ScanNet. Right: covariance matrix of SUN RGB-D. c represents object center, f0-f6 represent 6 BB face centers, and I0-I11 represent 12 BB edge centers.

Argument III: Bias is smaller than the variance (square-root)

Left: magnitudes of bias and variance (square-root) of geometric primitive predictions on ScanNet. Right: magnitudes of bias and variance (square-root) of geometric primitive predictions on SUNRBGD

Statistical analysis --- simple setting

Simple regression problem:

$$x^{\star} := \underset{x}{\operatorname{arg\,min}} \sum_{i=1}^{n} \|x - y_i\|^2$$

Independent random variables y_i : $E[y_i] = \mu_i$, $V[y_i] = \sigma_i^2$.

Assumption: $|\mu_i - \mu| \leq \delta$, $\sigma_i >> \delta$.

Optimal solution:

$$x^{\star} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

00

Properties:
$$E[x^*] = \frac{1}{n} \sum_{i=1}^n \mu_i, \quad V[x^*] \approx \frac{1}{n^2} \sum_{i=1}^n \sigma_i,$$

 $|E[y_i| - \mu| \le \delta, \quad \sqrt{|V[x^*]|} \approx \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\sum_{i=1}^n \sigma_i^2}{n}}$

Statistical analysis --- general setting

Generalized regression problem: $x^{\star} := \underset{x}{\operatorname{arg\,min}} \sum_{i=1}^{n} f_i^2(x, y_i)$

Approximated solution (assume zero residuals for the ground-truth, i.e., $f_i(x^{gt}, y_i) = 0$):

$$\boldsymbol{x}^{\star} \approx \Big(\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial \boldsymbol{x}} \cdot \frac{\partial f_{i}}{\partial \boldsymbol{x}}^{T}\Big)^{-1} \Big(\frac{\partial f_{i}}{\partial \boldsymbol{x}} \frac{\partial f_{i}}{\partial \boldsymbol{y}_{i}}^{T} \cdot \boldsymbol{y}_{i}\Big), \qquad \frac{\partial f_{i}}{\partial \boldsymbol{x}} \coloneqq \frac{\partial f_{i}}{\partial \boldsymbol{x}} (\boldsymbol{x}^{gt}, \boldsymbol{0}), \ \frac{\partial f_{i}}{\partial \boldsymbol{y}_{i}} \coloneqq \frac{\partial f_{i}}{\partial \boldsymbol{y}_{i}} (\boldsymbol{x}^{gt}, \boldsymbol{0}).$$

Variance:

$$V[\boldsymbol{x}^{\star}] \approx \Big(\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial \boldsymbol{x}} \cdot \frac{\partial f_{i}}{\partial \boldsymbol{x}}^{T}\Big)^{-1} \Big(\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial \boldsymbol{x}} \frac{\partial f_{i}}{\partial \boldsymbol{y}_{i}}^{T} \cdot V[\boldsymbol{y}_{i}] \cdot \frac{\partial f_{i}}{\partial \boldsymbol{y}_{i}} \frac{\partial f_{i}}{\partial \boldsymbol{x}}^{T}\Big) \cdot \Big(\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial \boldsymbol{x}} \cdot \frac{\partial f_{i}}{\partial \boldsymbol{x}}^{T}\Big)^{-1}$$

Characteristics of variance reduction depend on the configuration among different representations

Variance reduction -- HybridPose

Geometric constraints:

$$\begin{array}{ll} \text{Keypoints:} & \overline{\boldsymbol{r}}_{R,\boldsymbol{t}}^{\mathcal{K}}(\boldsymbol{p}_{k}) \coloneqq \hat{\boldsymbol{p}}_{k} \times (R\overline{\boldsymbol{p}}_{k} + \boldsymbol{t}) \\ \text{Edge vectors:} & \overline{\boldsymbol{r}}_{R,\boldsymbol{t}}^{\mathcal{E}}(\boldsymbol{v}_{e},\boldsymbol{p}_{e_{s}}) \coloneqq \hat{\boldsymbol{v}}_{e} \times (R\overline{\boldsymbol{p}}_{e_{t}} + \boldsymbol{t}) + \hat{\boldsymbol{p}}_{e_{s}} \times (R\overline{\boldsymbol{v}}_{e}) \\ \text{Sym. corres.:} & r_{R,\boldsymbol{t}}^{\mathcal{S}}(\boldsymbol{q}_{s,1},\boldsymbol{q}_{s,2}) \coloneqq (\hat{\boldsymbol{q}}_{s,1} \times \hat{\boldsymbol{q}}_{s,2})^{T} \boldsymbol{R} \overline{\boldsymbol{n}}_{r} \end{array}$$

Regression objective:

$$\begin{split} \min_{R, \boldsymbol{t}} \sum_{k=1}^{|\mathcal{K}|} \rho(\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{K}}(\boldsymbol{p}_{k})\|, \beta_{\mathcal{K}})\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{K}}(\boldsymbol{p}_{k})\|_{\Sigma_{k}}^{2} \\ &+ \frac{|\mathcal{K}|}{|\mathcal{E}|} \sum_{e=1}^{|\mathcal{E}|} \rho(\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{E}}(\boldsymbol{v}_{e})\|, \beta_{\mathcal{E}})\|\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{E}}(\boldsymbol{v}_{e})\|_{\Sigma_{e}}^{2} \\ &+ \frac{|\mathcal{K}|}{|\mathcal{S}|} \sum_{s=1}^{|\mathcal{S}|} \rho(\boldsymbol{r}_{R, \boldsymbol{t}}^{\mathcal{S}}(\boldsymbol{q}_{s, 1}, \boldsymbol{q}_{s, 2}), \beta_{\mathcal{S}}) \end{split}$$

Robust norm: $\rho(x,\beta) := \beta_1^2/(\beta_2^2 + x^2)$

EPnP [Lepetit et al. 09] for initialization

Gauss-Newton for refinement

Variance reduction -- HybridPose

[Song et al. 20]

$$\begin{aligned} & \operatorname{Var}([\boldsymbol{c},\overline{\boldsymbol{c}}]) \\ \approx (H_{\mathcal{K}} + \lambda H_{\mathcal{E}} + \mu H_{\mathcal{S}})^{-1} (\sigma_{\mathcal{K}}^2 H_{\mathcal{K}} + \lambda^2 \sigma_{\mathcal{E}}^2 H_{\mathcal{E}} + \mu^2 \sigma_{\mathcal{S}}^2 H_{\mathcal{S}}) (H_{\mathcal{K}} + \lambda H_{\mathcal{E}} + \mu H_{\mathcal{S}})^{-1} \end{aligned}$$

Edge vectors and sym. corres. help reduce the variance along the viewing direction (for both translation and rotation)

Further Discussion

- Intermediate predictions are mostly uncorrelated
- Bias is smaller than the variance
- Single rep. + multiple networks
 - Variance reduction but bias reduction is less effective
- Multiple reps. + single network per rep.
 - Potentially salient variance reduction and bias reduction

Theme: hybrid representations

Hybrid Representation

Semi-supervised

Supervised

A network of 3D representations

Advantage I: Leverage more training data

A toy example

[Johnson et al. 16]

Advantage II: Leverage Unlabeled Data

A toy example

Note that the supervised setting and the unsupervised setting use different characteristics of the hybrid representations

Path-invariant map networks

[Zhang, Liang, Wu, Zhou, H, CVPR' 2019]

Multi-lingual translation

[Johnson et al. 16]

Abstraction

[Zhang et al. CVPR 19]

Path-invariance

[Zhang et al. CVPR 19]

Definition 3. Let $\mathcal{G}_{path}(u, v)$ collect all paths in \mathcal{G} that connect u to v. We define the set of all possible path pairs of \mathcal{G} as

$$\mathcal{G}_{\text{pair}} = \bigcup_{u,v \in \mathcal{V}} \{(p,q) | p, q \in \mathcal{G}_{\text{path}}(u,v) \}.$$

We say \mathcal{F} is path-invariant if

$$f_p = f_q, \qquad \forall (p,q) \in \mathcal{G}_{\text{pair}}.$$

Path-invariance basis

[Zhang et al. CVPR 19]

Can induce the path-invariance property of the entire graph

Path-invariance provides a regularization for training neural networks

Input Input VOLI PCI VOLII Input Model Output Output PC VOLI Input Input ⊾PCIII PCI↓ **∖**PCII PCII VOLII Output Output PCII Input Input PCI Output Seg. PCII PCII PCIII $\min_{\Theta} \sum_{(i,j)\in\overline{\mathcal{E}}} l_{ij}(f_{\widehat{v_i v_j}}^{\Theta}) + \lambda \sum_{(p,q)\in\mathcal{B}} E_{v\sim P_{p_t}} d_{\mathcal{D}_{p_t}}(f_p^{\Theta}(v), f_q^{\Theta}(v))$ Supervised loss Unsupervised loss

Induction operations

Primitive operations that preserve the path-invariance property

Main result

[Zhang et al. CVPR 19]

- Theorem: Given a directed graph with n vertices and m edges, there exists a pathinvariance basis with size at most O(nm)
- Main idea for the proof
 - A directed graph is a directed acyclic graph (DAG) of strongly connected components
 - Use a vertex order to construct a path-invariance basis for DAG

Three advantages over randomly sampling path-pairs

[Zhang et al. CVPR 19]

- One may need to sample many (exponentially number of) path pairs to ensure the pathinvariance property
 - Many long path pairs
- There is a cost of implementing one path pair
- Convergence of stochastic algorithms

Semantic segmentation on ScanNet

	PCI	PCII	PCIII	VOLI	VOLII
100% Label (Isolated)	84.2	83.3	83.4	81.9	81.5
8% Label (Isolated)	79.2	78.3	78.4	78.7	77.4
8% Label + 92% Unlabel (Joint)	81.7	81.7	81.4	81.1	78.7
30% Label (Isolated)	80.8	81.9	81.2	80.3	79.5

8% labeled + 92% unlabeled \approx 30% labeled

Qualitative results

Qualitative results

Other relevant works

[Zhou et al. 16]

Predicted Depth

Predicted Curvature

Cross-Task Consistent

Predicted (re)Shading

Predicted Normals

Input Image

[Zamir et al. 20]

[Zamir et al. 18]
Theme: hybrid representations

Hybrid Representation

Semi-supervised

Supervised